
Performance Analysis of Distributed Search in Open Agent Systems

Vassilios V. Dimakopoulos and Evaggelia Pitoura
Department of Computer Science, University of Ioannina

Ioannina, Greece GR-45110�
dimako,pitoura � @cs.uoi.gr

Abstract

In open multi-agent systems agents need resources pro-
vided by other agents but they are not aware of which agents
provide the particular resources. Most solutions to this
problem are based on a central directory that maintains a
mapping between agents and resources. However, such so-
lutions do not scale well since the central directory becomes
a bottleneck in terms of both performance and reliability. In
this paper, we introduce a different approach: each agent
maintains a limited size local cache in which it keeps in-
formation about � different resources, that is, for each of

� resources, it stores the contact information of one agent
that provides it. This creates a directed network of caches.
We address the following fundamental problem: how can
an agent that needs a particular resource find an agent that
provides it by navigating through this network of caches?
We propose and analytically compare the performance of
three different algorithms for this problem, flooding, teem-
ing and random paths, in terms of three performance mea-
sures: the probability to locate the resource, the number of
steps and the number of messages to do so. Our analysis is
also applicable to distributed search in unstructured peer-
to-peer networks.

1. Introduction

In multi-agent systems (MAS), agents cooperate with
each other to fulfill a specified task. As opposed to closed
MAS where each agent knows all other agents it needs to in-
teract with, in open MAS such knowledge is not available.
To locate an agent that provides a particular resource, most
open MAS infrastructures follow a central directory ap-
proach. With this approach, agents register their resources
to a central directory (e.g. a middle agent [12]). An agent
that requests a resource contacts the directory which in turn
replies with the contact information of some agent that pro-
vides the particular resource. However, in such approaches,
the central directories are the bottlenecks of the system both

from a performance and from a reliability perspective.
In this paper, we introduce a new approach to the re-

source location problem in open multi-agent systems. Each
agent maintains a limited size private cache with the contact
information for � different resources (i.e. for each of the �
resources, the agent knows one agent that offers it). This
results in a fully distributed directory scheme, where each
agent stores part of the directory. We model this system as a
network of caches. There is a link from node � to node � if
and only if agent � knows agent � , that is agent’s � contact
information is stored in � ’s cache.

Caching can be seen as complementary to directories.
Small communities of agents knowing each other can be
formed. Such a fully distributed approach eliminates the
bottleneck of contacting a central directory. It is also more
resilient to failures since the malfunction of a node does not
break down the whole network. Furthermore, the system is
easily scalable with the number of agents and resources.

In abstract terms, this results to the following problem.
Let � � �
 � � be a directed, not necessarily connected graph,
where each node (i.e. agent) � � � is connected with at
most � other nodes. If there is a directed edge from a node �
to another node � , we say that � knows about � . We address
the following questions: starting from an arbitrary node �
how can we reach (learn about) another node � , what is the
probability to reach � and what is the associated communi-
cation cost.

The general mechanism for locating a resource is as fol-
lows. The agent that requires a resource first looks at its
cache. If no contact information for the resource is found in
the cache, the agent selects other agent(s) from its cache,
contacts them and inquires their local cache for the re-
source. This procedure continues until either the resource
is located or a maximum number of steps is reached. In
essence, this procedure constructs directed path(s) in the
network of caches. If the resource cannot be found, the
agent has to resort to some other (costly) mechanism (e.g.
to a middle agent) which is guaranteed to reply with the
needed information. We provide a number of different al-
gorithms for this procedure. In particular, we study the ef-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

fectiveness of using single and multiple search paths.
The performance metrics we are interested in are:

� the probability to locate a resource within
�

steps,

� the average number of steps needed to locate a re-
source, and

� the average number of message transmissions re-
quired.

The probability of locating a resource is important be-
cause it is directly connected with the frequency with which
an agent resorts the the ‘other’ mechanisms (e.g. middle
agents), and should be as high as possible. On the other
hand, the number of message transmissions which is but
one measure of the communication cost, should be as low
as possible. For each of the above quantities, we provide an-
alytical estimations and simulation results that verify them.

The remainder of this paper is structured as follows. A
summary of related work is given in Section 2. Section 3
introduces a number of searching algorithms while Section
4 presents analytical results of their performance. Section 5
includes our simulation results and, finally, Section 6 con-
cludes the paper.

2. Related work

The only other study of the use of local caches for re-
source location in open MAS that we are aware of is that
in [10]. However, in this work, only the complexity of the
very limited case of lattice-like graphs (in which each agent
knows exactly four other agents in such a way that a static
grid is formed) is analyzed.

The problem that we study in this paper can be seen as
a variation of the resource discovery problem in distributed
networks [4], where nodes learn about other nodes in the
network. However, there are important differences: (i) we
are interested in learning about one specific resource as op-
posed to learning about all other known nodes, (ii) our net-
work may be disconnected and (iii) in our case, each node
has a limited-size cache, so at each instance, it knows about
at most � other nodes.

A similar problem appears also in resource discovery in
peer-to-peer (p2p) systems. In this case, a peer searches
for a resource provided by some other peers. Flooding-
based approaches, in which each peer contacts all peers
in its neighbor have been proposed in this context as well.
Gnutella [2] is an example of such an approach. [5] suggests
the use of the Gnutella network to help agents locate infras-
tructure components. While there has been a lot of empir-
ical studies (e.g. [9]) and some simulation-based analysis
(e.g. [6]) of flooding and its variants for p2p systems, an-
alytical results are lacking. Here, we analytically evaluate
various alternatives of flooding-based approaches.

Besides flooding-based search, in p2p research, more so-
phisticated approaches (such as CAN [7], Chord [11], Past
[8] and Tapestry [13]) build a distributed hash table to pro-
vide efficient search. With distributed hashing, each re-
source is associated with a key and each node (peer) is as-
signed a range of keys. For hashing to work, the network
must be highly structured, in that resources should not be
placed at random peers but at peers at specified locations.

Finally, flooding has also been used in ad-hoc routing
(e.g. [3]). Here, the objective is to ensure that a message
starting from a source node reaches its destination.

3. Search algorithms

We assume a multi-agent system with � nodes/agents,
where each agent provides a number of resources. We as-
sume that there are � different types of resources. To fulfill
their goals, agents need to use resources provided by other
agents. To use a resource, an agent must contact the agent
that provides it. However, an agent does not know which
agents provide which resources. Furthermore, it does not
know which other agents participate in the system. A com-
mon approach is to introduce middle agents or directories
that maintain information about which agents provide a re-
source. Thus to find a resource, an agent has first to contact
the middle agent.

v6 v5

v3

v4

v2:Ra v4:Rbv1

v2

cache

v6: Rc v3: Rd

cache

Figure 1. Part of a cache network, each agent � �
maintains in its cache the contact information for
two resources (� � �)

In this paper, we take a complementary approach. We
assume that each agent can locally store part of what a mid-
dle agent knows. In particular, we assume that each agent
has a private cache of size � . An agent stores in its cache
information about � different resources, that is, for each of
the � resources the contact information of one agent that
provides it. The system is modeled as a directed graph

� � �
 � � , called the cache network. Each node corresponds
to an agent along with its cache. There is an edge from node

� to node � if and only if agent � has in its cache the contact

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

v1

v2 v4

v5 v6 v3v3

v1

v2 v4

v6 v3v3

v1

v2 v4

v5 v3

(a) (b) (c)

Figure 2. Searching the cache network of Figure 1: (a) flooding, (b) teeming, (c) random paths (� � �)

information of agent � . There is no knowledge about the
size of � or � . An example is shown in Fig. 1. An agent
may provide two or more resources, thus the same agent
may appear more than once in another agent’s cache. Con-
sequently, there may be less that � outgoing edges from a
node, i.e. a node knows about at most � other agents.

We address the following problem: Given this cache net-
work, how can an agent � , called the inquiring agent, that
needs a particular type of resource � , find an agent that pro-
vides it? Agent � initially searches its own cache. If it finds
the resource there, it extracts the corresponding contact in-
formation and the search ends. If resource � is not found
in the local cache, � sends a message querying a subset of
the agents found in its cache, that is, some of � ’s neigh-
bors, which in turn propagate the message to a subset of
their neighbors and so on.

Due to the possibility of non-termination, we limit the
search to a maximum number of steps,

�
. In particular, the

inquiring message contains a counter field initialized to
�
.

Any intermediate node that receives the message first decre-
ments the counter by 1. If the counter value is not 0, the
agent proceeds as normal; while if the counter value is 0
the agent does not contact its neighbors and sends a positive
(negative) response to the inquiring agent if � is found (not
found) in its cache.

When the search ends, the inquiring agent � will ei-
ther have the contact information for resource � or a set of
negative answers. In the latter case, agent � assumes that
the cache graph is disconnected i.e. that it cannot locate �

through the cache graph. In this case, it will have to re-
sort to other methods, e.g. use a middle agent. Note that
disconnectedness may indeed occur because the network is
dynamic: caches evolve over time.

In the following sections we propose three different
strategies for choosing what subset of its neighbors each
node contacts.

3.1. Flooding

In flooding, � contacts all its neighbors (i.e. all the
agents listed in its cache), by sending an inquiring message,
asking for information about resource � . Any agent that re-
ceives this message searches its own cache. If � is found

in there, a reply containing the contact information is sent
back to the inquiring agent. Otherwise, the intermediate
agent contacts all of its own neighbors (agents in its cache),
thus propagating the inquiring message. The scheme, in
essence, broadcasts the inquiring message. It is not difficult
to see that this scheme floods the network with messages.
As the messages are sent from node to node, a “tree” is un-
folded rooted at the inquiring agent (Fig. 2(a)). The term
“tree” is not accurate in graph-theoretic terms since a node
may be contacted by two or more other nodes but we will
use it here as it helps to visualize the situation.

The flooding scheme has a number of disadvantages.
One is the excessive number of messages that have to be
transmitted, especially if

�
is not small. Another drawback

is the way disconnectedness is determined. The inquiring
agent has to wait for all possible answers before deciding
that it cannot locate the resource. This introduces a number
of problems. There is a large number of negative replies.
Furthermore, since the network is not synchronized, mes-
sages propagate with unspecified delays. This means that
the reply of one or more nodes at the

�
th level of the tree

may take quite a long time. One solution is the use of time-
out functions; at the end of the timeout period the inquiring
agent � decides that the resource cannot be located, even if
it has not received all answers.

3.2. Teeming

To reduce the number of messages, we propose a varia-
tion of flooding that we call teeming. At each step of teem-
ing, if the resource is not found in the local cache of a node,
the node propagates the inquiring message only to a random
subset of its neighbors. We denote by � the fixed probability
of selecting a particular neighbor. In contrast with flooding,
the search tree is not a � -ary one any more (Fig. 2(b)). A
node in the search tree may have between 0 to � children,

� � being the average case. Flooding can be seen as a special
case of teeming for which � � � .

3.3. Random paths

Although, depending on � , teeming can reduce the over-
all number of messages, it still suffers from the rest of flood-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

ing’s problems. One approach to eliminate these drawbacks
is the following: each node contacts only one of its neigh-
bors (randomly). The search space formed ends up being a
single random path in the network of caches. This scheme
propagates one single message along the path and the in-
quiring agent will be expecting one single answer.

In order to speed up the search, we generalize the afore-
mentioned scheme, as follows: the root node (i.e. the in-
quiring agent �) constructs � � � random paths. If � is
not in its cache, the inquiring agent � asks � out of its �
neighbors (not just one of them). All the other (intermedi-
ate) nodes construct a simple path as above, by asking (ran-
domly) exactly one of their neighbors. This way, we end
up with � different paths unfolding concurrently (Fig. 2(c)).
The algorithm, clearly, produces less messages than flood-
ing or teeming but needs more steps to locate a resource.

4. Performance analysis

In this section, we analyze the performance of the pro-
posed algorithms. In particular, we assume that the algo-
rithms operate for a maximum of

�
steps and derive analyt-

ically three important performance measures:

� The probability, � � that the resource is found within
the

�
steps. This probability determines the frequency

with which an agent avoids using the other locating
mechanisms available; � � should be as high as possi-
ble.

� The average number of steps, � � , needed for locating
a resource (given that the resource is found), which
naturally should be kept low.

� The average number of message transmissions, � � ,
occurring during the course of the algorithm. Efficient
strategies should require as few messages as possible
in order to not saturate the underlying network’s re-
sources (which, however, may lead to a higher number
of steps).

4.1. Preliminaries

Here is a summary of the notation we will use:
� number of resource types

� cache size per agent/node	 � �
 � � �� �
� � � probability that a particular resource is in

at least one of � given caches�
maximum allowable number of steps� � prob. of locating a resource in exactly � steps

� � prob. of locating a resource within
�

steps
� � average # steps needed to locate a resource
� � average # of message transmissions.

The network of caches is assumed to be in steady-state,
all caches being full, meaning that each node knows of ex-
actly � resources (along with their providers). The content
of each cache is assumed to be completely random; in other
words the cache’s � known resources are a uniformly ran-
dom subset of the � available resources.

Given a resource � , the probability that � is present in a
particular cache is equal to:

� �
� � � �

� �
� � cache � � �
 � �

every cache entry �� � � �
The number of ways to choose � elements out of a set of

� elements so that a particular element is not chosen is� � ! #% & . Since the � elements of the cache are chosen com-
pletely randomly, the last probability above is clearly equal
to:

� � ! #% & � � � % & � � �
 � � � � , which, gives
� �

� � � � � � � .
In what follows, we let 	 � �
 � � � , so that

� �
� � � � �
 	 .

If we are given � such caches, the probability that � is in
at least one of them is:

� �
� � � � �
 � �
 � �

� � � � , � �
 	 , � (1)

Now let us denote by � � the probability of locating � at
exactly the � th step of an algorithm. Then the probability
of locating � in any step (up to a maximum of

�
steps) is

simply given by:

� � �
�/

� 0 2
� � � (2)

An important performance measure is the average num-
ber of steps needed to find a resource � . Given that a re-
source is located within

�
steps, the probability that we lo-

cate it at the � th step is given by � � � � � , and the average
number of steps is given by:

� � �
�/

� 0 # � � �
� � �

�

� �
�/

� 0 # � � � � (3)

4.2. Performance of flooding

In flooding, upon receiving the inquiring message, each
node transmits it to all its neighbors (unless the required
resource � is contained in its cache). As the algorithm
progresses, a � -ary tree is unfolded rooted at the inquiring
node. This search tree has (at most) �

� different nodes in the
� th level, � � 8 , which means that at the � th step of the algo-
rithm there will be (at most) �

� different caches contacted. :
Suppose that we are searching at the � th level of this tree

for a particular resource � . The probability that we find it
there is approximately given by ; � �

� �
� �

�
� since in the

<
Since an agent = may offer more than one resource, it may appear

more than once in another node’s cache. Also, there may exist more than
one caches that know of = . Both those facts may limit the number of
different nodes in the > th level of the tree to less than ? @ .

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

� th level there are �
� caches. The approximation overesti-

mates the probability since, as noted above, the number of
different caches may be less than �

� . However, it simpli-
fies the analysis and does not introduce significant error as
shown by our simulation results.

The probability of locating � at exactly the � th step is
given by:

� � � ; �
� ! #�

, 0 2 � �
 ; , �
 (4)

that is, we locate it at the � th level and in none of the previ-
ous ones. Substituting yields:

� � �
� �

� �
�

�

� ! #�
, 0 2 � �
 � �

� � , � � � � �
 	 % � � � ! #�
, 0 2

	 % �

or,
�
 � �� � � �
 	 % � � 	 � � � �� � �

 (5)

where � is used to denote the flooding scheme. Substituting
in (2), and after some manipulation (see Appendix A), we
obtain:

�
 � �� � �
 	 � � � � � �� � �
(6)

The average number of steps needed to locate a resource
is found by substituting (5) into (3). After some straight-
forward manipulations (given in Appendix A), the average
number of steps is found to be:

�
 � �� �
�

�
 � ��
�

	
 �
� �

� � � �
 �
 � �� �
� � � #/

� 0 � 	 � � � �� � �
(7)

We know of no closed-form formula for the sum in (7).
Let us now compute the number of messages in the

flooding algorithm. If the resource is found in the inquir-
ing node’s cache there will be no message transmissions.
Otherwise, there will be � transmissions to the � neighbors
of the root, plus the transmissions internal to each of the

� subtrees ! rooted at those neighbors. Symbolically, we
have:

�
 � �� � � �
 � �
� � � � � �

�
� " �

�
 � � �

where " �
�
 � � are the transmissions occurring within a par-

ticular subtree ! with
�
 � levels. For such a subtree ! , if �

is found in its root node there will be 1 positive reply back
to the inquiring node; otherwise, there will be � message
transmissions to the children of the root plus the transmis-
sions inside the � subtrees ! $ (with

�
 � levels) rooted at the
node’s children. We are thus led to the following recursion:

" �
�
 � � �

� �
� � �

�
� �

�
� " �

�
 � � � � �
 � �
� � � �

� 	 � " �
�
 � �

� 	 �
�

�
 	

with a boundary condition of " � 8 � � � since the last node
receiving the message (at the

�
th step) will always reply to

the inquiring node whether it knows � or not. The solution
to the above recursion is:

" �
�
 � � � � 	 � �

� ! # � � 	 � �
� ! #
 �	 �
 �

� 	 �
�

�
 	 �

which gives:

�
 � �� � & � � & � & � & �
�
 	 �

& � ! #
 �&
 �

 & � 	 � � (8)

Eq. (8) shows that (as anticipated) the flooding algorithm
requires an exponential number of messages with respect to
cache size (�).

4.3. Performance of teeming

In teeming, a node propagates the inquiring message to
each of its neighbors with a fixed probability � . If the re-
quested resource � is not found, it is due to two facts. First,
the inquiring node does not contain it in its cache (occurring
with probability �
 � �

� � �). Second, none of the � “sub-
trees” unfolding from the inquiring node’s neighbors replies
with a positive answer. Such a subtree has

�
 � levels; it
sends an affirmative reply only if it asked by the inquiring
node and indeed locates the requested resource. Thus, the
probability of not finding � is given by the following recur-
sion:

�
 �
 * �� � � �
 � �
� � � � � �
 � �
 * �� ! # � %

which gives:

�
 * �� � �
 	 � �
 � �
 * �� ! # � %
� (9)

where ! is used to denote the teeming algorithm.
The average number of steps is found to be (see Ap-

pendix A):

�
 * �� � �
 �

�
 * ��
� ! #/

� 0 2 �
 * �� � (10)

The average number of messages is computed almost
identically with the flooding case; the only difference is that
since a node transfers the message to a particular child with
probability � , the average number of steps will be given by:

�
 * �� � � �
 � �
� � � � � � �

�
� � " �

�
 � � �

where " �
�
 � � is the transmissions occurring within a par-

ticular subtree with
�
 � levels. The recursion (see Section

4.2) takes the form:" �
�
 � � �

� �
� � �

�
� � �

�
� � " �

�
 � � � � �
 � �
� � � �

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

which finally gives:

�
 * �� � & � � & � & � & �
�
 	 �

& � ! #

 �

&
 �

 & � 	 � � � (11)

Teeming also requires an exponential number of messages,
which however grows slower than flooding’s case; its rate is
controlled by the probability � .

4.4. Performance of the random paths algorithm

When using the random paths algorithm, the inquiring
node transmits the message to � � � of its neighbors. Each
neighbor then becomes the root of a randomly unfolding
path. There is a chance that those � paths meet at some
node(s), thus they may not always be disjoint. However, for
simplification purposes we will assume that they are com-
pletely disjoint and thus statistically independent. This ap-
proximation introduces negligible error (especially if � is
not large) as our experiments showed.

At each step � , � � 8 , of the algorithm � different caches
are contacted (one in each of the paths). The probability
of finding resource � in those caches is

� �
� � � � �
 	 � .

Therefore, the probability of finding � after exactly � steps
is equal to (analogously to (4)):

�
 � �� �
�

�
 	 � � 8
	 � �
 	 � � 	 �
 � ! # � � � � � (12)

Given
�

steps maximum, we can easily calculate the
probability �
 � �� that what we are looking for is found, using
(2) and (12):

�
 � �� � �
 	 � � � #
� (13)

Similarly, the average number of steps will be given by:

�
 � �� �
	
 � �

� �
 � 	 � � �
 �
 � �� �

� �
 	 � � �
 � ��
� (14)

The derivation is given in Appendix A. Setting � � � the
above formulas give the corresponding performance mea-
sures for the single-path algorithm.

Finally, the number of message transmissions can be cal-
culated using arguments similar to the ones in Section 4.2.
If � is not found at the inquiring node’s cache, then there
will be � message transmissions to � of its children, plus
the message transmissions along each of the � paths:

�
 � �� � � �
 � �
� � � � � �

�
� " �

�
 � � �

where " �
�
 � � is the transmissions occurring within a par-

ticular path
�

of
�
 � nodes. For such a path

�
, if � is

found in its root node there will be one positive reply back
to the inquiring node; otherwise, there will be one message

transmission to the next node of the path plus the transmis-
sions inside the subpath

� $ (with
�
 � nodes) rooted at the

next node. We are thus led to the following recursion:

" �
�
 � � �

� �
� � �

�
� �

� " �
�
 � � � � �
 � �

� � � �

� 	 " �
�
 � �

�
�

where, as in Section 4.2, " � 8 � � � since the last node re-
ceiving the message will always reply to the inquiring node
whether it knows � or not. The solution to the above recur-
sion is easily found to be equal to " �

�
 � � � � �
 	 �
� � � �

	 � which gives:

�
 � �� � 	 �
� 	 �

�
 	 �

�
 	 � (15)

5. Performance comparison and simulation

The three performance measures are shown in Fig. 3 for
all the proposed strategies. In the plots we have assumed
cache sizes equal to 5% of the total number of resources � ,
which was taken equal to 200. The flooding and teeming
algorithms depend on � (the cache size) while the random
paths algorithm is only dependent on the ratio � � � . The
graphs show the random paths strategy for � = 1, 2 and 4
paths. For the teeming algorithm, we chose � � � � � � , that
is, on the average � � children receive the message each
time. Larger values of � will yield less steps but more mes-
sage transmissions as is evident from Eqs. (10) and (11).

Flooding/teeming yield higher probabilities of locating
the requested resource and within a smaller number of steps,
as compared to random paths. However, the number of mes-
sage transmissions is excessive. Teeming constitutes possi-
bly the better trade off if the probability � is chosen appro-
priately. The random paths strategy performs quite poor for
very small values of � (e.g. 1 or 2). However, for 4 paths
or more, and larger cache sizes, its performance seems the
most balanced of all.

To validate the theoretical analysis, we developed sim-
ulators for each of the proposed strategies. The simula-
tors initially construct a table mapping each of the � avail-
able resources to random agents (which will provide the re-
source). Next, the caches of all agents are filled with ran-
dom � -element subsets of the available resources. After the
initialization, simulation sessions take place with agent 0
issuing one location request for a (uniformly) random re-
source � each time. Obtained statistics include the number
of messages, the path length and a flag denoting whether
the resource was found or not. For each of the proposed al-
gorithms, at least 1000 such sessions are performed and the
accumulated results are averaged.

In Fig. 4 we provide sample simulation results (patterned
lines) along with the theoretical ones (unpatterned lines) for
two of the strategies: teeming (with � � � � � �) and random

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

paths. The plots include the probability of not finding the
required resource (� �
 � �) and the average number of
message transmissions (� � �). The number of resources
used was � � � 8 8 and the cache sizes varied from 1% to
30% of � .

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Probability not found for k = 5% R

flooding
teeming

p = 4 paths
p = 2 paths
p = 1 paths

0

2

4

6

8

10

12

14

0 5 10 15 20

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

t (max steps)

Average number of steps for k = 5% R

flooding
teeming

p = 4 paths
p = 2 paths
p = 1 paths

0

200

400

600

800

1000

0 5 10 15 20

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

t (max steps)

Average number of messages for k = 5% R

flooding
teeming

p = 4 paths
p = 2 paths
p = 1 paths

Figure 3. Comparison of the proposed algorithms:
probability of not finding the resource (� �
 � �),
mean path length (� � �) and average number of
message transmissions (� � �). The teeming al-
gorithm uses � � � � � � .

The plots show that our analysis matches the simulation
results closely; the approximations in Sections 4.2 and 4.3
produce negligible error which only shows up in cases of
very small cache sizes. A more detailed discussion, includ-
ing similar results for flooding, can be found in [1].

6. Conclusions and future work

In this paper, we focused on resource location in multi-
agent systems. We proposed and analytically estimated the
performance of a number of variations of flooding-based
search in such systems. We are currently working on mak-
ing the system adaptive in many different ways: cached
data may change over time, giving rise to cache replacement
policies; agent locations may also do so, possibly invalidat-
ing cache entries.

References

[1] V. V. Dimakopoulos and E. Pitoura. Location Mechanisms
for Distributed-Directory Open Agent Systems. Technical
Report TR2002-02, Univ. of Ioannina, Dept. of Computer
Science, Jan 2002.

[2] Gnutella website. http://gnutella.wego.com.
[3] Z. Haas, J. Y. Halpern, and L. Li. Gossip-Based Ad Hoc

Routing. In IEEE Proc. of INFOCOM 2002, pages 1707–
1716, 2002.

[4] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource
Discovery in Distributed Networks. In PODC ’99, Princi-
ples of Distributed Computing, pages 229–337, 1999.

[5] B. Langley, M. Paolucci, and K. Sycara. Discovery of Infras-
tructure in Multi-Agent Systems. In Agents 2001, Workshop
on Infrastructure for Agents, MAS, and Scalable MAS, 2001.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer Networks. In
Proc. ICS2002, 16th ACM Int’l Conf. on Supercomputing,
pages 84–95, 2002.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-Addressable Network. In
Proc. of ACM SIGCOMM, pages 161–172, 2001.

[8] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-scale, Persistent Peer-to-Peer
Storage Utility. In Proc. of SOSP 2001, 18th ACM Symp.
on Operating System Priciples, pages 188–201, 2001.

[9] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measure-
ment Study of Peer-to-Peer File Sharing Systems. In Proc.
MMCN ’02, Multimedia Computing and Networking 2002,
2002.

[10] O. Shehory. A scalable agent location mechanism. In Proc.
ATAL ’99, 6th Int’l Workshop on Intelligent Agents, Agent
Theories, Architectures, and Languages, volume 1757 of
LNCS, pages 162–172. Springer, 2000.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In Proc. of ACM SIGCOMM,
pages 149–160, 2001.

[12] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Ser-
vice Matchmaking Among Agents in Open Information En-
vironments. SIGMOD Record, 28(1):47–53, March 1999.

[13] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, U. C.
Berkeley, April 2001.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Probability not found using teeming (1/sqrt)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Probability not found using teeming (1/sqrt)

k = 1% R
k = 5% R
k = 10% R
k = 20% R

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14

A
ve

ra
ge

 n
um

. o
f m

es
sa

ge
s

t (max steps)

Average number of messages using teeming (1/sqrt)

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14

A
ve

ra
ge

 n
um

. o
f m

es
sa

ge
s

t (max steps)

Average number of messages using teeming (1/sqrt)

k = 1% R
k = 5% R
k = 10% R
k = 20% R

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Probability not found using p = 4 paths

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

no
t f

ou
nd

t (max steps)

Probability not found using p = 4 paths

k = 1% R
k = 5% R
k = 10% R
k = 20% R
k = 30% R

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

A
ve

ra
ge

 n
um

. o
f m

es
sa

ge
s

t (max steps)

Average number of messages using p = 4 paths

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

A
ve

ra
ge

 n
um

. o
f m

es
sa

ge
s

t (max steps)

Average number of messages using p = 4 paths

k = 1% R
k = 5% R
k = 10% R
k = 20% R
k = 30% R

Figure 4. Simulation results (patterned lines) and analytical curves (unpatterned)

A. Formulas

Eq. (6) Let
�

� 	 # �
 % ! # � . Then:

�
 � �� �

�/
� 0 2

�
 � �
� �

�/
� 0 2 � �
 	 % � � 	 � � � �� � �

�
� ! # � �/

� 0 2
� % �

�/
� 0 2

� % � � �
� �
 � % � � � ! # �

Eq. (7) Letting
�

� 	 # �
 % ! # � and working exactly as
above, we obtain:

�
 � �� �
�

� �
�/

� 0 # � � �
 	 % � � 	 � � � �� � �
�

� ! #
� �

� �/
� 0 # � � % �

�/
� 0 # � � % � � �

�

� ! #
� �

�
� %
 �

� �
� �

� % � � � � � � #/
� 0 � � % � �

Eq. (7) follows easily.

Eq. (10) We drop � ! � from our notation for clarity. Using
(3), we obtain:

� � �
�

� �
� � ! #/

� 0 # � � �
� � � �

�
�

� � � � � ! # � � ! # � � � � � �

From (2) it is seen that � � � � �
 � � ! # . We thus obtain the
following recursion on the number of steps:

� � �
� � ! #

� � � � ! #
 � � � ! #
� �

� � �
This recursion has the solution given in (10).

Eq. (14) Using (3) and (12),

�
 � �� �
�

�
 � ��
�/

� 0 # � 	 � �
 	 � � 	 �
 � ! # �
�

	 � �
 	 � �

�
 � ��
�/

� 0 # � � 	 � �
� ! #

�
	 � �
 	 � � � �
 	 �
 � � # �
 �

� �
� � 	 � �

� �
 	 � � �

�
 � �� � �
 	 � � �
which, using (13) and after some manipulation gives (14).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

