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Abstract

We propose a novel approach to shape-based image re-
trieval that builds upon a similarity criterion which is based
on the average point set distance. Compared to traditional
techniques, such as dimensionality reduction, our method
exhibits better behavior in that it maintains the average
topology of shapes independently of the number of points
used to represent them and is more resilient to noise. An
efficient algorithm is presented based on an incremental
“fattening” of the query shape until the best match is dis-
covered. The algorithm uses simplex range search tech-
niques and fractional cascading to provide an average poly-
logarithmic time complexity on the total number of shape
vertices. The algorithm is extended to perform additional
fast approximate matching, when there is no image suffi-
ciently similar to the query image. We present techniques
for the efficient external storage of the shape base and of
the auxiliary geometric data structures used by the algo-
rithm. Finally, we show how our approach can be used for
processing queries, containing pairwise relations of objec-
t boundaries such as contain, tangent, and overlap. Such
queries are either extracted from some user drafted sketch
or defined explicitly by the user. Alternative methods are
presented for forming query execution plans.

1. Introduction

There is an increasing effort to organize and retrieve im-
ages by content based on characteristics such as color, tex-
ture and shape. In this paper, we present a novel method for
retrieving images similar to a given shape from a large im-
age base. Our method builds upon a shape-similarity criteri-
on which is based on the average point distance between the
shapes. Our similarity criterion is tolerant to distortion and
is independent of the number or order of vertices in each
shape. We provide a poly-logarithmic (log in some small
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constant power) in the total number of shape vertices algo-
rithm for retrieving shapes similar to a given query shape.
The algorithm “fattens” the query shape until the best match
is discovered. In the case in which there is no exact match,
we provide a complementary geometric hashing approach
that returns approximate matches.

We consider and evaluate different methods for external
storage of the shape base. We extend our method to support
queries that involve multiple shapes and their pairwise po-
sitioning. We focus on a restricted set of queries that can be
expressed by union, intersection and complement over the
result produced by similarity, contain, overlap and disjoint
operators. Finally, we report on a prototype implementa-
tion of our approach, that incorporates the shape-matching
algorithm, the geometric hashing approach and the query
processor in an interactive system called GeoSIR.

To the best of our knowledge, this is the first time that the
average point distance measure is used for image retrieval.
Perhaps, the work most related to ours is the shape-based
method proposed by Gary and Mehrotra [21, 16, 15]. In this
work, each shape is represented as a vector in multidimen-
sional space and the Euclidean distance is used. Each shape
is stored multiple times, once per edge. More specifical-
ly, the shape is positioned by normalizing one of its edges.
Thus, the space requirements of this method impose a sig-
nificant overhead. The method is quite susceptible to noise,
thus the authors present a sophisticated preprocessing phase
to eliminate the noise effects. Finally, the method favors
those shapes of the shape base, which have almost the same
number of vertices as the query shape.

A number of methods in the literature perform index-
ing and retrieval based on global image characteristics such
as color, texture, layout, or their combinations. Along
these lines, QBIC [13, 19], a system developed at IBM Al-
maden, supports retrieval by color histograms, texture sam-
ples (based on coarseness, contrast and directionality), and
shape. QBIC uses R� trees to process queries based on low-
dimensionality features, such as, average color and texture.
Shape matching is supported using either dimensionality re-
duction, which is sensitive to rotation, translation and scal-

Proceedings of the 18th International Conference on Data Engineering (ICDE�02) 
1063-6382/02 $17.00 © 2002 IEEE 



ing [24], or by clustering using nonlinear elastic matching
[12, 6], which requires a significant amount of work per
shape and some derived starting points as a matching guide.

Ankerst et al [1] present a pixel-based shape similarity
retrieval method that allows only minor rotation and trans-
lation. Their similarity criterion assumes a very high dimen-
sion (linear to the number of pixels in the image), therefore
dimensionality reduction is performed.

Hierarchical chamfer matching (see [9] for hierarchical
chamfer matching and [4, 8] for chamfer matching) creates
a distance image using information from the edges, and then
tries to minimize the sum of the values in the distance map
that the contour hit. Hierarchical chamfer matching gives
quite accurate results but involves lengthy computations on
every extracted contour per query.

Cohen and Guibas [10] present an image retrieval
method based on geometric hashing. This method calcu-
lates the hash signature of the shape based on the contribut-
ing line segments. The method has been applied to retrieve
Chinese characters. However the method is sensitive to ro-
tation and translation. The geometric hashing described in
[10] is not related to the geometric hashing presented in our
work.

Korn et al [20] present an approach to nearest neighbor
search based on the max morphological distance [11]. They
use n-d R-trees for indexing. Although this distance works
well for arbitrary point sets (for examples, tumors and other
medical imaging clusters), shape retrieval is again ambigu-
ous due to the high dimensionality of the search space.

Finally, in [5, 7] the problem of arranging the external s-
torage of the images is tackled nicely. Results are presented
that are of special interest to parallel similarity search and
dynamic environments, where insert and delete operations
occur frequently. However, the proposed methods are based
on nearest neighbor techniques in high dimensions and can-
not be used to handle external storage in our context.

The rest of this paper is organized as follows. Section 2
presents our similarity criterion for shapes, and the shape-
similarity matching algorithm. Section 3 introduces geo-
metric hashing for approximate matching. Section 4 focus-
es on external storage, while Section 5 describes our query
processing approach. Section 6 reports on GeoSIR, our pro-
totype system. Section 7 concludes the paper.

2. Geometric Similarity and the Matching Al-
gorithm

2.1. Motivation

The Hausdorff distance is a well studied similarity mea-
sure between two point sets A and B. The directed Haus-
dorff distance h and the Hausdorff distance H are de-
fined as follows: h(A;B) = maxa2A minb2B d(a; b) and

H(A;B) = max(h(A;B); h(B;A)) where d is a point-
wise measure, such as, the Euclidean distance. An inherent
problem with the Hausdorff distance is that a point in A that
is farthest from any point in B dominates the distance. Fig-
ure 1 illustrates such an example where, using Hausdorff
distance, the shape Q is matched with A instead of B (B is
intuitively the closest match).

To overcome this problem, Huttenlocher and Rucklidge
have defined a generalized discrete Hausdorff distance (see
e.g., [18]) given by the k-th largest distance rather than
the maximum: hk(A;B) = ktha2A minb2B d(a; b) and
Hk(A;B) = max(h(A;B); h(B;A)) This metric elimi-
nates somehow the farthest-point domination disadvantage
of the Hausdorff metric. However, the method works on-
ly for a finite set of points (it is mainly used for k = m=2
where m is the size of the point set). The generalized Haus-
dorff distance does not obey the metric properties.

An interesting alternative measure that tries to alleviate
the problems of the Hausdorff metric, called nonlinear e-
lastic matching, is presented in [12]. This measure does
not obey the traditional metric properties but instead a re-
laxed set of metric properties. In practice, this provides the
same advantages as any metric, and therefore can be used
for clustering. However, the arbitrary number of points dis-
tributed on the edges, the need of determining certain start-
ing matching points and the complexity of computing such
a match (O(nAnB) using dynamic programming [3], where
nA and nB are the number of vertices of shapesA andB re-
spectively) makes this measure inappropriate for very large
data sets.

2.2. Geometric Similarity

To eliminate the dominating maximum pair problem, we
use a similarity criterion based on the average of minimum
point distances:

havg(A;B) = averagea2A minb2B d(a; b)

The proposed similarity criterion provides a natural way
to match shapes independently of the number or the order
of vertices. It clearly does not suffer from the dominating
maximum pair of points problem since, in contrast to the
Hausdorff metric, it is based on the average point distance.
In the example of Figure 1, with our similarity measure, B
is closer to Q than A.

This measure can be computed quite efficiently. In ad-
dition, it is scale, translation and rotation invariant. The
metric properties do not hold for this measure either, but
in some sense they hold for a representative average set of
points probably different from the original point set.

Note that we compute the average over all points of the
continuous shape A not just its vertices (in the case of a
discrete average on the vertices of A, the median might be
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Figure 1. Depending on the similarity criteri-
on, the query shape Q may be matched with
A or B.

used instead). Finally, although the max min metrics could
be useful in specific applications, for instance to guaran-
tee that there is no point of shape A with distance larger
than a threshold from B (e.g., to enforce certain tolerance in
matching CAD parts), the average minimum distance met-
ric gives more intuitive results in general similarity match-
ing.

2.3. Efficient Retrieval of Similar Shapes

Before describing our image retrieval algorithm, we
present two key ideas of our method: normalizing a shape
about its diameter and the notion of the �-envelope.

In order to match a query shape to the shapes in the
database, some kind of “normalization” is required so
that the matching is translation-, rotation-, and scaling-
independent. In [16], Mehrotra and Gary normalize each
shape about each of its edges: they translate, rotate,
and scale the shape so that the edge is positioned at
((0; 0); (1; 0)). Then, each shape is stored multiple times,
twice for each edge. Instead, we normalize about the di-
ameter of the shape. We do so by translating, rotating, and
scaling so that the pair of shape vertices that are farthest
apart are positioned at (0; 0) and (1; 0).

Our approach, besides being more space efficient, is less
susceptible to local distortion. For example, the Mehrotra
and Gary method would fail to retrieve the distorted shape
on the right of Figure 2, if the shape on the left of the Fig-
ure was used as the query shape. This is because no pair of
edges between the shapes matches. However, our method
would match the two shapes. Such distortion is very com-
mon in shapes extracted from object boundaries via auto-
mated image processing techniques.

Our algorithm works by considering a “fattened” version
of the query shape which is computed by taking lines par-
allel to the query shape edges at some distance � on either
side (Figure 3); we call this fattened shape the �-envelope.
The good matches are expected to fall inside or at least have
most of their vertices inside the �-envelope even for small �.

Therefore, if we start by using a small initial value of � and
keep increasing it, we expect to collect the good matches
after a few iterations of this procedure.

Figure 2. (left) the query shape; (right) a dis-
torted shape extracted from an image.

Figure 3. the �-envelope.

2.4. Populating the Shape Database

Shapes are extracted from images and represent objec-
t boundaries. We define as shape a non self-intersecting
polygon or polyline with no convexity restrictions. Self-
intersecting polygons or polylines extracted from an image
are decomposed in a number of shapes as described in Sec-
tion 6. To populate the database of shapes, we process
each shape as follows. First, we compute the diameter of
the shape, i.e., the pair of vertices that exhibit the longest
Euclidean distance. In order to achieve even better toler-
ance to distortion, we do not simply normalize the shape
about its diameter, as we alluded earlier; instead, we nor-
malize it about all its �-diameters, i.e., all pairs of vertices
whose distance is at least 1 � � times the length of the di-
ameter (0 � � < 1). For each �-diameter, we scale, ro-
tate, and translate the shape so that the �-diameter is posi-
tioned at ((0; 0); (1; 0)); each shape is stored twice for each
�-diameter by taking both ways to match the two vertices
defining the �-diameter to the points (0; 0) and (1; 0). All
these “normalized” copies of the shape constitute the shape
base, the database of shapes.

2.5. Outline of the Matching Algorithm

The algorithm works by considering �-envelopes of the
query shape for (appropriately) increasing values of �; for
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each such �, the polygons that have most of their vertices
inside the �-envelope are determined and for each of them
the value of our similarity measure havg to the query shape
is computed. The algorithm stops whenever the best match
has been found, or � has grown “too large” implying that no
good matches exist in the shape base. In the latter case, we
revert to an alternative but compatible geometric hashing
method which is outlined in Section 3.

In more detail, let �i-envelope be the envelope at iteration
i and �i its width. Initially, for the �0-envelope, �0 is 0,
meaning that the envelope coincides with the shape. At each
consequent iteration of the envelope fattening, we compute
which vertices fall inside the difference between the two
envelopes (�i-envelope� �i�1-envelope).

The basic steps of the algorithm for the retrieval of the
database shape that best matches the query shape are:

1. We compute an initial value �1 such that the �1-
envelope is likely to contain at least one shape of the
shape base. To this end, we iteratively adjust the size
of the envelope.

2. We collect the vertices of the database shapes that fal-
l inside the difference (�i-envelope � �i�1-envelope);
this can be achieved by partitioning this difference into
triangles and preprocessing the vertices so that inclu-
sion in a query triangle can be answered fast (simplex
range searching). Additionally, each time we find that
a vertex of some shape is inside the above envelope
difference, we increase a counter associated with that
shape that holds the number of its vertices that are in-
side the �i-envelope.

3. If no shape of the shape base has at least a fraction 1��
of its vertices inside the �i-envelope (for a parameter
� such that 0 � � < 1), a new larger envelope is
computed and we go to step 5.

4. If there are shapes of the shape base that have at least
a fraction 1�� of their vertices inside the �i-envelope
(these are the candidate shapes), we process them to
derive bounds on the similarity measure from the cor-
responding shapes. During the processing, we may ei-
ther conclude that the best match has been found, in
which case it is reported to the user and the execution
is complete, or a new larger envelope is computed.

5. We increment i and set �i to the width of the new larger
envelope. If �i does not exceed A

2 p lQ
log3 n, we go

to step 2 and repeat the procedure (A is the area of
the locus of the normalized shapes, p is the number
of shapes in the shape base, n is the total number of
vertices of the p shapes, and lQ is the length of the
perimeter of Q); otherwise, we report the best match

so far (if any) and exit. If no match has been found, we
employ geometric hashing.

We have proved that the method converges and if there
exist similar shapes it retrieves the best match [14]. The
choice of the value of constants � and � does not affect the
correctness of the algorithm but may improve both the speed
of convergence up to some constant and the noise tolerance
of the system.

To compute the similarity measure, we use the Voronoi
diagram of the query shape Q. This can be computed in
O(m logm) time, where m is the number of vertices of Q.

Step 1 of the algorithm begins with the computation of
�1 which takes O(1) time. Then, the number of vertices
that fall inside the �1-envelope is computed; this can be
done in O(poly-logn)2 time using simplex range counting
algorithms and quadratic or near-quadratic space data struc-
tures. If no shape falls inside the envelope, then O(logn)
repetitions of the previous computation may be needed to
increase the size of the envelope, resulting in O(poly-logn)
total time for this step.

In step 2, we need to compute the vertices of the shapes
in our database that fall inside the difference of the �i-
envelope and �i�1-envelope (this ensures that a vertex will
not be processed or counted multiple times). The difference
of the two envelopes consists of m trapezoids (one for each
of the m edges of the query shape), which can be decom-
posed intoO(m) triangles. These triangles can be used with
simplex range reporting data structures of near-quadratic s-
pace complexity that take O(log3 n+�) time per query tri-
angle, where n is the total number of vertices of the shape
base and � is the number of vertices that fall inside the tri-
angle [17]. Thus completing the i-th iteration of step 2 takes
O(m log3 n+Ki) time in total, where Ki is the number of
vertices between the �i-envelope and the �i�1-envelope.

The i-th iteration of step 3 takes O(mKi) time.
Step 4 involves processing the new candidate shapes

(Pi) and the non-candidate shapes. The former takes time
O(mjPij), where jPij denotes the number of vertices of Pi.
Processing the non-candidate shapes can be performed in
O(1 +mKi) time, by maintaining the contributions of ver-
tices in previous envelopes and simply adding the contri-
butions of vertices between the �i-envelope and the �i�1-
envelope.

Step 5 takes constant time.
The overall time complexity after r iterations is therefore

O(m logm) +O(poly-logn) +
rX

i=1

O(poly-logn+mKi)

= O(m logm) +O(r poly-logn) +O(mK)

where K is the total number of vertices processed. This is
O(r poly-logn+K) since the number m of the vertices of

2poly-logn, stands for log n to some constant power �: log� n
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the query shape is constant. Finally, by assuming uniform
distribution of the vertices inside the lune and in light of the
test for �i in step 5, the number K of vertices and the num-
ber r of iterations is expected to be poly-logarithmic in n,
and therefore the total time complexity is poly-logarithmic
in n. More specifically, we have proved that the expected
time complexity is no more that O(log4 n). Experimental
results however indicate that the actual time complexity is
much better.

3. Geometric Hashing

When there is no exact match, we revert to the geometric
hashing method. Geometric hashing provides us with an
approximate match in logarithmic time. The method uses a
finite family of curves which cover uniformly the locus of
the vertices of the shapes normalized about their diameter,
i.e., the lune defined by two circles with radius 1 centered at
(0; 0) and (1; 0). Because the shapes in the shape base have
been normalized about their �-diameters, some vertices fall
outside this lune; these vertices are treated as if they are
located on the boundary of the lune.
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0.1 0.2 0.3 0.4 0.5
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x

q1 q2

q4q3

Figure 4. (left) the four quarters of the lune;
(right) hash curves for the upper left quarter.

We consider the partition of the lune in the four quar-
ters q1; q2; q3 and q4 as illustrated in Figure 4 (left). The
uniform coverage of each quarter is achieved by requiring
equal areas between consecutive curves of the family. We
have considered different families of conic curves, trying to
increase the retrieval accuracy, while minimizing the com-
putational complexity of finding the curve closest to a given
shape. An interesting family is the family of circles of con-
stant radius 1 which pass through (0; 0) for q1 and q3 and
through (1; 0) for q2 and q4. In particular, to partition the
upper left quarter q1 into k regions of equal area, we use k
cyclic arcs that belong to circles whose centers lie on a cir-
cle of radius 1 centered at (0; 0); the i-th arc is derived from

a circle of radius 1 with center (xi;�
p
1� x2i ), where xi

is obtained for each i = 1; : : : ; k by solving the following
equation for x = xi:

E(x) =

Z min(2x; 1
2
)

0

�p
1� (t� x)2�

p
1� x2

�
dt =

A0

4

i

k
;

where A0 is the area of the lune. It turns out that E(x) and
#E=#x are both continuous in [0; 1] (Figure 5).
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Figure 5. (left) graph of E(x); (right) graph of
#E(x)=#x.

Thus, fast gradient-based numerical methods can be used
to determine xi from the above equation. For k = 50, Fig-
ure 4 (right) illustrates the 50 arcs that were derived by the
above method.

Hashing works as follows: for each shape of the shape
base, we partition its vertices in four sets depending on
whether they fall in q1, q2, q3, or q4. Then, for each such set,
we compute the hash curve ci of the corresponding quarter
qi that minimizes the average distance of these vertices from
ci.

Figure 6 depicts the characteristic curve c1 for a polyline
in the first quadrant, which minimizes the average distance
of vertices. The average distance exhibits only one local
minimum (which is also the only local extreme) in the con-
tinuous space of curves. To find the closest curve segment
we may either perform a binary search in the discrete space
of curves that partition our space or find the minimum in
the continuous space by using a numerical method and then
select the discrete neighbor that lies closest to our polygon.
The above procedure applied to each of the four quarters
results in having each shape associated with one hash curve
in each of q1; q2; q3 and q4.

By increasing the number of curves, we are able to have
a small, on the average, number of shapes associated with
each hash curve. Shapes that are close to each other will
be associated with the same or neighboring curves; neigh-
boring curves may however be associated with dissimilar
shapes.

To retrieve a good match for a given query shape, we
apply the hashing procedure to the query shape: we parti-
tion its vertices, compute the corresponding curves in each
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Figure 6. The characteristic curve of this poly-
line is the one that minimizes the average dis-
tance from the vertices. The distances of P5
and P6 are illustrated, the other vertices fall
almost on the characteristic curve.

of q1; q2; q3; q4, and collect the shapes of the shape base as-
sociated with these curves. Finally, we apply the similarity
measure between each of the collected shapes and the query
shape and report the one that is closest to the query shape.
Given that we expect to have a constant number of associ-
ated shapes per hash curve, finding the closest match takes
time logarithmic in the number of curves in the family.

4. External Storage

We describe how the image base can be maintained in
external storage. First we outline how the shape base and
the per shape information is stored in external storage me-
dia. Since our image retrieval algorithm preserves locality,
in that two shapes which are processed successively are usu-
ally similar, our objective is to store similar shapes in adja-
cent disk locations. To this end, we consider two alternative
methods and evaluate their performance.

1. We store the shapes sorted by their characteristic hash-
ing curves.

2. We store the shapes so that to minimize the average
similarity measure among shapes stored in adjacen-
t disk locations.

For accommodating the auxiliary data structures in ex-
ternal memory we use optimal range search indexing struc-
tures described in [2, 25].

4.1. Sorting by the Characteristic Hashing Curves

Each shape has a quadruple (c1; c2; c3; c4) of character-
istic hash curves, one for each quadrant of the lune. Each
characteristic curve is represented by an integer. We consid-
er storing shapes sorted by this quadruple. We have used the
following methods of sorting according to the characteristic
quadruple of each shape:

i. Sort the shapes by the closest to the mean characteristic
curve cmean = round( c1+c2+c3+c44 )

ii. Store the shapes following the lexicographical order of
their characteristic quadruples.

iii. Sort the four elements of each quadruple, select the
two median curves, and select from the two the one
that is closest to the average of the four. Then store the
shapes sorted by this element.

We have conducted several experiments to determine the
most efficient way of sorting the per shape information on
external storage. We have experimented with a database
of 10,000 images with an average of 5.5 actual shapes per
image. In our test shape base, we have an average number
of around 20 vertices per shape. This results in an average
size of stored information of around 200 bytes per shape.
We then have an average capacity of around 5 shapes per
1Kbyte disk block. In this test set, each shape is stored
in average 10 times in our shape base, resulting in around
550,000 shapes, which fit in 110,000 disk blocks. Thus, the
actual external storage needed was around 150Mbyte.

In the first experiment, we compare the three methods.
We consider an internal memory buffer of size 100k (capa-
ble of handling 100 disk blocks). The results are shown in
Figure 7. The Figure depicts the mean over a representative
experiment set of 15 similarity queries. We have performed
the experiment for the best match (k = 1), the two best
matches (k = 2), up to the ten best matches (k = 10).
Method (i) exhibits the best average time in terms of I/O
operations.

In the second experiment, we use internal buffers of var-
ious sizes. We have performed the same experiment for
k = 2 and for a variable size internal memory buffer (1K-
byte - 100Kbyte). Figure 8 depicts the results. The median
method (method (iii)) stabilizes faster meaning that locality
is preserved better in this method.

The rehashing time is O(NlogN), (assuming a constant
number of vertices per shape) where N is the number of
shapes in the database. This time is comparable in all three
methods, and it is quite I/O intensive.

4.2. Local Optimization of the Average Measure

In this approach, we use our similarity measure for or-
ganizing the storage of the shapes in each block. We select
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Figure 8. The average number of I/O opera-
tions per query for varying buffer size.

the first shape of the first block by a heuristic rule. Then,
each subsequent shape in the disk block, is selected so as to
minimize the average measure from the previous shapes in
the same block. Then for the first shape of the next block
we select a shape that minimizes the average distance from
the first shapes of the previous five disk blocks. The average
number of I/O operations is around 30% better than the best
of the previous methods.

Rehashing can be performed in time O(N1:5logN)
where N is the number of shapes, if we assume a constant
number of vertices per shape. Rehashing is not as I/O in-
tensive as in the previous method.

5. Query Processing

Besides retrieving images that contain a given query
shape, our approach supports queries that involve multi-
ple shapes and their pairwise positioning. An example of
such a query is: find all images that contain two overlap-
ping shapes similar to query shapes Q1 and Q2. We focus
on a restricted set of queries that can be expressed by u-
nion, intersection and complement over the result produced
by similarity, contain, overlap and disjoint operators.

For each image I in the database, we maintain a directed
graph GI = (VI ; EI ) where VI is the set of shapes in I and
EI is a set of labeled edges (v1, v2, label), where v1, v2 2
VI and label 2 fcontain, overlapg. An edge v1 !overlap

v2 (which corresponds to (v1, v2, overlap)) between two
shapes v1 and v2 indicates that v1 overlaps with v2 and an
edge v1!contain v2 indicates that v1 contains v2. There is
no edge between shapes that are disjoint. In addition, with
each shape S, we maintain an attribute, denoted S.image,
that identifies the image to which S belongs.

In the following, we denote by DB the set of all images
in the database and by DBS the set of all shapes in the
database.

5.1. Topological Queries

Let g similar(S1; S2) be the similarity predicate be-
tween two shapes which is true if and only if shape S1 is
similar to shape S2. Then, we consider a similarity operator
similar(Q) that returns all images that contain shapes that
are similar to the query shape Q; that is, similar(Q) = fI
2 DB: 9 S 2 DBS, S.image= I and g similar(S;Q)g.

Similarly, we define topological predicates,
g r(S1; S2; �), refering to the relative position of t-
wo shapes S1 and S2, where r 2 fcontain, overlap,
disjointg and � 2 [�2�; 2�] [ fanyg. For example,
g contain(S1; S2;

�
4 ) is true iff S1 contains S2 and the

signed angle between their diameters is �
4 . In light of

these predicates, we define three topological operators that
return all images that contain shapes related with the corre-
sponding topological predicate. That is, for a topological
operator r, r(Q1; Q2; �) = fI 2 DB: 9 S1, S2 2 DBS,
S1.image = S2.image = I , such that g similar(S1; Q1)
and g similar(S2; Q2) and g r(S1; S2; �) g.

A topogical query is defined as follows:

� The result of a topogical operator and the result of the
similarity operator is a topological query.

� If P1 and P2 are topological queries, then P1 \ P2 is a
topological query.

� If P1 and P2 are topological queries, then P1 [ P2 is a
topological query.

� If P1 is a topological query, then COMPLEMENT(P1)
is a topological query that includes all images not in
P1, that is COMPLEMENT(P1)= DB - P1

� If P1 is a topological query, then (P1) is a topological
query.

For example the topological query:
similar(Q1) \ COMPLEMENT(overlap(Q2; Q3; any))
returns all images in the database that contain a shape sim-
ilar to Q1 but do not contain any shape similar to Q2 that
overlaps with a shape similar to Q3.
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5.2. Statistical Estimations

To efficiently implement queries we need an esti-
mate of the size of the sets produced by our operators.
Our matching algorithm returns all shapes that are sim-
ilar to a given query shape Q. Let shape similar(Q)
= fS 2 DBS: g similar(S;Q) g. The metric
selectivityshape similar(Q) is an estimate of the size
of shape similar(Q). Note that if an image contain-
s exactly one of the shapes that are similar to Q, then
selectivityshape similar(Q) gives an estimate of the size of
the query similar(Q).

To this end, we define the number of “significant” ver-
tices (VS(Q)) as:

VS(Q) =
1

2

V (Q)�1X
i=0

(� � �i)�i
4

�2
+
l(i�1)modV (Q) + li

2

where V (Q) is the actual number of vertices of Q, ai is the
positive acute angle that corresponds to the i-th vertex of
shape Q, 0 � �i � �, and li is the legth of the i-th edge
(see Figure 9).

VS(Q) is an estimate of the number of structurally dom-
inating vertices of shape Q, in the sense that VS(Q) favors
vertices that are not degenerate (the corresponding angle is
not 0 or �, and the adjacent edges have adequate lengths),
and it favors clear cut angles with long adjacent edges. Each
vertex contributes a term in [0; 1], where 1 is attained when
the angle is �

2 and each adjacent edge has length equal to
the diameter of the shape.

For example, in Figure 9(left) we have a normalized
shape Q, �0 = �

2 , �1 = 3�
4 , �2 = �

2 , �3 = 3�
4 , �4 = �

2 ,

l0 = l3 = l4 =
p
10
5 , l1 = l2 =

p
5
5 ; thus vertices V0,

V4 contribute a term 1
2 +

p
10
10 each, vertices V1, V3 con-

tribute a term 3
8 + (2+

p
2)
p
10

20 and vertex V2 contributes a

term 1
2+

p
5

10 . In Figure 9(right) we have a normalized shape
Q0 with 7 vertices, however the significant vertices of Q are
the same as in Q0.

Clearly, 0 � VS(Q) � V (Q):
We have experimentally established that the size of the

result of a similar query on Q is inversely proportional to
the number of significant vertices VS(Q).

selectivityshape similar(Q) =
c

VS(Q)

where c is a constant that depends on the size of the shape
base and the application domain. This constant is adapted
statistically everytime a query is performed.

Figure 10 reports two of our experiments. Both experi-
ments are for the same image domain but for different sizes
of the shape base. The size of the shape base for Experiment
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Figure 9. (left) A normalized shape Q with 5
vertices; (right) a normalized shape Q0 with 7
vertices. The quantity VS(Q) is almost equal
to VS(Q

0).

1 is twice that for Experiment 2. The experiments validate
the hyperbolic behavior of the number of the shape matches
in terms of VS(Q).
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Figure 10. Determining experimentally the
number of similar shapes.

5.3. Processing a Single Operator

Our matching algorithm returns all shapes that are
similar to a given query shape Q, i.e., the set
shape similar(Q). To compute the operator similar(Q),
we just check the attribute image (S:image) for all S 2
shape similar(Q). This takes time proportional to the size
of shape similar(Q).

To compute the angle between two shapes S1 and S2, we
retrieve the inverse normalization transformations T1 and
T2 from the shape base, apply them on the diameter (which
is always the vector diam = ((0; 0); (1; 0))) and calculate
the ordered signed angle between T1(diam) and T2(diam).

To compute each topological operator r(Q1; Q2; �) there
are two ways.

1. We start by computing first the similarity oper-
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ator for the query shape that produces the s-
mallest set. Let this be the query on shape
Q2, that is, let selectivityshape similar(Q1) �
selectivityshape similar(Q2).

Compute the set shape similar(Q2);
For each S2 2 shape similar(Q2)

Let I = S2:image and GI = (VI ; EI )
be the corresponding graph;

For each edge S2 !r S1 in EI

If S1 is similar to Q1 and the angle is �
Add I to the result;

2. We compute both the set of shapes that are similar to
Q1 and the set of shapes that are similar to Q2.

Compute I1 = shape similar(Q1);
Compute I2 = shape similar(Q2);
Compute similar(Q1), similar(Q2) and
SI = similar(Q1) \ similar(Q2);

fSI is the set of all images that contain both
a shape similar to Q1 and a shape similar
to Q2 g

For each S1 2 shape similar(Q1)
such that S1.image 2 SI

Let I = S1:image and GI = (VI ; EI)
be the corresponding graph;

For each edge S2 !r S1 in EI

If S2 in similar(Q2) and the angle is �
Add I to the result;

5.4. Processing Queries

There are several ways to execute a query that contains
set operators. We re-write the initial query into the form t1
[ t2 [ : : : [ tn, where each ti contains only intersection
and complement operators.

Let ti = pi1 \ pi2 \ : : : \ pik , where each pij is either
a (topological or similarity) operator or the complement of
an operator. To compute each ti, we use the estimations
for the size of the result of each of the pij ’s. If pij
is the similarity operator, i.e., pij = similar(Q), then
selectivity(pij) = selectivityshape similar(Q). If pij
is a topological operator, i.e., pij = r(q1; q2; �), then
selectivity(pij) = minfselectivityshape similar(Q1),
selectivityshape similar(Q2)g. If pij is the complement of
an operator, then its selectivity is estimated as the size of
the DB minus the selectivity of the operator. To evaluate
ti, we first evaluate the pij with the smallest selectivity.
Then, we evaluate the rest of the operators on the images in
the produced result. To compute the initial query, we just
compute the union of the tis.

6. GeoSIR: A Prototype System for Geometric-
Similarity Based Image Retrieval

We have developed a prototype interactive system that
implements the proposed geometric-similarity approach.
The system uses external storage for the shape base and the
auxiliary data structures. The geometric-similarity algorith-
m has been implemented in C and the user interface has
been developed using Tcl/Tk. We currently have a stable
version running on a Sun Solaris platform. The software is
easily portable to other platforms as well.

GeoSIR provides also utilities for edge extraction and
detection of object boundaries based on the ipp software
[23] and a cluster decomposition algorithm that we have
developed. When adding a new image in the image base
we process the image and extract shapes that describe suf-
ficiently the boundary of each object. These shapes are
non-self-intersecting polylines either open or closed. We
first perform image processing that achieves segment ap-
proximation of boundaries. We then detect clusters of poly-
lines that describe the boundary of objects. Each such clus-
ter consists of one or more non-self-intersecting polylines
that share edges or vertices. A result of cluster detection
is shown in Figure 11. There are seven clusters of shapes
(A through G). The shapes are approximated by adequately
small line segments, connected in polylines. Several heuris-
tics may be used to minimize noise. Our similarity criterion
has been designed to be tolerant to such noise situations.
Thus, noise elimination is important only for reducing the
effective size of the shape base.

Cluster A

Cluster D

Cluster E

Cluster F

Cluster G

Cluster B

Cluster C

Figure 11. Seven clusters of shapes (A
through G) have been detected.

After the polyline clusters have been determined, each
cluster is decomposed in a number of non-self-intersecting
polylines. There are several different decompositions;
achieving a good decomposition is an important issue, but
we are not treating it here. During cluster detection and de-
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composition, certain relations are recorded concerning the
relative size and positioning of these shapes with respect to
other shapes of the same or different clusters. The efficient
use of this information (see e.g. [22])) is an important di-
rection for future research.

The user is first presented with a workspace where she/he
can draft a query sketch. This sketch is then decomposed
in non-self-intersecting polylines. Initially, the system at-
tempts to use the incremental “fattening” algorithm to find
the best match(es). If it fails to find a close match, geo-
metric hashing is used for approximate retrieval. If the user
is not satisfied by the returned result(s), she/he can edit the
query sketch, specify certain polylines (open or closed) that
are of special interest and re-apply the retrieval process.

7. Conclusions and Future Work

We have presented an efficient noise tolerant shape-
based approach to image retrieval. Our system combines
two powerful methods, an efficient algorithm for retrieving
shapes based on a novel similarity criterion and a geomet-
ric hashing technique, to maximize efficiency and intuitive-
ness. We are currently incorporating our method in a video
retrieval system. Other future research directions include
3D awareness support.
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