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Abstract— Due to the structural heterogeneity of XML, queries
are often interpreted approximately. This is achieved by relaxing
the query and ranking the results based on their relevance
to the original query. Query relaxation over distributed XML
repositories may incur large communication costs, since partial
result lists from different sites need to be gathered and ranked
to assembly the overall top-k results. To process such queries
efficiently, we propose using a distributed clustered index to group
documents based on their structural similarity. The clustered
index proves to be very effective in reducing the sizes of the
partial lists that need to be combined. Furthermore, it can be
used as the basis of a pay-as-you-go approach, where clusters
of documents are accessed gradually providing the user with
increasingly improving results. To reduce the cost of constructing
and maintaining the clustered index, we use a compact data
structure that trades-off accuracy for storage and communication
efficiency. The index is also used for selectivity estimation so
that query relaxation is geared towards the most promising
structural transformations. Our experimental results show that
our approach significantly reduces the communication cost for
retrieving the top-k results, while maintaining a low construction
cost for the clustered index.

I. INTRODUCTION

XML has evolved as a standard for data representation and
exchange in the Internet. Due to the structural heterogeneity
of XML data, queries are often interpreted approximately.
Usually, this is achieved by relaxing the query and then,
ranking the results based on their relevance to the original
query [1]. Most previous research addresses the problem of
processing approximate or top-k queries on XML data in
a centralized setting [1], [2], [3], [4]. Our focus in this
paper is on approximate processing over collections of XML
documents that are distributed among a number of sites.

A problem with distributed processing is that a site cannot
determine how much to relax a query without contacting the
other sites. A straightforward solution would be to forward
the query to all sites. Then, each site would relax the query
independently to produce a list with the locally best k results
and send it to the query origin, which would produce the final
list of top-k results. However, the number of sites involved
and thus, the communication overhead would be very large.
Furthermore, some of the sites may not support approximate
query processing capabilities.

To address the lack of processing capabilities and achieve
scalability, we propose: (a) partitioning the documents into
groups and assigning a coordinator (or superpeer) to each
group to be responsible for computing the top-k results and (b)
along the spirit of [5], instead of processing queries on actual
data, maintaining appropriate indexes (i.e., data summaries)
and relax queries based on these indexes.

Furthermore, we argue that, if, instead of partitioning the
documents randomly, the index entries of similar documents
are assigned to the same superpeer, then the number of sites
and documents that need to be considered during relaxation
will be reduced. We call the distributed index produced this
way clustered index. In a sense, our clustered index is analo-
gous to the clustered indexes used in centralized applications
to minimize the I/O cost of query evaluation, by placing
similar data close to each other in disk. Our clustered index
aims at reducing communication and processing costs by
placing similar data at the same superpeer. Let us substantiate
this claim.
Threshold-based Processing. The process that is followed to
retrieve the top-k results proceeds in phases. When a query is
issued by a site, the site propagates it to a superpeer. In the
first phase (Local Query Evaluation), the superpeer forwards
the query to the other superpeers. In parallel, each superpeer
evaluates the query against its part of the index to attain k
results. Note that, with results, we refer to index entries and
not to the actual data that are stored at remote sites. These
results are sorted locally at each superpeer, in non-decreasing
order, according to their distance from the original query.

By following a procedure commonly used in a family
of distributed top-k evaluation algorithms (Threshold-based
Algorithms [6]) for reducing communication costs, in a second
phase (Elimination Phase), superpeers exchange the distance
scores of their k-th result (the result in the list with the
largest distance from the original query). Upon receiving
these distance scores, each superpeer discards the results with
distance score larger than the smallest of all the distance scores
it has received. In the third phase (Result Construction), each
superpeer forwards the remaining results to the superpeer from
which it has received the query. After the initial superpeer has
gathered all lists, it merges them to construct the final result
list. Then, the site that issued the query contacts the sites in
the ranked list to retrieve the actual data. If some sites lack
the required processing capabilities, they forward their data to
the initial superpeer to perform the actual query processing.

The elimination phase of the routing process can consist of
more than one round for further pruning the result list and
thus reducing the size of the data that needs to be transmitted.
In the second round of this phase, the superpeers exchange
the distance score and the position in their ranked list of
the last result (in ascending distance order). Let m be the
smallest distance score among all the distance scores sent.
Each superpeer compares m to its own list and finds all results
with a distance score larger than m. If the sum of the position
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of such a result with the position of m is greater than k, then
this result can be safely discarded, since it does not belong to
the final result list. The elimination phase can then proceed
with the next round taking into account the newly acquired
pruned lists in a similar manner to further reduce the number
of results.

Assume N superpeers, each maintaining a part of the
distributed index Ui, 1 ≤ i ≤ N . Let us denote each iteration
(round) of the elimination phase of the query processing
algorithm as roundj . We define the pruning degree to measure
the number of results that are eliminated in each round of the
elimination phase as follows:

Definition 1 (Pruning Degree): For each part Ui of the
distributed index and each roundj of the elimination phase,
the pruning degree (PDj(Ui)) is defined as:

PDj(Ui) =
Eliminatedij

k
, (1)

where Eliminatedij is the number of eliminated results in
the partial results list of superpeer i responsible for part Ui.
We consider the average pruning degree (PDj) for each
roundj :

PDj =

PN
i=1

Eliminatedij

k

N
=

PN
i=1 Eliminatedij

N ∗ k
(2)

The larger the pruning degree, the more efficient the
elimination phase, since less data needs to be transferred
to the superpeer that initiated a query. Furthermore, a large
pruning degree indicates that less processing is required for
constructing the final result.
Motivation for a Clustered Index. Using a clustered index
increases the pruning degree and thus reduces the number of
documents that need to be considered during relaxation. To
see this, consider the following simple example. Assume a set
D of XML documents that can be classified in N categories
(Ci) each having x documents, such that if a query q matches
a document d′ ∈ Ct, 1 ≤ t ≤ N , it does not match any
documents belonging to any other category. Also, assume that
there are more than k exact matches for q. We partition the
documents to N superpeers: (a) uniformly at random, where
x/N documents of each category fall into each superpeer and
(b) by assigning the documents of each category to a different
superpeer. In (a), the results of q are expected to be distributed
uniformly among the superpeers while in (b), the results reside
at a single superpeer. For simplicity, we assume that all non
exact matches have the same distance from q. While in (a),
all exchanged distance scores have the same value and no
pruning is possible, in (b), the superpeer of Ct has a k-th
distance score equal to 0 and all other superpeers can prune
their entire lists. This simple example shows that a clustered
index can increase the pruning degree, when there is similarity
among the documents.

Using a distributed clustered index provides another advan-
tage. In particular, it enables an alternative query evaluation
strategy that follows the principles of a pay-as-you-go ap-
proach. That is, the query evaluation proceeds incrementally
to reduce the time that a user has to wait to obtain results.

The pay-as-you-go strategy exploits the locality of the entries
at each index partition. With the clustered index, query pro-
cessing may start with the most relevant to the query cluster
(for instance, with the cluster with the most similar to the
query entries) and proceed gradually to access the remaining
clusters. This way, we “prune” the number of sites that need
to be considered for processing the query by excluding the
potentially irrelevant ones. The processing and communication
cost increase, while users receive more responses to their
queries, i.e, gradually paying for the results they get.

In a nutshell, our clustered-index approach to relaxation
works as follows. An index entry (or summary) is constructed
for each document. The indexes are clustered and assigned to
superpeers. The superpeers cooperate to relax the query by
either pruning the result lists or the number of sites to be
considered.

Paper Roadmap and Contributions. The main premise
of this paper is that: a clustered index can improve the
performance of distributed approximate top-k processing. To
deploy our clustered index for distributed top-k processing
of XPath queries, we need to resolve a number of important
issues. In addressing them, the paper also makes the following
contributions:

• We provide a distance measure for ranking the results in
the top-k list based on structural transformations. These
structural transformations are utilized by our relaxation
algorithms. The novel aspect of these algorithms is that
they direct the relaxation process towards those transfor-
mations that would result to the most results based on
selectivity estimations provided by the distributed index.
The selectivity-based relaxation algorithms are introduced
in Section II.

• We propose a compact hash-based index structure, termed
Depth Bloom Histogram, that provides selectivity estima-
tions, can be updated incrementally and can be used for
clustering. This index is described in Section III.

• We integrate the different components to work together
efficiently with a threshold-based query evaluation pro-
cedure in a distributed setting. Their deployment is de-
scribed in Section IV.

The other sections of the paper are organized as follows.
Section V includes our experimental evaluation, while Section
VI refers to related research. Extensions of the basic approach
are discussed in Section VII and a summary is given in Section
VIII.

II. SELECTIVITY DRIVEN RELAXATION

XML employs a tree-structured model for representing data.
In particular, we can model an XML document as a node-
labeled tree Tree(V, E). Each node ei ∈ V corresponds to an
XML element with a label assigned from some string literals
alphabet that captures element semantics. Edges (ei, ej) ∈ E
capture the containment of element ej under ei. Any subtree
of the XML tree is called an XML fragment.

We focus on queries that belong to an XPath sub-
set, XPath{/,//,∗}, consisting of expressions of the form:
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a1p1a2p2a3...anpn, where pi ∈ V ∪ {∗}, ∗ is the wildcard
operator and ai is the child or descendant-or-self axis (“/”
and “//”). Such path expressions form the building blocks of
more advanced querying. We also handle twig queries (e.g.
tree-pattern queries) by decomposing them to appropriate path
expressions in XPath{/,//,∗} and process them separately. A
path expression is evaluated sequentially by finding an element
p1 anywhere in the document and nested within it an element
p2, and so on, until pn is encountered. Its result is the set of
fragments rooted at the pn nodes found in the given XML tree.
We say that a query q matches a collection of documents D,
if the result set of the evaluation of q against the documents
in D is non-empty. We denote as result(q, D) the fragments
included in the result set.

A. Distance Measure and Structural Transformations

There has been a lot of work on defining non exact-match
semantics for XML [1], [2], [3]. To show the benefits of a clus-
tered index, in this paper, we focus on structural relaxations.
We first define a distance measure for ranking the results. Such
a measure should not assume any knowledge about the global
data distribution, since this is not realistic in a distributed
setting. To this end, we rely on a variation of the edit-distance
that counts the number of mismatching element tags between
two path expressions of the same length. To compare two
path expressions with different lengths, we define a function
ap∗(p, n, j), which given a path expression p of length l, and
a number n (n ≥ 0), appends n path steps at the j + 1
position in p with the wildcard as their element tag. That is:
ap∗(p, n, j) = //p1/p2/ . . . /pj/pj+1/ . . . /pn/ . . . /pl, where
pi =“*”, for j < i ≤ j + n. To compare two path expressions
p and p′ of length l and l′ respectively with l < l′, it suffices
to use the ap∗ function on p, with n = l′ − l and j = l. If
p contains the “//”, we set j equal to the position of the “//”
and n equal to l′. If l = l′, then ap∗(p, 0, j) just substitutes
“//” with “/”. In the computation of distance, we consider that
the wildcard operator does not match any element tag.

Definition 2 (Distance Measure): The distance, dist, be-
tween two path expressions p and p′, with lengths l and l′

respectively, is defined as:

dist(p, p′) =

⎧⎪⎨
⎪⎩

dist(ap∗(p, l′ − l, l), p′) =
Pl′

i=1 diff(p′
i, pi)/l′,

if l ≤ l′

dist(p′, ap∗(p′, l − l′, l′)) =
Pl

i=1 diff(p′
i, pi)/l,

if l > l′

where pi and p′i denote the elements in position i in p and p′

respectively, and diff(pi, p
′
i) = 0 if pi = p′i and 1 otherwise.

To acquire approximate results for a query, we generalize
the original query, by applying a number of structural trans-
formations to it. Our transformations are in the spirit of [1],
but simplified for linear path expressions.

Definition 3 (Structural Transformations): Let P be the set
of path expressions. A structural transformation T is a function
T : P → P that maps a path expression p = //p1/p2/.../pn

into a new path expression T (p). In particular, we define the
following three structural transformations:

• truncation of the last element of p: Trunc(p) =
//p1/p2/.../pn−1

• replacement of an element tag at position i of p with the
wildcard operator: RepTag(p, i) = //p1/p2/.../pi−1/ ∗
/pi+1.../pn.

• replacement of a “/” axis in position i with the “//” axis:
RepAxis(p, i) = //p1/p2/...pi−1//pi/.../pn.

We associate a cost with each structural transformation,
evaluated by calculating the distance between the original path
expression p and the relaxed path expression T (p).

Definition 4 (Transformation Cost): The cost of each struc-
tural transformation is defined as:

• cost(Trunc, p) = dist(Trunc(p), p) = 1/length(p).
• cost(RepTag,p) = dist(RepTag(p, i), p) = 1/length(p).
• cost(RepAxis, p) = dist(RepAxis(p, i), p) =

dist(//p1/p2/... /pn, /p1/p2/ . . . /pi−1/ ∗1 /.../ ∗x

/pi/.../pn) = x/length(p).
The cost of the last transformation is defined so that “//”

is equivalent to inserting a specific number of simple steps in
the path expression with the wildcard operator.

Note that cost is not defined for all pairs of path ex-
pressions. For example, it holds that dist(a/ ∗ /b, a/c/b) =
dist(a/c/b, a/ ∗ /b) = 1/3. However, we can determine only
the cost for transforming “a/c/b” to “a/*/b” which is 1/3, and
not vice versa.

Let T t(p) be a sequence of t transformations applied to
p. That is, T t(p) = T (T t−1(p)). We define the cost for a
sequence of transformations as: cost(T t, p) = cost(T t−1, p)+
cost(T, p). If we denote as qt the result of a sequence of
transformations T t applied to q, it is straightforward that:
dist(q, qt) = dist(q, qt−1) + cost(T, qt−1), where T denotes
the t-th transformation in the sequence. A direct consequence
is the following property:

Property 1 (Monotonicity): The transformation functions
are monotonous with respect to the distance measure dist.
That is, dist(q, qi) ≤ dist(q, qi+1).

A second important property guarantees that if a an XML
fragment f matches the original query q, it also matches any
query that is derived after the application of any possible
combination of transformations on q. In particular:

Property 2 (No-loss Guarantee): If fragment f ∈
result(qi−1, D) ⇒ f ∈ result(qi, D).

This is because the transformation functions guarantee that
if a query q matches a document d, then q′ = T (q) also
matches d (detailed proof in [7]). This property ensures that by
relaxing a query, we do not lose any results that may exist. Fur-
thermore, it holds that: |result(qi, D)| ≥ |result(qi−1, D)|.
B. Relaxation Algorithms

The relaxation algorithm takes as input a query and grad-
ually applies a combination of the available transformations
to it so as to attain the user-specified number of results. A
central issue is the termination condition, that is, how much
we need to generalize the query to attain the required number
of results. We propose deriving the termination condition by
exploiting the distributed index. In particular, both the order
and the number of transformations that the algorithm applies
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is driven by two factors: the quality of the results and index
selectivity estimations. Note that our index ensures that queries
with results in the data have non-zero estimated selectivity.

We propose three different variations of the relaxation
algorithm that vary on the portion of the total search space
that each one explores.
Dynamic Programming Relaxation Algorithm. We intro-
duce an exhaustive relaxation algorithm that applies at each
iteration the transformation that will result in a query with
the smallest possible distance from the original one. The
index is consulted so as to consider only transformations with
non-zero estimated selectivity. Furthermore, for transformed
queries with the same distance from the original query (e.g.
when we apply RepTag or Trunc to the same query), the index
is used to select the one with the largest estimated selectivity.

If all one-step transformations result in queries with zero
selectivity, we proceed by applying a second relaxation step
to the already relaxed queries. When there are transformed
queries that have no results with regards to the index, but
have a smaller distance from the original query than that of
the best relaxed query with non-zero selectivity, the algorithm
continues to apply transformations to them. The process stops
only when each candidate query has either non-zero selectivity
or no more transformations can be applied to it or its distance
is larger than that of a query with non-zero selectivity. Thus,
the algorithm ensures that the selected transformations are the
ones that will result in the smallest loss of quality, that is,
the transformations that will lead to a query with the smallest
distance from the original query. It can be shown that (formal
proof in [7]):

Property 3 (Correctness): The relaxation algorithm
chooses at each iteration the transformation that has the
smallest possible distance from the original query among
those that have not been applied yet.

To improve the complexity of the relaxation algorithm,
we use a dynamic programming technique (Alg. 1). The
intermediate distances calculated at each iteration are stored in
auxiliary tables (qlist, qw, dw, q1) to avoid recomputing them
at each iteration. An instance of Alg. 1 is shown in Fig. 1.

Property 3 ensures that at each iteration the returned results
have greater (or equal) distance from the input query than
the results of the previous iteration. This can be exploited
to stop processing before attaining k results. In particular,
each superpeer that has computed a number of k/x results,
(x ≥ 1) can forward the distance score of the last result to
the other superpeers. After comparing their distance scores,
each superpeer can decide whether it needs to continue the
relaxation process or not. This way we move the pruning phase
of the query evaluation earlier in the method, thus saving on
processing cost at each superpeer. Note that if a random index
is utilized, we do not expect to have a large gain, but with a
clustered index, superpeers responsible for clusters irrelevant
to the query stop their processing much earlier.
Greedy Relaxation Algorithm. We introduce an alternative
greedy relaxation algorithm. The main difference with the
dynamic programming algorithm is that at each iteration, only

...

...

q

Tr(q)

RT(q,1)

RT(q,2)

RT(q,l)

RA(q,1)

RA(q,2)

RA(q,l)

RT(RT(q,1),1)

Tr((RT(q,1))

RT(RT(q,1),l)

RA(RT(q,1),1)

RA(RT(q,1),l)

RT(RA(q,2),1)

RT(RA(q,2),1)

RT(RA(q,2),l)

RA(RA(q,2),1)

RA(RA(q,2),l)

Tr(Tr(RT(q,1)))

RT(Tr(RT(q,1)),1)

RT(Tr(RT(q,1)),l)

RA(Tr(RA(q,1)),1)

RA(Tr(RA(q,1)),l)

...

...

iteration 1
iteration 2
iteration 3

...

...

...

...

...

   Trunc              Tr
   RepTag           RT
   RepAxis          RA

Fig. 1. Dynamic programming algorithm. The rectangles include the
candidate states (transformation sequences) considered at each iteration. The
shaded oval is the best transformation at each iteration.

a single query is considered (Fig. 2(left)). In particular, at
each iteration the index is consulted to select among all one-
step transformations the one that yields the largest number of
results. This relaxed query is then used as input to the next
iteration, until the required number of results is attained.

The algorithm may relax a query up to the most general
query (i.e. “//*”), especially for large values of k. To avoid this,
we use a simple heuristic in which the algorithm stops relaxing
the selected query when its distance from the original query
exceeds a threshold (MaxDist). It then uses backtracking
to return to the iteration after which the largest increase in
distance so far was observed. Then, the process continues by
applying a different transformation to the relaxed query of that
iteration.

Unlike the dynamic programming algorithm, the greedy one
does not guarantee that the returned results are the actual top-
k results. Thus, the greedy algorithm trades-off correctness
for efficiency, since it applies a much smaller number of
transformations and index look-ups by reducing the search
space it considers.
Random Walks Relaxation Algorithm. To improve the
quality of the results of the greedy algorithm without reaching
the complexity of the dynamic programming one, we introduce
a hybrid technique that considers M relaxed queries at the first
iteration and applies the greedy technique in parallel to each
of them (Fig. 2(right)). After each iteration, the number of all
returned results is compared to k to determine the termination
of the process. Instead of selecting M queries randomly, we
bias the walk by selecting the M queries with the largest
pairwise distances. The goal is to drive relaxation towards
queries that lead to a larger number of non-overlapping results.
The random walks approach also does not ensure correctness.
However, we expect that it provides results with better quality,
since it explores a larger part of the search space.

III. INDEX STRUCTURE

We assume a collection of documents distributed in a
number of sites. To achieve scalability, instead of contacting all
sites to process a query, documents are summarized. The sum-
maries of the documents are aggregated and these aggregated
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RT(q,2)

RT(q,l)
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RT(RT(q,1),1)

RT(RT(q,1),l)

RA(RT(q,1),1)

RA(RT(q,1),l)

...
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Tr(RT(RT(q,1),2))
Tr(RT(q,1))

RT(RT(RT(q,1),2),1)

RT(RT(RT(q,1),2),l)

RA(RT(RT(q,1),2),1)

RA(RT(RT(q,1),2),l)

...

...

Tr(Tr(RT(RT(q,1),2)))

RT(Tr(RT(T(q,1),2)),1)

...

...

...

...

q

Tr(q)

RT(q,1)

RT(q,2)

RT(q,l)

RA(q,1)

RA(q,2)

RA(q,l)

RT((RT(q,1),2)

RT(RT(q,1),1)

RT(RT(q,1),l)

RA(RT(q,1),1)

RA(RT(q,1),l)

...
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Tr(RT(RT(q,1),2))

Tr(RT(q,1)) RT(RT(RT(q,1),2),1)

RT(RT(RT(q,1),2),l)

RA(RT(RT(q,1),2),1)

RA(RT(RT(q,1),2),l)

...

...

Tr(Tr(RT(RT(q,1),2)))

RT(Tr(RT(RT(q,1),2)),1)

...

RT(RA(q,2),2)

RT(RA(q,2),1)

RT(RA(q,2),l)

RA(RA(q,2),1)

RA(RA(q,2),l)

Tr(RA(q,2))

Tr(Tr(RA(q,2)))

RT(Tr(RA(q,2)),1)

RT(Tr(RA(q,2)),l)

RA(Tr(RA(q,2)),1)

RA(Tr(RA(q,2)),l)

...

...

Tr(Tr(Tr(RA(q,2))))

RT(Tr(Tr(RA(q,2))),1)

...

...

...

...

...

Fig. 2. (left) Greedy and (right) random walks with M = 2. Graphical notation as in Fig. 1.

Algorithm 1 DynamicProgRelax(I, k, q)
I : Index, k: # of results, q: Query

1: qlist = {(q, 0)} //Input query list with pairs of the form
(expr, dist(expr, q))

2: qMIN = NULL //Selected query for this iteration
3: qw, dw, qcan, q1 //Lists for storing intermediate results
4: NUM = 1 //Number of queries in qlist currently
5: K = 0 //Number of retrieved results so far
6: result list = NULL
7: while (1) do
8: for j = 1 to NUM do
9: q1[j].expr = Trunc(qlist[j].expr)

10: q1[j].dist = qlist[j].dist + 1
11: len =Number of path steps in qlist[j].expr
12: for i = 1 to len do
13: qw[j, i].expr = RepTag(qlist[j], i)
14: qw[j, i].dist = qlist[j].dist + 1
15: dw[j, i].expr = RepAxis(qlist[j], i)
16: qw[j, i].dist = qlist[j].dist + x
17: end for
18: end for
19: qcan:exprs with min dist value in qw, dw, q1

20: qMIN :The query in qcan with the largest
EstRes according to the index

21: K = K + EstRes(I, qMIN )
22: Add qMIN to result list
23: if K < k then
24: NUM = NUM + 1
25: qlist[NUM ] = qMIN

26: else
27: RETURN result list
28: end if
29: end while

Path Count

/a   10
/b   20
/c 100
/d 250
/a/b   20
/b/c 100
/b/d 250
/a/b/c 100
/a/b/d 250

BF(/a,/b)DBH0

 DBH (buckets=2, levels=3)

BF(/c,/d)
  15
175

BF(/a/b)
BF(/b/c,/c/d)

  20

175

BF(/a/b/c)
BF(/a/b/d)

100

250

DBH1

DBH2

b1
b2

b1
b2

b1
b2

Fig. 3. (left) Full path count table and (right) the corresponding DBH

summaries are assigned and maintained by special sites that
play the role of superpeers. The indexes or summaries must (a)
be compact, so that the cost of transmitting the entries among
the various sites is small, (b) representative of the document
structure and capable of providing selectivity estimations, and
(c) incrementally updatable through a cost-effective procedure.
They should also lead to an effective aggregation that increases
the pruning degree of the relaxation procedure. To this end,
we use a data structure based on Bloom filters.

A. Depth Bloom Histogram

Bloom filters [8] are compact data structures for probabilis-
tic representation of a set that support membership queries.
Consider a set A = {a1, a2,..., an} of n elements. The idea
is to allocate a vector v of s bits, initially all set to 0, and
then choose m independent hash functions, h1, h2, . . . , hm,
each with range 1 to s. For each element a ∈ A, the bits at
positions h1(a), h2(a), . . . , hm(a) in v are set to 1. Given a
membership query for c, the bits at positions h1(c), h2(c), . . . ,
hm(c) are checked. If any of them is 0, then certainly c /∈ A.
Otherwise, we conjecture that c is in the set, although there
is a certain probability that we are wrong (false positive). To
support updates, we maintain for each location i in the bit
vector a counter of the number of times the corresponding bit
is set to 1.

In [9], we have proposed an extension of a Bloom filter,
called Depth Bloom Filter, that supports testing whether an
XPath query matches an XML document. A Depth Bloom
Filter (DBF) with lb levels for an XML tree with L levels is a
set of lb Bloom filters {DBF0, DBF1, DBF2, . . . , DBFlb−1},
lb ≤ L, where in each DBFi we hash all paths of the XML
tree that have length i, (i.e., all paths with i + 1 nodes). A
path is hashed by considering its path expression as a string.
Depth Bloom Filters do not provide selectivity estimations.

Bloom Histograms [10] are designed for supporting se-
lectivity estimations for XPath expressions. The idea is to
use a histogram to summarize the frequency of all paths of
an XML tree, while using a Bloom filter to summarize the
corresponding values, i.e. the paths that fall into each bucket
of the histogram. To construct a Bloom Histogram BH with
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b buckets for an XML tree, the set of paths in the tree is
partitioned into b disjoint sets of paths, pathi. The Bloom
Histogram is a two-column table BH(BFi, vali), 1 ≤ i ≤ b,
where BFi is a Bloom filter of all paths in pathi and vali is
a representative value of the frequencies of all paths in pathi.

We enhance Depth Bloom Filters to provide selectivity
estimation as follows. Instead of using a simple Bloom filter
for each level i, we use a Bloom Histogram constructed by
taking as input all paths of length i. The resulting Depth Bloom
Histogram (DBH) with lb levels and b buckets for an XML tree
with L levels is a set of Bloom Histograms {DBH0, DBH1,
DBH2, . . . , DBHlb−1}, lb ≤ L, where each DBHi is a Bloom
Histogram with b buckets that includes all paths of length i.
An example is shown in Fig. 3, where Fig. 3(left) depicts a
full path count table that reports the frequency of each distinct
path in the tree and Fig. 3(right) the corresponding DBH.

B. Selectivity Estimation

Assume a DBH with lb levels and b buckets and a query q
of length lq . To estimate the selectivity of q using the DBH, q
is split to all possible subpaths of length 0 (single elements) up
to length lm−1, where lm = minimum{lb, lq}. Each subpath
of length i is then hashed and checked against the b Bloom
filters of the corresponding DBH, that is of DBHi. If we have
a match in more than one filter, the average of the values in the
corresponding buckets is returned as the selectivity estimation
for the corresponding path. After all subpaths are evaluated,
a set of selectivity estimations, one for each of the subpaths,
is retrieved. For the query to have a match in the data, it is
required that all subpaths appear in the filter. Thus, we take
as the selectivity estimation for q the minimum of the set of
the selectivity values that are retrieved.

When q contains either the wildcard or the “//” operator, the
query is split at its position and the resulting subqueries are
evaluated separately by using the procedure described above.
The selectivity estimation for q is given by the minimum
estimation returned for any of the subqueries. The same applies
for queries containing branching.
Complexity. Assume a DBH with lb levels and b buckets. For
a query q with length lq , firstly, lq subpaths of length 0 are
matched against the b Bloom filters of DBH0, then lq − 1
subpaths of length 1 are matched against the b Bloom filters
of DBH1 and so on, until we match 1 path of length lq or
the length of the subpaths in question is no longer contained
in the DBH (lq > lb). Thus, we have: b ∗ lq + b ∗ (lq − 1)+ b ∗
(lq − 2)+ · · ·+ b ∗ 1 = O(b ∗ lq ∗ lm) lookups for each query,
where lm = minimum{lb, lq}.
False Positives and Estimation Error. The probability for a
false positive in a Bloom filter is equal to (1 − e−mn/s)m,
where n is the number of elements inserted in the filter, s
its size, and m the number of hash functions. For an XML
tree Tree with L levels and maximum out-degree dg, for
the number of elements ni inserted at each level i of a
DBH, it holds: ni ≤ ∑L−1

j=i dgj (i.e., is smaller than the
number of non distinct paths with length i). Assume that the
probability that a path in Tree has frequency that belongs

to bucket j (1 ≤ j ≤ b) is Pf (j) with
∑b

j=1 Pf (j) = 1.
Then, the number of elements inserted at each bucket j
of each level i of the filter is at most: Pf (j) ∗ ni. Thus,
the false positive probability for a single look-up in a filter
corresponding to a bucket j of the i level of DBH is given
by: Pl(i, j) ≤ (1− e−m∗Pf (j)∗ni/s)m. Note, that we consider
that all filters are of the same size. If there is information
about the frequency distribution of the paths, we can adjust
the size for the filter of each bucket accordingly. The query
evaluation algorithm performs b checks for each subpath of
length i. Thus, the false positive probability for a subpath of
length i is: Psub(i) = 1 − ∏b

j=1 (1 − Pl(i, j)), since for not
having a false positive, all the b checks must not return one.

To estimate the corresponding estimation error for any
subpath lookup we rely on [10]. Let 1 < valj ≤ M , 1 ≤ j ≤ b
and let V∗ denote the actual number of appearances of a path
in the XML tree. The absolute error for a returned value valj
is then given by ej = |valj − V∗|. For V∗ > 0, the estimated
error for a subpath of length i that was inserted in bucket b∗
of DBHi (1 ≤ b∗ ≤ b) is bounded by:

E[e] <

b∏
j=1,j �=b∗

(1 − Pl(i, j))E[|valb∗ − V∗|]+

(1 −
b∏

j=1,j �=b∗

(1 − Pl(i, j)))M

The first term refers to the error due to the histogram when
the correct bucket b∗ is located, while the second term is
the error for falsely reporting the existence of the path in
multiple buckets. When V∗ = 0, the error is bounded by:
E[e] < Psub(i)M .

Let us consider the simplest case where none of the subpaths
in the query belongs to documents in the DBH. Then, for a
false positive to occur, at each level i of the filter, we must have
a false positive match against all lq−i+1 subpaths of the query,
in at least one of the b buckets it is checked against. If we
consider these probabilities of false matches to be independent,
then this probability is: P (i, q) =

∏
q′∈q Psub(i), where q′ are

all subpaths of length i extracted from q. Taking into account
all levels of the filter, the overall false positive probability is:
P (q) =

∏lm
i=1 P (i, q), where lm = minimum{lb, lq} and lb

the number of levels of the DBH. Let us now also consider the
case in which r+1 elements 0 ≤ r ≤ lq exist in the document
and form a correct subpath of length r. Then, at each level i
of the filter, the correct subpaths that exist are at least: r−i+1
and the ones that do not exist are at most lq − r. To compute
the false positive, P (i, q) for i ≤ lq − r, we should consider
only these subpaths.

IV. DISTRIBUTED DEPLOYMENT

In this section, we focus on the creation and maintenance of
the clustered index. In brief, each site creates a DBH for each
of its documents. The DBHs of the documents of all sites are
merged based on their similarity into a number of clusters to
produce a single DBH for the cluster, denoted cluster DBH
or clDBH , that provides a summary of all documents in the
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Algorithm 2 EvaluateSim(H, clH)
H , clH : DBHs with lb levels and b buckets

1: sim = 0
2: for i = 0 to lb do
3: mBFi = clH.DBHi(BF1) BOR clH.DBHi(BF2) BOR

. . . BOR clH.DBHi(BFb)
4: simi = 0
5: for j = 0 to b do
6: simi = simi + H.DBHi(valj) ∗

Jaccard(H.DBHi(BFj), mBFi)
7: end for
8: sim = sim + simi

9: end for
10: RETURN sim

cluster. Cluster formation takes place incrementally as sites
and documents are inserted, updated or deleted.

Cluster formation and maintenance is coordinated by su-
perpeers. Superpeers correspond to sites that are stable and
have increased capabilities. For simplicity, we assume a one-
to-one mapping between clusters and superpeers, that is, there
is exactly one superpeer per cluster. However, this mapping is
virtual, in that, in practice, one superpeer may be responsible
for more than one cluster, or many superpeers may collaborate
for the maintenance of one cluster.

Clustered Index Construction. When a site joins the system,
it constructs one DBH for each of its documents and sends
them to a superpeer. The superpeer forwards these DBHs to the
other superpeers. Each superpeer compares each one of them
against the content of its cluster to determine their similarity.
We derive the structural similarity between a new document
having a DBH, H , and the content of a cluster having a cluster
DBH, clH , from the similarity between the corresponding
DBHs, that is, between H and clH . Similarity is computed
using the EvaluateSim algorithm (Alg. 2), which is based on
the Jaccard distance between the corresponding simple Bloom
filters of the two DBHs. Each document is assigned to the most
similar superpeer (cluster). The selected superpeer merges H
with clH to produce the new cluster DBH. We describe next
how the merging of two DBHs is achieved.

Let the DBHs H and H ′ with lb levels and b buckets be
the indexes for document d and d′ respectively. We want to
aggregate (merge) the two DBHs to create a new DBH H ′′

with lb levels and b buckets that summarizes both documents
d and d′. A nice property of Bloom-based structures is that
to construct H ′′, there is no need to have access to the actual
documents d and d′. Instead, there is a simple procedure to
construct H ′′ based on H and H ′. The two DBHs H and H ′

are merged per level, that is level i of H is merged with level
i of H ′ to create level i of H ′′. For each level i, we merge
one bucket of H with one bucket of H ′. We start by merging
the two buckets that have the most similar frequencies, that
is, the ones with the most similar value at the val column,
then the ones with the next most similar frequencies and so
on, until all b buckets of level i are merged. The frequency
(i.e., val column) of the resulting merged bucket is set equal

to the average of the frequencies (i.e., val columns) of the
buckets being merged. The Bloom filter (i.e., BF column) of
the merged bucket is computed by taking the bitwise OR of
the Bloom filters (i.e., BF columns) of the two buckets being
merged. Clearly, the same merge procedure may be used to
merge DBHs that summarize more than one document.

Lastly, let us briefly discuss our simple technique for
bootstrapping the system. Bootstrapping is centralized. We
consider as our basic input parameter the number of clusters
C. When an appropriate sample of documents Din has been
inserted, a single superpeer is selected to gather all DBHs
and to apply K-Means on them. K-Means is very sensitive to
the initial sample of documents and a different sample could
lead to a completely different result. For instance, even if
all documents in Din belong to the same semantic category,
K-Means may still partition them into C clusters. To deal
with this problem, we enforce additional constraints. After
finding the C centroids (i.e, clDBHs), we check their pairwise
distances and if this is lower than a value ε > 0, we merge the
respective clusters. Any empty clusters will be filled with new
documents, as they enter the system, if their distance with the
existing clusters is large enough.

Clustered Index Maintenance. For supporting local updates,
as in [10], each site maintains an auxiliary full path count table
on which it first applies the update and then reconstructs the
DBH taking it as input. Then, it sends both the original DBH
H and the updated one, H ′, to the corresponding superpeer.
The superpeer removes H from its clDBH and inserts the new
H ′ to it through merging.

Depending on the distribution that the documents entering
the system follow, some clusters may become much larger than
others. The index of large clusters becomes less accurate and
the superpeer responsible for it may become overloaded. In
this case, the cluster needs to be partitioned. Partitioning can
be handled locally by the superpeer responsible for the given
cluster without disrupting the other clusters. In particular,
when either the number of documents assigned to a cluster
becomes too large or the accuracy of the clDBH becomes too
low, a cluster split procedure is triggered. The sites that have
documents in this cluster resend their DBHs to the superpeer.
The superpeer computes all pair-wise similarities and chooses
the two DBHs with the smallest similarity to initialize the two
new clusters. Then the rest of the DBHs are merged with the
cluster they are most similar to. Finally, a new superpeer is
assigned to one of the two clusters. Similar steps are taken to
merge two clusters, when their load becomes too low.

Overall Processing. Each query is assigned to a coordinator
superpeer. All superpeers process each query in parallel by
relaxing it against their part of the index until they attain k
results. Then, they exchange the distance scores of their k-th
result and prune their result list according to these distance
scores. Finally, they send the remaining entries in the list to
the coordinator, which after receiving all lists, proceeds in
constructing the final top-k list by merging them.

Alternatively, we may employ a pay-as-you-go approach,
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Fig. 4. BDH of the full path count table of Fig. 3

TABLE I

INPUT PARAMETERS

Parameter Default Value Range
# of documents 500 50 - 500
# of clusters 8 2 - 24
k 20 10%-50% of the results
# of data categories 8 -
Size of document 2KB-120KB -
DBH size 320KB 5 - 320KB
DBH depth 3 -
DBH hash functions 4 -

in which the clusters are processed one-by-one based on their
relevance to the query. This can be achieved as follows. Each
query can be represented as a tree, thus we construct the DBH
for the query. We rank the clusters based on the similarity
between their cluster index, clDBH, and the query DBH and
then visit them in descending order of similarity.

V. EXPERIMENTAL EVALUATION

We use real data sets from the Niagara Project [11] that
belong to eight predefined categories as shown in Table II.
There are two pairs of categories that share structural similar-
ities, namely, the Sigmod Record data with the bibliographical
data and the actors with the movies data, while there is little
to none overlap among the rest. For query generation, we
use the zipf distribution to select paths from the documents.
Then, we replace a random element with a foo element, or
insert a subpath of random length in them. The queries have
a minimum length of 4 location steps. To tune the number
of buckets and their boundaries, we apply the techniques
presented in [10]. We use 4 buckets per level. We configure
the Depth Bloom filters parameters (i.e, the BF size and the
number of hash functions) based on [9]. We limit the levels
to 3 since experimental results in [9] show that 3 levels are
adequate for a false positive ratio below 5%.

We use four approaches for constructing the distributed
index. The first two approaches use a simple path count table
(PCT) as the building block of the index, while the latter two
use the Depth Bloom histogram (DBH). Using the two index
structures, we construct both a random index, where the data is
assigned to superpeers uniformly (randPCT and randDBH)
and a clustered index (clustPCT and clustDBH). Table I
summarizes our parameters.

A. Summaries vs Full Path Indexes

In the first set of experiments, we evaluate the performance
of our summaries. In addition to the DBH, we also consider
an alternative way of combining histograms and Depth Bloom
Filters (DBFs). Instead of using a Bloom Histogram for each

of the levels of a DBF, we use a DBF for each bucket of
the Bloom Histogram. In this case, we first assign all paths
of the input XML document into buckets according to their
frequencies. Then, we build a DBF for each bucket by splitting
the paths in the bucket based on their length. Assume that the
paths of the XML tree are split into b sets of paths, pathi, 1 ≤
i ≤ b. The Bloom Depth Histogram (BDH) with lb levels and b
buckets is a two-column table BDH(DBFi, vali) where each
DBFi is a DBF with lb levels of the paths with frequency vali.
An example is shown in Fig. 4.
SELECTIVITY ESTIMATION. We compare the false positive
ratio and the estimation error of the DBH and BDH indexes
with those of a Bloom Histogram (BH) index of the same
size. The space that each index occupies is expressed as a
percentage of the space occupied by a full path count table
(PCT) for the same documents (this is between 2% to 10%
of the PCT size). All documents summarized by each of the
indexes belong to one of our categories, i.e. they are expected
to be assigned to a single cluster. This is an indication of the
expected performance of a clDBH index. Figure 5(center-left)
shows that both DBH and BDH improve the error of the BH
up to 30% for the same space overhead.

We repeat the same experiment using documents selected
uniformly at random from all categories in the system. For
comparison, we use the same sizes we used for the clDBH.
However, note that these do not represent the same percentage
of the path count table that would be constructed in this
case, since this path count table is larger due to the variety
in the path expressions. As Fig. 5 shows, the comparative
performance of the three indexes is similar with that in our first
experiment. However, all three indexes perform worse with
random documents than with similar ones. For instance, the
simple Bloom Histogram does not achieve a false positive ratio
lower than 40% (Fig. 5(center-right)), while for the clustered
index, it achieves a ratio below 20%.

The two enhanced indexes (DBH and BDH) perform simi-
larly for both cases. In general, their performance depends on
the data characteristics. The first structure splits paths primar-
ily according to their length, while the second one according
to their frequencies. Therefore, for data with paths with equal
frequencies, BDH is expected to perform worse than DBH.
For the data sets in our evaluation, their performance is
comparable, and we use the DBH as the index structure in
the rest of our experiments.
CONSTRUCTION COST. We measure the construction cost of
the clustered index, as the total size of messages required,
while varying the number of clusters (Fig. 6(left)) and the
number of documents (Fig. 6(center)). The deployment of the
DBH reduces the construction cost of the clustered index from
GBs to only a few MBs from the case when PCT is used (Fig.
6(left)) without damaging performance significantly, since the
pruning degree is only slightly decreased (Fig. 7(left)).
SCALING. To evaluate the scaling capability of our index, we
keep a fixed size for the DBH and increase the number of
documents maintained. As Fig. 6(right) illustrates, our index
structures scale gracefully, since the pruning degree does not
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TABLE II

DATA SETS

Set Sigmod Record ’03 bibliographical data movies actors linux docs company personnel nasa club members
Doc Size 100K 5K 2.2K 2-10K 20-120K 2K 2-14K 8K

decrease significantly.
Summary of Results.

• Both the Depth Bloom Histograms and the Bloom Depth
Histograms outperform a same size Bloom Histogram up
to 30%.

• All index structures produce better estimations in the case
of clustering, i.e., when similar documents are assigned
to them.

• The Depth Bloom Histograms reduce the construction
cost of the clustered index from GBs to MBs.

• The Depth Bloom Histograms scale well with respect to
the number of documents.

B. Benefits of a Clustered Index

PRUNING DEGREE. We compare the performance of a clus-
tered and a non-clustered (random) index using dynamic pro-
gramming (DP) relaxation. This clearly depends on the number
of clusters. Thus, we measure the average pruning degree
varying the number of clusters from 2 to 24. Figure 7(left)
shows that for all numbers of clusters, the pruning degree is
improved in the case of clustering as expected. Specifically,
as we assign multiple categories to the same cluster (2 and 4
clusters), the pruning degree increases for the clustered index,
while it remains almost constant for the random one. This is
because if documents from one category are distributed among
different clusters, relaxation at each superpeer produces results
with similar quality. Using as many clusters as the document
categories or less, alleviates this problem.

Increasing the number of clusters, reduces the load at
each superpeer, but increases the communication cost among
them. To demonstrate this trade-off, we measure the maxi-
mum processing cost among all superpeers (Fig. 7(center))
and the average communication cost during query processing
(Fig. 7(right)). As processing cost, we measure the lookups
performed in the index during relaxation and the number of
entries that are processed for the construction of the final result
list. While for a small number of clusters the first cost is
the prominent one, i.e., 90% of the total cost, as the number
increases the second cost reaches up to 56% of the total cost.
GREEDY AND RANDOM WALKS RELAXATION. We repeat
the same set of experiments using greedy (GR) and random
walks (RW) relaxation. For random walks, we set M = 3,
so that 3 different queries are relaxed. Figure 8(left) shows
that the pruning degree is again larger with clustering for both
approaches. Compared to the performance of the DP approach,
pruning degree is decreased by 20% for the greedy one, and
by 6% for random walks. Due to this decrease in the pruning
degree, the communication cost increases correspondingly for

both approaches (Fig. 8(center-right)). However, their advan-
tage over the DP approach is that the processing cost required
is reduced by around 24% for the GR and 15% for the RW
approach (Fig. 8(center-left)).

This gain in the processing cost results in a loss in the
accuracy. We evaluate this loss by measuring the recall of
the greedy and the random walks algorithms against the DP
one (i.e., the percentage of results returned by each method
that belong to the actual top-k results). For the random walks
approach we used two different configurations with M = 3
and M = 4. As Fig. 8(right) shows, the RW approach exhibits
the best recall when M = 4 almost 99%, while the greedy
approach has the lowest recall of all (46% in the worst case).

MULTIPLE ROUNDS IN THE ELIMINATION PHASE. We want
to evaluate the benefits of using multiple rounds in the elim-
ination phase. We measure the pruning degree at each round
using all three relaxation algorithms (Fig. 9(right)). The largest
pruning degree is achieved on the first round, while the other
rounds prune only a small number of results. If we consider the
time/communication cost trade-off, it is clear that we do not
need to use more than two rounds as the response time of the
evaluation would only increase significantly without bringing
a considerable gain in the communication and processing cost.

PAY-AS-YOU-GO EVALUATION. In this experiment, we eval-
uate the performance of a pay-as-you-go strategy in which
clusters are visited gradually, starting from the “best” one for
each query. We measure the recall of this strategy against a
strategy in which all clusters are visited (i.e. the percentage of
results returned by the pay-as-you-go strategy that belong to
the actual top-k results), while gradually increasing the number
of clusters visited. We follow two approaches to determine
the order in which the clusters are considered. In the first
approach, the clusters are considered in ascending order of
the average distance of their results to the query. This can be
achieved for instance by caching information related to which
superpeer provided the best results for previous queries. Figure
9(left) shows that pay-as-you go works well with clustering.
The clustered index achieves much higher recall than the
random one in which recall increases proportionally to the
clusters that processed the query. In the second approach, we
rely on the similarity between the DBH of the query and the
DBH of the cluster index (clDBH) to determine the order
according to which the clusters are considered. As shown in
Fig. 9(center), the ordering based on the similarity of the query
to the clDBHs almost reaches the performance of the first
approach. Thus, this simple similarity measure can be used as
an efficient criterion for cluster selection enabling us to avoid
having to process a query against all clusters.
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Fig. 5. False positive ratio and estimation error for (left) and (center-left) clustered documents, and (center-right) and (right) randomly selected ones
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Summary of Results.
• Using a clustered index improves the pruning degree up

to 250% compared to a random index.
• The largest pruning degree is achieved by the dynamic

programming approach that also requires the lowest
communication cost. The greedy and the random walks
relaxation approaches result in worse performance in
terms of pruning degree and communication cost, but
both reduce the maximum processing cost (around 24%
the greedy and 15% the random walks). Further, despite
not considering the whole search space, both approaches
are still effective, achieving recalls up to 79% the greedy
and 98% the random walks with M = 4.

• The clustered index can be effectively used as the base
for a pay-as-you-go query evaluation, achieving a high
recall. Query similarity to the clustered index can be
used effectively for determining the order of visiting the
clusters in a pay-as-you-go evaluation.

C. Other Issues
INFLUENCE OF k. It is clear that the value of k (i.e., the
requested number of results) affects performance. The determi-
nant factor is how similar the k-th result of the relaxed query
is to the results of the original query. If sufficient results with a
small distance from the original query do not exist, relaxation
leads to queries with a very large distance from the original
one, which match data at various clusters. To demonstrate this,
for a distance x and a query q, we express k as a fraction of
the available results with distance from q lower or equal to
x. We fix x and measure the average pruning degree as the
number of available results with at most this distance from
the queries vary. For larger values of k the pruning degree
decreases as low quality results, which are located at various
clusters, are retrieved (Fig. 10(left)).
DYNAMIC BEHAVIOR. The communication cost for propa-
gating a local update to the clustered index depends solely
on the size of the DBH. Thus, we focus on how well the
DBH’s estimation accuracy is maintained after a series of
updates. To this end, we consider two approaches. In the first,
we apply updates on our DBH using the update propagation
procedure, while in the second one, we reconstruct a new DBH
with the updated data (let H and H ′ be the resulting DBHs,
respectively). Next, we perform a batch of queries and measure
the recall of H compared to that of H ′, i.e. we measure the
percentage of results provided by H that are also provided by
H ′. Reconstruction may be required, when recall decreases.
Our results (Fig. 10(center-left)) show that updates do not
significantly affect performance and thus, reconstruction may
not necessarily be frequent. Note that 20 updates correspond
roughly to 1/3 of the cluster documents being updated.
CLUSTER SPLIT. The communication cost for a cluster split
depends on the number of documents that are indexed by the
cluster before the split and the size of the DBH. We focus on
the performance of the split process. In particular, we measure
the false positive ratio and the estimation error in a clDBH as
new documents are inserted into it, until a split is triggered (in
this experiment after 50 insertions) and then after applying the

split we show the average estimation error and false positive
ratio for the two new clusters that were produced as new
documents are still inserted and accordingly placed into one of
the two clusters. From Fig. 10(center-right) and Fig. 10(right),
we see that the split process can deal with the overloading of
a single cluster and balance the document load between the
two new clusters as the system continues to evolve.
Summary of Results.

• The pruning degree depends on the similarity of the
available results to the original query. For large values
of k, when sufficient similar results are not available, it
decreases.

• Even after 1/3 of the documents have been updated, the
update procedure maintains recall up to 90%. Cluster split
deals effectively with the problem of cluster overloading.

VI. RELATED WORK

Approximate XPath processing has been addressed in cen-
tralized scenarios where data is located at a single server and
their schema is known. [3] uses a relaxation technique [1],
[2] based on edge generalization, leaf deletion and subtree
promotion. Our approach is based on the same principles,
but we exploit a clustered index to appropriately order the
transformations so that efficiency is improved. For ranking in
[3], the tf*idf measure is extended to account for predicates
both on content and structure. Each query node is assigned
to a server maintaining a priority queue of partial matches.
For each match at the head of its queue, a server computes
a set of extended matches with their scores and updates
the set of top-k matches maintained by the system. TopX
[12] is a query engine that can support approximate top-k
results using probabilistic score estimations, but unlike our
approach relies on relaxing values rather than structure and
uses the latter only to reduce the processing cost. Compact
structural summaries for XML data such as [4], [13] that
provide selectivity estimations for twig queries can be used to
support approximate query processing. However, though both
structures produce lower estimation errors than Depth Bloom
histograms, they require larger space overhead and therefore
would incur larger communication costs.

Distributed evaluation of top-k queries has been addressed
in the context of distributed web search engines, such as
Minerva [14] that is layered upon a distributed hash table,
which holds compact, aggregated information about the peers
local indexes. Every peer is responsible for a randomized
subset of the global directory, unlike our approach where the
index is clustered. Queries are forwarded to a chosen, small
set of peers. KLEE [5] extends [6], and allows a peer to
trade-off result quality and expected performance. The system
assumes that index lists for text terms are distributed across
peers. Query evaluation exploits statistical information about
the indexed data. Both approaches assume keyword-based data
models. Other Bloom-based structures have been proposed
recently for distributed XML search [15]. These structures
were designed for cost-efficient structural joins and unlike
our enhanced filters, do not provide selectivity estimations or
support approximate query processing.

539539



 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75

 10  15  20  25  30  35  40  45  50

av
er

ag
e 

pr
un

in
g 

de
gr

ee

selectivity

k=1/10
k=2/10
k=5/10
k=8/10

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100

re
ca

ll

number of updates

clustDBH

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  20  40  60  80  100

fa
ls

e 
po

si
tiv

e

number of updates

clustDBH

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100

es
tim

at
io

n 
er

ro
r

number of updates

clustDBH

Fig. 10. (left) Influence of k, (center-left) Update propagation, (center-right) cluster split influence on false positives and (right) estimation error

A preliminary version of this paper appears in [16] as poster.

VII. DISCUSSION AND EXTENSIONS

The main claim of this paper is that clustering improves
the performance of relaxation over distributed data collections.
This is achieved either by reducing the number of results ex-
changed in threshold-based distributed top-k processing or/and
by considering only data in selected clusters. This is a general
argument, which is showcased in this paper using structural
relaxation on distributed collections of XML documents.
Structure vs Content. In general, approximate query process-
ing and ranking for XML may include other characteristics
of the documents such as values or keywords. This is an
important and well studied problem where various techniques
including ontologies and thesaurus are used for relaxation
and tf*idf measures or other IR techniques for ranking (for
example, [3], [12], [17]). One way to combine structure and
other characteristics is to consider them as complementary
and treat them independently. In this case, we can maintain
our structural clustering and use auxiliary indexes for values.
For ranking, an aggregated distance measure based on both
structure and value can be used. Structural clustering would
still improve pruning, but perhaps in a lesser degree than
with pure structural relaxation. Another approach would be
to construct the clustered index based on both values and
structure using appropriate index structures and clustering
methods. Deriving a compact, summary data structure similar
to the Depth Bloom Histogram for this case is an interesting
problem for future research. This is a challenging task, since
such an index should be compact, merge-able, update-able and
provide good selectivity estimations with no false negatives.
Clearly, which of the two approach works best depends on the
data distribution. If many query results comply to a specific
DTD or XML schema, then structural clustering may be
appropriate. On the other hand, if documents relative to a
specific query comply to numerous different schemes, then
a combined approach might be more appropriate.
Hierarchical Clustering. Our clustered index corresponds to
a partition of the input documents, so that each superpeer
(cluster) is responsible for a disjoint part of the data space. An
interesting extension is to build a hierarchy of superpeers. One
way to achieve this is by clustering similar superpeers, which
effectively corresponds to a hierarchical agglomerative cluster-
ing procedure. This will make locating the most similar cluster
faster by using a top-down procedure starting from the most
general cluster and proceeding downwards to the appropriate

sub-cluster. However, this would make maintenance harder,
since it would involve updates at multiple levels. Another
drawback would be the loss of accuracy at the higher layers.
A related issue is the overlay topology among the superpeers.
In our experiments, we have assumed a fully-connected super-
peer overlay, where each superpeer is connected to all other
superpeers. This is an issue orthogonal to our approach in
the sense that it does not affect pruning during relaxation.
However, the choice of an appropriate overlay would improve
the communication cost among the superpeers.

VIII. SUMMARY

We have addressed the problem of the efficient evalua-
tion of XPath approximate queries over dynamic distributed
collections of XML data. We have focused on reducing the
communication cost required for evaluating top-k queries in
such settings, by introducing a distributed clustered path index
which enables the sites responsible for query evaluation to
prune the number of candidate results they need to consider.
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