On Constructing Small Worlds in Unstructured
Peer-to-Peer Systems* **

Yannis Petrakis and Evaggelia Pitoura

Department of Computer Science, University of Ioannina, Greece.
{pgiannis, pitoura}@cs.uoi.gr

Abstract. Peer-to-peer systems have evolved as a means to share large
amounts of data among autonomous nodes. A central issue in this context
is locating nodes with data matching a user query. In this paper, we
consider building peer-to-peer systems with small-world properties, that
is, connecting the nodes to each other so that: (i) the distance between
any two nodes is small and (ii) relevant nodes are connected to each other.
Relevance between nodes is defined based on the probability that the
two nodes match similar queries. We propose decentralized procedures
for constructing small-worlds based on routing indexes that describe the
content of neighboring nodes. Our experimental results show that small-
world peer-to-peer systems built with these procedures increase recall,
that is, the percentage of relevant results returned.

1 Introduction

The popularity of file sharing systems such as Napster, Gnutella and Kazaa
has spurred much current attention to peer-to-peer (P2P) computing. Peer-to-
peer computing refers to a form of distributed computing that involves a large
number of autonomous computing nodes (the peers) that cooperate to share
resources and services [12]. A central issue in P2P systems is identifying which
peers contain data relevant to a user query.

In this paper, we propose building small worlds based on the content of the
peers. Small worlds are networks with (i) a small distance among any two nodes
(small diameter) and (ii) a large number of connections among relevant nodes
(large clustering coefficient) [19]. We define the relevance of two nodes (peers)
based on the probability of them matching the same set of queries. Intuitively,
the topology of a small world network represents a number of smaller networks
(groups) that are rich in links between their peers (short-range connections),
while they are linked to each other with a few random connections (long-range
connections). The motivation for such small-world P2P networks is that once
in the appropriate group, all relevant to a query peers are a few links apart.
Long-range links are used for routing among groups.

* In the EDBT International Workshop on Peer-to-Peer Computing and Databases,
Heraklion, Crete, Greece, March 14, 2004

** Work supported in part by the IST programme of the European Commission FET
under the IST-2001-32645 DBGlobe project

We present an approach for building small worlds based on a fully decentral-
ized procedure. Our construction is based on using local indexes. A local index
is a characterization of the content of a peer. By aggregating local indexes of
neighboring nodes, we create small worlds in a fully distributed manner.

To demonstrate our approach, we implemented routing indexes using Bloom
filters [3]. Bloom filters are bit vectors used for probabilistic representation of a
set to support membership queries. Our performance results show that networks
constructed by our procedures have the small world properties. Moreover, they
maximize recall and precision, that is, for a given query they increase the number
of matching data returned while maintaining the number of peers visited small.

The remainder of this paper is structured as follows. In Section 2, we put our
work in context with related research. In Section 3, we present the model of our
system, while in Section 4, we describe how small worlds are built. In Section 5,
we present experimental results. Section 6 concludes the paper.

2 Related Work

There are two basic types of P2P systems: structured and unstructured ones.
In structured P2P systems, documents (or indexes of documents) are placed at
specific nodes (peers) usually based on distributed hashing (DHTSs) such as in
CAN [13] and Chord [6]. With distributed hashing, each document is associ-
ated with a key and each peer is assigned a range of keys and thus documents.
Peers are interconnected via a regular topology where peers that are close in
the identifier space are highly interconnected. Very recently, researchers have
proposed extending DHTs (e.g., Chord) with long range links towards creating
small worlds [11]. In addition, recent extensions propose instead of associating
keys to documents based on just the identifier of the document, to associate
with each document (or peer) a vector describing its content extracted using IR
algorithms and then use this vector as input to the hashing functions [16,15].
However, this creates a dimensionality reduction problem, since the dimension
of the vectors should match the dimension of the DHT.

These proposals can collectively be seen as an approach of building content-
based small worlds in DHT-based P2P systems. In this case, the usual problems
with structured P2P systems arise, since although DHTs provide very efficient
searching, they compromise peer autonomy. The DHT topology is regulated since
all peers have the same number of neighboring peers and the selection of peers
is strictly determined by the DHTSs semantics. Furthermore, sophisticated load
balancing procedures are required.

We propose building small-worlds in unstructured (non DHT-based) P2P
systems. Unstructured P2P systems can be further distinguished between sys-
tems that use indexes and those that are based on flooding and its variations.
With flooding (such as in Gnutella), a peer searching for a document contacts its
neighbor peers which in turn contact their own neighbors until a matching peer
is reached. Flooding incurs large network overheads. In the case of indexes, these
can be either centralized (as in Napster), or distributed among the peers (as in

routing indexes [4]) providing for each peer a partial view of the system. We show
how by using such indexes, we can organize the peers in small-worlds in a fully
decentralized manner. Small-worlds in non DHT P2P systems are also discussed
in [1] in the context of searchable querical data networks; however, this work
does not include a concrete decentralized small-world construction procedure.

Finally, many recent research efforts are focusing on organizing peers in clus-
ters which in a sense are similar to groups in small-worlds. In most cases, the
number or the description of the clusters is fixed and global knowledge of this
information is required. In [2], peers are partitioned into topic segments based
on their documents. A fixed set of C' clusters is assumed, each one corresponding
to a topic segment. Knowledge of the C' centroids is global. Clusters of peers are
formed in [18] based on the semantic categories of their documents; the semantic
categories are predefined. Similarly, [5] assumes predefined classification hierar-
chies based on which queries and documents are categorized. The clustering of
peers in [10] is based on the schemes of the peers and on predefined policies pro-
vided by human experts. Besides clustering of peers based on content, clustering
on other common features is possible such as the formation of communities of
peers based on their interests [8].

3 Content-Based Small Worlds in P2P Systems

We assume a P2P system with a set N of peers n;. Each peer stores a set of
data items (such as documents or relations). Each peer is connected to a small
number of other peers called its neighbors. A query ¢ may be posed at any of the
peers. We denote by match(n;,q) = true the fact that peer n; has data items
satisfying a query ¢; otherwise match(n;,q) = false. Peers with data satisfying
the query are called matching peers. In the following, we use the notation |S| to
denote the number of elements of a set S.

3.1 Small Worlds in P2P Systems

The distance between two peers n; and nj, dist(n;,n;) is the length of the
shortest path from n; to n;. The diameter of the network is the maximum
distance between any two peers in the network. The clustering coefficient of a
network captures the probability that two neighbors of a peer are also neighbors
themselves; it is the average fraction of pairs of neighbors of a peer that are
neighbors of each other. Small world networks are characterized by: (i) a small
diameter and (ii) a large clustering coefficient [19].

Intuitively, the topology of a small world network represents a number of
smaller networks that are rich in links between their peers (short-range connec-
tions) and these smaller networks are linked between them with a few connections
(long-range connections). The small world phenomenon finds many applications
in real life [19, 7]. Friendship networks are a good example of this. Consider the
friendship graph, where each peer corresponds to a person and two people are
connected with an edge if they know each other. Such a graph consists of smaller

sub-graphs (which are rich in short-range connections) each one representing a
community and there are a few long-range links between peers of different com-
munities (if A knows B and B knows C, then A is more likely to know C' than
some other random person).

Our goal is to organize peers into groups based on some characteristics, where
there are many structured inter-group (short-range) links and a few random
intra-group (long-range) links. The short range links are created based on a
common characteristic of the peers that are connected, while the long range
links are constructed randomly between peers of different groups. These links
serve to reduce the average path length between any two peers in the network.

More specifically, we want to group together the peers that match the same
set of queries. The motivation for building such small worlds in P2P systems is
to increase the number of matching peers that are returned. This is because, if
peers that match similar queries are linked together, once we find one matching
peer, all others are nearby. In particular, let Visited be the set of peers visited
while processing a query and Matching be the set of all peers in N that match
the query. Then, Recall = (|Matching N Visited|)/|Matching| and Precision
= (|Matching N Visited|)/|Visited|. Ideally query propagation should visit only
peers in the Matching set.

In particular, we want the probability that n; and n; are neighbors to de-
pend on their similarity. We define the similarity among two peers based on the
probability that they match the same set of queries:

Definition 1. (similarity among peers) For two peers n; and n;, we define
their similarity as follows: psimilar(n;, nj) = min(ai,az2) over all queries g,
where a1 = Probability{match(n;,q) = match(n;,q)} and

ay = Probability{match(n;,q) = match(ni,q)}.

Figure 1 shows a ramdom and a small-world P2P network. In a small-world
network, peers that match a query are nearby.

Fig. 1. (left) Random and (right) small world p2p network

3.2 Content Summaries

Our approach is based on using local indexes to describe the content of each peer.
We take the following generic approach: we assume that there is an “index” or

summary called a local index LI(n) that describes the content of each peer n.
For instance, the index may be an inverted list of keywords, a B-tree, or a Bloom
filter (as in our case study). A property of the “index” is that we can determine,
with high probability, whether the peer satisfies the query based on the index of
the peer, that is, without looking at the actual content of the peer. In particular,
each index supports a predicate imatch such that: V query ¢ and peer n € N, if
match(n,q) = true then imatch(LI(n),q) = true. The inverse also holds with
a high probability. The case in which the inverse does not hold is called a false
positive.

Besides its local index, each peer n maintains one routing index RI(n,e) per
link e, that describes the content of all peers that are reachable from n using
link e at a distance at most R.

Definition 2. (horizon and radius) A peer n; has a horizon of radius R, if
for each edge e, it maintains a routing index RI(n;,e) such that: ¥V query q and
n; € N, such that if using link e, dist(n;, n;) < R and match(n;,q) = true
then imatch(RI(n;,e),q) = true.

The type of index depends on the type of data items of each peer that we
want to share (e.g., simple files, relational databases, XML files) as well as on
the type of queries (e.g., keyword-based, SQL-like or path queries). The index is
representative of the content. In particular, we define a similarity metric among
indexes, denoted as similarity, such that the more similar the peers, the more
similar their indexes.

4 Building and Querying Small Worlds

Our goal is to create groups of similar peers. We distinguish between two types
of links: short-range or short links that connect similar peers and long-range or
long links that connect non-similar peers. Two peers belong to the same group
if and only if there is a path consisting only of short links between them.

4.1 Query Routing

Our goal is to locate all matching peers. Assume that a query ¢ is posed at
peer n. First, n checks whether its own local index matches the query (whether
imatch(LI(n), ¢) = true). Then, it propagates the query only through one or
more of those links e whose routing indexes match the query (imatch(RI(n,e),
q) = true). Analogously, each peer that receives the query first checks its own
local index and propagates the query only through those links whose routing
indexes match the query. This procedure ends when a maximum number of
peers (MaxVisited) is visited or when the desired number of matching data
items (results) is attained.

Note that following this procedure, it is possible to reach a situation in which
no matching peers are found. This can happen for example if the peer n that
poses a query has no matching outgoing links (imatch(RI(n,e), q¢) = false ¥V

link e of n), which means that the matching peers (if any) are outside the radius
R of n. To handle this case, we use a variation of the above procedure until we
find the first matching link. Specifically, if no matching link has been found yet
during the routing of the query, and the current peer has no matching outgoing
links, then the long link of this peer is followed (even if it does not match the
query). The idea is that we want to move to another group of the network, since
the current group (bounded by the horizon) has no matching peers. In the case
that the peer has no long link or we have already followed all long links, the
query is propagated through a short link to a neighbor peer and so on until a
long link is found.

4.2 Small World Construction

Each new peer that enters the system tries to find a relevant group of peers and
links with SL of them through short links. Also, it may link with a peer that does
not belong to this group through a long link. Short links are inserted so that
the peers with relevant information are located nearby and a large clustering
coefficient is attained. Long links are used for keeping the diameter small. The
idea is that we want to be easy to find both all the relevant results once in the
right group, and the relevant group once in another group, thus reducing the
number of hops that are needed to answer a query.

Specifically, when a new peer n joins the system, a join message that contains
its local index LI(n) is posed as a query to a well known peer in the system. This
message maintains two lists (initially empty): (i) a list with peers of the same
group with peer n, denoted clist, and (ii) a list with peers of different groups,
denoted dlist. Whenever the message reaches a peer p, the similarity between the
local indexes LI(n) and LI(p) is calculated. If the similarity is below a threshold
t (similarity(LI(n), LI(p)) < t), peer p is added to the list dlist which means
that p and n should belong to different groups. Otherwise, p is added to clist.

The join message is propagated using a query routing procedure that exploits
the routing indexes as follows. The similarity between the local index LI(n) of the
new peer n and the routing indexes RI(p,e) that correspond to each of the out-
going links e of peer p is calculated. The message is propagated through the most
similar link e (for which similarity(RI(p,e), LI(n)) is the maximum) because
there is higher probability to find the relevant group through this link. This rout-
ing procedure is followed until either SL peers n; with similarity(LI(n;),LI(n))
> t are found or a predefined number of peers (denoted JMazVisited) is visited.
Then a peer u is selected from the list dlist. The new peer connects to the peers
of clist through short links and to peer u through a long link. If dlist is empty,
which means that the message has not reached any peer from another group, the
join message is also routed through the link for which the probability to reach
a peer with similarity below the threshold ¢ is the highest. That is, the message
is propagated through the link e for which the routing index is less similar with
the local index of the new peer (similarity(RI(p,e), LI(n)) is the minimum).
The procedure stops when such a peer is found.

One disadvantage of the above algorithm is that it is difficult to define an
appropriate value for the threshold. Furthermore, this value may need to change
as the content of the peers changes. To address these issues, we also consider the
following procedure that does not use threshold: the routing of the join message
continues until the maximum number of peers visited JM axVisited is reached.
The message is always propagated through the link that is most similar with the
local index of the new peer. The message maintains a list MaxMinList of all the
visited peers and the corresponding similarities between their local indexes and
the local index of the new peer. When the routing stops, the new peer selects
to be linked to the SL most similar peers in MaxMinList through short links,
and randomly to one of the other peers in the list through a long link. We call
the algorithm that uses a threshold, threshold algorithm, and the algorithm that
does not use threshold MaxMin algorithm.

5 Experimental Evaluation

5.1 Bloom Filters as Routing Indexes

Bloom filters are compact data structures for probabilistic representation of a
set that support membership queries (“Is element @ in set A?”). Consider a set
A ={a1, az,..., ap} of n elements. The idea is to allocate a vector v of m bits,
initially all set to 0, and then choose k independent hash functions, hi, he, ...,
hi, each with range 1 to m. For each element a € A, the bits at positions h;(a),
ha(a), ..., hr(a) in v are set to 1 (Fig. 2). A particular bit may be set to 1
many times. Given a query for b, the bits at positions hy(b), ha(b), ..., hr(b)
are checked. If any of them is 0, then certainly b ¢ A. Otherwise, we conjecture
that b is in the set although there is a certain probability that we are wrong.
This is a false positive. It has been shown [3] that the probability of a false
positive is equal to (1 — e~ *n/m)k,

hi(a) =4 ho(a) =2 hg(a) =5 hy(a) =8

[L] [ofef [Jaf [Joweer

i m = 10 bits \

Fig. 2. A Bloom filter with £ = 4 hash functions

Bloom filters have been used as routing indexes in P2P systems [14,9]. The
routing index RI(n,e) of radius R of the outgoing link e of peer n is equal to the
bitwise OR of the local indexes of all peers p within distance R of n reachable
through link e. Let B be a Bloom filter of size m. We shall use the notation B[],
1 < i < m to denote the ith bit of the filter. Let two Bloom filters B and C' of
size m, their Manhattan (or Hamming) distance, d(B,C) is defined as d(B,C)
= |B[1] - C[1]| + |B[2] - C[2]| + ... + |B[m] - C[m]|, that is the number of bits
that they differ. The smaller the distance, the more similar the Bloom filters.

5.2 Simulation

We associate a document with each node. Each document has a number of
elements (keywords). Every 10% of the documents are 50% similar to each other
in terms of elements in common. For the hash functions, we use MD5 [17] that is
a cryptographic message digest algorithm that hashes arbitrarily length strings
to 128 bits. The k hash functions are built by first calculating the MD5 signature
of the input string, which yields 128 bits, and then taking k groups of 128/k bits
from it. The filter size is set to 6000 bits with 4 hash functions. The size of
the network is set to 500 peers and the horizon radius varies from 1 to 3. Each
new peer creates one short link (SL = 1) and one long link with probability
P; = 0.4. The routing of the join message stops when a maximum number
(JMazVisited) of peers has been visited, varying from 5% to 20% of the existing
peers. Analogously, the routing of the query stops when a maximum number
(MaxVisited) of peers has been visited. This number remains constant to 10%
of the network peers. In the first set of experiments, we show that our network
satisfies the small world properties. In the second set of experiments, we examine
the performance of such a network, considering as performance metrics: (i) recall
(i-e., the percentage of results found) and (ii) the number of hops until the first
result is found. Table 1 summarizes our input parameters

Table 1. Input parameters

Parameter Default Value Range
Number of peers 500

Radius of the horizon 3 1-3
Number of short links (SL) 1
Probability of long link (P;) 0.4
Percentage of peers visited during join (JMazVisited) 10 5-20
Percentage of peers visited during query (MaxVisited) 10

Number of hits per peer 1

Filter size 6000bits
Number of hash functions 4

Number of elements per document 80
Percentage of hits (matching peers per query) 7%

In the following, we examine the influence of the join radius (i.e., the radius
used during the creation of the network). Note that we vary the radius used by a
peer when joining the network, while we keep the radius used in query processing
constant and equal to 3. The reason is to show that the radius used during the
construction of the network affects the quality of the constructed small-world
network. We also vary the percentage of peers visited during the join procedure
(JMazVisited). We evaluate both the MaxzMin and the threshold algorithms
and compare the constructed small-world networks with a random one.

5.3 Network Properties

We study the properties of the networks created using the two algorithms, in
particular, their diameter and degree of clustering.

Diameter We calculate the diameter of the network constructed following our
procedures for creating a small world (Fig. 3). Our goal is to show that the
network we build satisfies the small world property of a small diameter O(logV)
where N is the number of peers. We calculate the diameter for different values
of the join radius. The value of the diameter is about 10 which means that
it satisfies the property. Also, the diameter of the networks created using the
threshold and MaxMin algorithms is a little smaller than the diameter of the
random network.

14 B 14 - Threshold ——
MaxMin -->--

B T r -~ - Random ---%--
12 [* 12 *eo

diameter
diameter

L
1 2 3 5 10 15 20
radius (for join) IMaxVisited

Fig. 3. Network diameter

Quality of Clustering We use two measures for evaluating clustering: join
errors (the percentage of peers that fail to find an appropriate group to attach)
and the average distance between peer groups.

12 12

Threshold ——

MaxMin -->--
10 B 10 B

join errors (%)
@
T
x
|
join errors (%)
@
T
X(
|

1
1 2 3 5 10 15 20
radius (for join) JMaxVisited

Fig. 4. Join errors

The percentage of peers that cannot find the appropriate group to attach
affects the quality of grouping. The number of join errors decreases as the join
radius increases (Fig. 4 left). This is because, with a larger join radius, the join
message is propagated more efficiently, since each routing index summarizes the
content of more peers in the network. The benefit of increasing the radius above
2 is negligible (or there is no benefit), which means that a small radius suffices.

Also, the number of join errors increases as the percentage of the peers visited
during the join procedure increases (Fig. 4 right). Again, increasing this percent-
age over 10% gives a small benefit, and thus, a small number of visited peers is
required for achieving a good grouping. With the threshold join algorithm, the
new peer connects to the first SL peers it finds that have similarity larger than
the threshold ¢, whereas with the M axz Min algorithm, the join procedure contin-
ues until the maximum number of visited peers is reached. Thus, the MaxMin
algorithm achieves a better grouping of the peers.

We define the distribution of the group peers as the average distance be-
tween a peer v and the rest of the peers in the same group GR: db(GR) =

2ieon Lucanags WUV o 5 depicts th dist for th
(lGR|(|GR|*1) . gure €pP1Cts € average distance 1or € groups

created using the two join procedures and a random network. The networks built
using our join algorithms have a smaller value for the distribution of the group
peers than the random network. We achieve a small distribution for the group
peers despite the fact that a new peer connects to only one relevant peer through
a short link. Comparing the MaxzMin and the threshold algorithms, we notice
that for small values of radius (1 and 2), the MazMin algorithm outperforms
the threshold algorithm. In all the other cases, the distribution value is nearly
the same. Also variations of the radius and the percentage of peers visited during
the join procedure have negligible influence to the distribution of the group peers
for networks created by the MaxMin algorithm (in contrast to the threshold
algorithm). The reason is that even for small values of the radius and peers vis-
ited, the number of join errors for the MaxMin algorithm remains very small
(as shown in Fig. 4).

Threshold ——
MaxMin -->--
Random ---%--

group distribution
ok N w & 0 o =~
T
group distribution

ok N w A~ O o ~
T
L

| | | |
1 2 3 5 10 15 20
radius (for join) JMaxVisited

Fig. 5. Average distance between peers in each group

Comparison of the two join algorithms Figure 6 depicts the percentage
of peers visited during the join procedure. With the threshold algorithm, the
join procedure ends when the first SL relevant peers are found, whereas with
the MaxzMin algorithm, it stops only when the maximum number of peers has
been visited. Thus this percentage is 100% for the MaxzMin algorithm. Since,
the threshold algorithm stops when it has found SL relevant peers to attach
through short links (and a non relevant one through a long link), a smaller
number of peers is visited. Especially, when the maximum allowed number of
peers visited is 10% and above, the threshold algorithm takes a much smaller

number of hops during the join procedure. The drawback is that the threshold
algorithm results in more join errors and a little worse performance (recall).

100 [Xommmme ommmmmtemooo- X - Threshold —+—
MaxMin -->¢--

(%) percentage of maximum peers visited

0 L L L L
5 10 15 20

IMaxVisited

Fig. 6. Average percentage of the maximum number of visited peers during join

5.4 Performance of Querying

Recall The networks created by the two join algorithms perform better than the
random network due to the grouping of the relevant peers (Fig. 7). The MaxzMin
algorithm performs a little better than the threshold algorithm since it achieves
better clustering. The performance is good for radius 1 and a small percentage
of visited peers (5%), Increasing either the radius or the percentage results in
improving performance. However, in most cases, increasing the radius over 2 and
the percentage over 10% gives nearly constant performance on average.

100 100
Threshold —+—
MaxMin --<:
80 | U E— x p 80 e mmmmmmmmm === X Random ---%--
_ 60| E _ 60 g
K K
g g
40 | - 40 | 7
ERRREEEEEES Heomnmnnnnan * PR Kooonnnnnenenennnee *
20 - B 20 | B
0 L L L 0 L L L

1
1 2 3 5 10 15 20
radius (for join) JMaxVisited

Fig. 7. Recall (percentage of matching peers found

Hops for First Result The average number of hops required to find the first
matching peer is nearly the same for both the networks built using the threshold
and the MaxMin algorithm. Also, it is a bit smaller than the required number
in a random network. Thus, only a small percentage of the network peers need
to be visited to reach a matching peer. Then, it is easy to find most of the other
matching peers since relevant peers are linked together.

6 Conclusions

In this paper, we have proposed building small worlds of peers based on the
probability of peers matching the same set of queries. We have introduced a

=)
=)

Threshold ——
MaxMin -->--
7 Random ---%--

@
T
L
@
T

number of hops
w
T
|
number of hops
Now b
T T T
| |

-
T
L
-
T
L

o

0 L L L L L L
1 2 3 5 10 15 20

radius (for join) JMaxVisited

Fig. 8. Number of hops for locating the first matching peer

decentralized procedure for constructing such small worlds that is based on us-
ing routing indexes. Future work includes the definition of appropriate routing
indexes that could work well to create small worlds and in addition take into
account the query workload. We are also currently working on proving formally
the properties of the networks constructed by our approach.

References

1.

10.

11.

12.

F. Banaei-Kashani and C. Shahaby. Searchable Querical Data Networks. In In-
ternational Workshop on Databases, Information Systems and Peer-to-Peer Com-
puting, 2003.

M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search Enhanced by Topic
Segmentation. In SIGIR, 2003.

B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. CACM,
13(7), 1970.

A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In
ICDCS, 2002.

A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems.
Technical report, 2002. Submitted for publication.

R. Morris I. Stoica, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. IEEE/ACM
Trans. on Networking, 11(1):17-32, 2003.

A. Tamnitchi, M. Ripeanu, and I. T. Foster. Locating Data in (Small-World?)
Peer-to-Peer Scientific Collaborations. In IPTPS, 2002.

M.S. Khambatti, K.D. Ryu, and P. Dasgupta. Efficient Discovery of Implicitly
Formed Peer-to-Peer Communities. International Journal of Parallel and Dis-
tributed Systems and Networks, 5(4):155-164, 2002.

G. Koloniari, Y. Petrakis, and E. Pitoura. Content-Based Overlay Networks for
XML Peers Based on Multi-Level Bloom Filters. In International Workshop on
Databases, Information Systems and Peer-to-Peer Computing, 2003.

A. Loser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic Overlay
Clusters within Super-Peer Networks. In International Workshop on Databases,
Information Systems and Peer-to-Peer Computing, 2003.

S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a Small
World. In USENIX Symposium on Internet Technologies and Systems, 2003.

D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57,
HP Laboratories Palo Alto, 2002.

13

14.

15.

16.

17.
18.

19.

. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In SIGCOMM, 2001.

S. C. Rhea and J. Kubiatowicz. Probabilistic Location and Routing. In INFOCOM,
2002.

C. Schmidt and M. Parashar. Flexible Information Discovery in Decentralized
Distributed Systems. In HPDC, 2003.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information Retrieval Using
Self-Organizing Semantic Overlay Networks. In SIGCOMM, 2003.

The MD5 Message-Digest Algorithm. Rfc1321.

P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Towards High
Performance Peer-to-Peer Content and Resource Sharing Systems. In CIDR, 2003.
D. J. Watts and S. H. Strogatz. Collective Dynamics of Small-World Networks.
Nature, 393:440-442, 1998.

