
ReDRIVE: Result-Driven Database Exploration through
Recommendations

Marina Drosou
∗

Computer Science Department
University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
Typically, users interact with database systems by formu-
lating queries. However, many times users do not have a
clear understanding of their information needs or the exact
content of the database, thus, their queries are of an ex-
ploratory nature. In this paper, we propose assisting users in
database exploration by recommending to them additional
items that are highly related with the items in the result
of their original query. Such items are computed based on
the most interesting sets of attribute values (or faSets) that
appear in the result of the original user query. The inter-
estingness of a faSet is defined based on its frequency both
in the query result and in the database instance. Database
frequency estimations rely on a novel approach that employs
an ε-tolerance closed rare faSets representation. We report
evaluation results of the efficiency and effectiveness of our
approach on both real and synthetic datasets.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation, Search process

General Terms
Algorithms, Experimentation, Design, Performance

1. INTRODUCTION
Typically, users interact with a database system by formu-

lating queries. This interaction mode assumes that users are
to some extent familiar with the content of the database and
also have a clear understanding of their information needs.
However, as databases get larger and become accessible to a
more diverse and less technically-oriented audience, explo-
ration or recommendation style database interactions seem
attractive and useful.

A step towards this direction is offered by facet queries
that provide a form of navigational search, where users re-
strict their results by selecting interesting facets of the orig-
inal results (e.g., [11]). With facet search, users start with a
general query and progressively narrow its results down to

∗Supported by the research program“HRAKLEITOS II”co-
funded by the European Union and National Sources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

a specific item. Other related research includes addressing
the many- or empty- answers problems. Approaches to the
many-answers problem range from reformulating the origi-
nal query so as to restrict the size of its result (for example,
by adding additional constraints to it (e.g., [15]) to auto-
matically ranking the query results and presenting to the
user only the top-k most highly ranked among them (e.g.,
[7]). The empty-answers problem is commonly handled by
relaxing the original query (e.g., [12]).

In this paper, we propose a novel exploration mode of in-
teraction: we present to the users additional items which,
although not part of the answer of their original query, may
be of interest to them. This way users see information that
they may be unaware that exists. For instance, when asking
for movies directed by F.F. Coppola, we guide exploration by
recommending movies by other directors that have directed
movies similar to those of F.F. Coppola, i.e., with similar
characteristics, such as, genre or production year. We also
consider expanding the original query with additional at-
tributes, by finding correlations with other relations. For
example, when asking for the title of a movie, we also look
into its genre or other characteristics.

The computation of recommended results is based on the
most interesting sets of (attribute, value) pairs, called faSets,
that appear in the result of the original user query. The in-
terestingness of a faSet expresses how unexpected it is to see
this faSet in the result. The computation of interestingness
is based on the frequency of the faSet both in the user query
result and in the database instance. Since computing the
frequencies of faSets in the database instance on-line has
prohibitively high cost, we opt to maintain statistics that
allow us to estimate those frequencies when needed. More
specifically, we propose a novel approach that is based on
storing an ε-tolerance closed rare faSets representation as a
summary of such frequencies and exploit these summaries
to estimate the interestingness of the faSets that appear in
the result of any given user query.

We also present a two-phase algorithm for computing the
top-k faSets. In the first phase, the algorithm uses the pre-
computed statistics to set a frequency threshold that is then
used to run a frequent itemset based algorithm on the result
of the query. We evaluate the performance of our approach
using both real and synthetic datasets.

The rest of this paper is organized as follows. Sec. 2
presents the overall framework, Sec. 3 its implementation
and Sec. 4 an experimental evaluation. Finally, related work
is presented in Sec. 5 and conclusions are offered in Sec. 6.

2. THE ReDRIVE FRAMEWORK
Let D be a relational database with n relations R = {R1,

. . ., Rn} and A be the set of all attributes in R. Without loss
of generality, we assume that relation and attribute names
are distinct. To locate items of interest, users pose queries.

1547

movieid title year imdbid

movieid actorid as_character actorid name sex

ACTORS (A)MOVIES2ACTORS (M2A)

movieid directorid addition directorid name

DIRECTORS (D)MOVIES2DIRECTORS (M2D)

MOVIES (M)

movieid country

COUNTRIES (C)

movieid genre

GENRES (G)

movieid language

LANGUAGE (L)

movieid keyword

KEYWORDS (K)

Figure 1: Movies database schema.

In particular, we consider Select-Project-Join (SPJ) queries
of the following form:

SELECT proj(Q)
FROM rel(Q)
WHERE sel(Q) AND join(Q)

where rel(Q) is a set of relations, sel(Q) is a conjunction
of selection conditions, join(Q) is a set of join conditions
among the relations in rel(Q) and proj(Q) is the set of pro-
jected attributes. For simplicity, we shall focus on equality
conditions, i.e., sel(Q) = (A1 = a1) ∧ . . . ∧ (Am = am), m
≥ 1, where Ai ∈ A and ai ∈ domain(Ai). The result set,
Res(Q), of a query Q is a relation with schema proj(Q).

Since users must specify in their queries the conditions
that the searched items need to satisfy, they must have a
somewhat clear understanding of the information they are
seeking. In this paper, we propose an exploratory way of
discovering interesting information based on identifying po-
tentially interesting pieces of information based on the initial
result set and then using these pieces to explore the database
further by recommending additional results to the users.

2.1 Interesting FaSets
Let us first define pieces of information in the result set:

Definition 1 (Facet and m-FaSet). A facet condi-
tion, or simply facet, is a condition of the form (Ai = ai),
where Ai ∈ A and ai ∈ domain(Ai). An m-set of facets or
m-faSet, m ≥ 1, is a set of m facet conditions on m different
attributes.

We shall also use the term faSet when the size of the m-faSet
is not of interest.

For a faSet f , we use Att(f) to denote its attributes. Let
t be a tuple from a set of tuples S with schema R; we say
that t satisfies a faSet f , where Att(f) ⊆ R, if t[Ai] = ai,
for all facets (Ai = ai) ∈ f . We call the percentage of tuples
in S that satisfy f , support of f in S. In the following, we
use the term faSet to mean both the conditions and the list
of the associated values appearing in the conditions.

Example: Consider the movies database in Fig. 1 and
the query and its corresponding result set in Fig. 2. Then
{G.genre = “Drama”} or simply {“Drama”} is a 1-faSet and
{M.year = “1972”, G.genre = “Drama”} or simply {“1972”,
“Drama”} is a 2-faSet.

We are looking for interesting pieces of information at the
granularity of a faSet: this may be the value of a single
attribute (i.e., a 1-faSet) or the values of m attributes (i.e.,
an m-faSet).

Example: Consider the example in Fig. 2, where a user
poses a query to retrieve movies directed by F.F. Coppola.
{“Drama”} is a 1-faSet in the result that is likely to inter-
est the user, since it is associated with many of the movies
directed by F.F. Coppola. The same holds for the 2-faSet
{“1983”, “Drama”}.

To define faSet relevance formally, we take an IR-based
approach and rank faSets in decreasing order of their odds
of being relevant to a user information need. For a user
information need uQ expressed through a query Q, let RuQ

be the set of tuples that are relevant to uQ and RuQ be the

SELECT
FROM
WHERE

AND
AND

, 2 , , s

.directorid = 2 .directorid
2 .movieid = .movieid
.movieid = .movieid

D M.title, M.year, G.genre

D “F. F. ”

.name,

.name = Coppola
D M D M G

D M D
M D M
M G

AND

D.name M.title M.year G.genre

F. F. Coppola The Godfather III 1990 Drama

F. F. Coppola The Rainmake 1997 Crime

F. F. Coppola The Godfather 1972 Drama

F. F. Coppola Rumble Fish 1983 Drama

F. F. Coppola The Conversation 1974 Thriller

F. F. Coppola The Outsiders 1983 Drama

F. F. Coppola Supernova 2000 Thriller

F. F. Coppola Apocalypse Now 1979 Drama

Figure 2: Example query and result set.

set of tuples that are not relevant to uQ. Then, the relevance
score of a faSet f for uQ is defined as:

p(RuQ |f)

p(RuQ |f)

where p(RuQ |f) (resp. p(RuQ |f)) is the probability that a
tuple satisfying f is relevant (resp. not relevant) to uQ. Us-
ing the Bayes rule we get:

p(f |RuQ)p(RuQ)

p(f |RuQ)p(RuQ)

Since p(RuQ) and p(RuQ) have the same value for all faSets,
and thus do not affect their ranking, they can be ignored.

We make the assumption that all relevant to uQ results are
those that appear in Res(Q), thus p(f |RuQ) is equal with
the probability that f is satisfied by a tuple in the result set,
written p(f |Res(Q)). Similarly, p(f |RuQ) is the probability
that f is satisfied by a tuple that is not relevant, that is, a
tuple that does not belong to the result set. We make the
logical assumption that the result set is small in comparison
with the size of the database, and approximate the non-
relevant tuples with all tuples in the database, that is, all
tuples in the global relation, denoted by D, with schema
A. Based on the above motivation, we provide the following
definition for the relevance of a faSet:

Definition 2 (Interestingness Score). Let Q be a
query and f be a faSet with Att(f) ⊆ proj(Q). The inter-
estingness score, score(f, Q), of f for Q is defined as:

score(f, Q) =
p(f |Res(Q))

p(f |D)

The term p(f |Res(Q)) is estimated by the support of f
in Res(Q), that is, the percentage of tuples in the result set
that satisfy f . The term p(f |D) is a global measure that
does not depend on the query. It serves as an indication
of how frequent the faSet is in the whole dataset, i.e., it
measures the discriminative power of f .

Example: In the example in Fig. 2, “Drama” appears more
frequently than “Thriller” in the result set. However, if
“Thriller” appears only a handful of times in the database,
then it would be considered more interesting than “Drama”.

In general, a faSet stands out when it appears more fre-
quently in Res(Q) than expected. Clearly, the sel(Q) part of
a query is also a faSet. Therefore, another way of interpret-
ing the interestingness score of f for Q is as the confidence
of the association rule: sel(Q) → f . High confidence indi-
cates a strong dependency of the faSet f on the selection
conditions of Q.

Finally, note that in particular, for a faSet f with Att(f) ⊆
Att(sel(Q)), that is, for a faSet that includes only attributes
whose values are specified in the selection conditions, it holds
that score(f, Q) ≥ 1, since p(f |Res(Q)) = 1.

Attribute Expansion: Def. 2 provides a means of ranking
the various faSets that appear in the result set of a query
Q and discovering the most interesting among them. How-
ever, there may be interesting faSets that include attributes

1548

not in proj(Q) and thus do not appear in Res(Q). For ex-
ample take a query Q that just returns the titles of movies
directed by F.F. Coppola. All faSets appear only once in the
result set of Q. However, including for instance the relation
“Countries” in rel(Q) (and modifying join(Q) accordingly)
may disclose interesting information, e.g., that many of the
movies directed by F.F. Coppola are related to Romania.

To this end, we extend the definition of interestingness
to include faSets with attributes not in proj(Q), by intro-
ducing an extended query Q′ with the same sel(Q′) as the
original query Q but with additional attributes in proj(Q′)
and additional relations in rel(Q′).

Definition 3 (Extended Interestingness Score).
Let Q be a query and f be a faSet with Att(f) ⊆ A. The
interestingness score of f for Q is equal to:

score(f, Q) =
p(f |Res(Q′))

p(f |D)

where Q′ is an SPJ query with proj(Q′) = proj(Q) ∪ Att(f),
rel(Q′) = rel(Q) ∪ {R′ | Ai ∈ R′, for Ai ∈ Att(f)}, sel(Q′)
= sel(Q) and join(Q′) = join(Q) ∧ (joins with {R′ | Ai ∈
R′, for Ai ∈ Att(f)}).
2.2 Exploratory Queries

Besides locating interesting faSets, we also use interesting
faSets to discover additional pieces of data that are poten-
tially related to the user needs. In particular, we aim at con-
structing exploratory queries that retrieve results strongly
correlated with those of the original user query Q by replac-
ing the selection conditions, sel(Q), of Q with related ones.
Recall that a high interestingness score for f means that the
confidence of sel(Q) → f is high, indicating replacing sel(Q)
with f , since sel(Q) seems to impose f .

For example, by replacing sel(Q) of Q in Fig. 2 with its
interesting faSet {“Drama”}, we get the exploratory query:

SELECT D. name
FROM D, M2D, M, G
WHERE G. genre = ‘Drama ’
AND D. d i r e c t o r i d = M2D. d i r e c t o r i d
AND M2D. movieid = M. movieid
AND M. movieid = G. movieid

which retrieves other directors that have also directed drama
movies, which is an interesting value appearing in the origi-
nal query result set.

Definition 4 (Exploratory Query). Let Q be a user
query and f be an interesting faSet for Q. The exploratory

query Q̂ that uses f is an SPJ query with proj(Q̂) = Attr(

sel(Q)), rel(Q̂) = rel(Q) ∪ {R′ | Ai ∈ R′, for Ai ∈ Att(f)},
sel(Q̂) = f ∧ ¬ sel(Q) and join(Q̂) = join(Q) ∧ (joins with
{R′ | Ai ∈ R′, for Ai ∈ Att(f)}).

Then, interesting faSets for the exploratory Q̂ are recom-
mended to the user. Clearly, one can use the interesting
faSets in the results of an exploratory query to construct
other exploratory queries. This way, users may start with
an initial query Q and gradually discover other interesting
information in the database through results attained by ap-
plying exploratory queries progressively. ions.

Framework Overview: In summary, ReDRIVE database
exploration works as follows. Given a query Q, the top-k
most interesting faSets for Q are computed and presented
to the users. Such faSets may be either interesting pieces
(sub-tuples) of the tuples in the result set of Q or extended
tuples that include additional attributes not in the origi-
nal result. Interesting faSets are further used to construct
exploratory queries that lead to discovering additional infor-
mation related to the initial user query. This process may
be repeated for each exploratory query.

3. TOP-K FASETS COMPUTATION
In this section, we present algorithms for finding inter-

esting faSets. In particular, first, we present an approach to
maintaining statistics for estimating p(f |D) for each faSet f .
Then, we present a two-phase algorithm for computing the
top-k most interesting faSets for a query Q. Proofs omitted
can be found in [9].

3.1 Estimation of p(f |D)
To compute the interestingness of a faSet f for a query Q

according to Def. 2 (resp. Def. 3), we need to compute two
quantities: p(f |Res(Q)) (resp. p(f |Res(Q′))) and p(f |D).
Whereas p(f |Res(Q)) (resp. p(f |Res(Q′))) is different for
each Q, and thus needs to be computed on-line, p(f |D)
is the same for all user queries. The straightforward ap-
proach would be to also compute p(f |D) on-line for each
query Q, by counting for each examined faSet f the number
of database tuples that satisfy it. Given the large number
of such faSets and the size of the database, the cost of such
computations may become prohibitively expensive. We pro-
pose pre-computing and storing some form of information
that will allow us to estimate p(f |D), thus avoiding such
on-line computations. Next, we discuss available options.

Let mmax be the maximum number of projected attributes
of any user query, i.e., mmax = |A|. An exhaustive approach
would be to generate all possible faSets of size up to mmax

and pre-compute their support in D. Such an approach,
however, is infeasible even for small databases due to the
exponential number of possible faSets.

A first approach is to pre-compute and store the support
of all 1-faSets in D. Then, assuming that facet conditions
are satisfied independently from each other, the support of
a higher-order m-faSet is equal to:

p(f |D) = p({A1 = a1, . . . , Am = am}|D) =
m∏

i=1

p({Ai = ai}|D)

This approach requires maintaining information for a rel-
atively small number of faSets, i.e.,

∑
Ai∈A |domain(Ai)|

faSets. However, the independence assumption is unrealis-
tic in real-world applications.

Now, let us assume that we maintain the support of all
faSets up to size �. In this case, we can attain a more ac-
curate estimation of the support of a high-order m-faSet f ,
m > �, using a more sophisticated method such as Iterative
Proportional Fitting (IPF) [4] used in [15]. The supports
of low-order faSets provide some knowledge for the distri-
bution of the supports of high-order faSets. IPF is based
on the Principle of Maximum Entropy, which states that,
since there is no reason to bias the estimated distribution
towards any specific form, then the estimation should be as
close to the uniform distribution as possible. The maximum
entropy criterion smooths the estimated distribution. This
may lead to the loss of interesting information. Consider
for example that the faSets {G.genre = “Sci-Fi”}, {M.year
= “2000”}, {M.year = “2005”} have similar supports, while
the supports of {G.genre =“Sci-Fi”, M.year =“2000”} and
{G.genre = “Sci-Fi”, M.year = “2005”} differ a lot. IPF
(for � = 1) will estimate similar values for these two faSets.

Maintaining ε-Tolerance Closed Rare FaSets.
We propose a different form of statistics aiming at cap-

turing fluctuations in the support of related faSets. To do
this, we extend the notion of δ-tolerance frequent itemsets
[8] and define ε-tolerance closed rare faSets.

Preliminaries: In data mining, the term itemset refers to
a set of items. An itemset is said to be frequent in a dataset
if its frequency is above a specific threshold. Otherwise it is
called rare. Clearly, an m-faSet is an itemset whose items
are facets. An itemset {A1 = a1, . . . , Am = am} appears

1549

in exactly the same set of tuples that satisfy the m-faSet
f = {A1 = a1, . . . , Am = am}. Therefore, we say that a
faSet f is frequent (resp. rare (RF)) for a set of tuples S if
its support in S is above (resp. below) a specific threshold.
Also, we define a faSet f to be closed rare (CRF) for S if it
is rare and has no proper subset f ′, f ′ ⊂ f , such that, f ′

has the same support as f in S. A faSet f is minimal rare
(MRF) for S, if it is rare and has no subset f ′ such that f ′

is rare for S.

Statistics based on ε-tolerance: Maintaining the sup-
port of a number of representative faSets can assist us in
estimating the support of a given faSet f . Generally, faSets
that appear frequently in the database D are not expected
to be interesting, even if they appear often in the result of
user queries, since this is expected. Therefore, it is useful
to maintain information about the support of rare faSets in
D. We use count(f, S) to denote the absolute number of
appearances of a faSet f in a set of tuples S.

If we maintain the MRFs, we can derive all corresponding
RFs but not their actual support, while if we keep the CRFs
we can retrieve these supports as well. However, the number
of CRFs is in practice very large, since any RF that has
a distinct support is a CRF. Thus, our goal is to store a
tunable amount of rare faSets from which we will be able to
retrieve a bounded estimation of the support of a given faSet
in the database. This is achieved by relaxing the definition
of CRFs to maintain only those RFs whose support differs
from their rare subsets based on a threshold ε. In particular,
we define ε-tolerance closed rare faSets (ε-CRFs) as follows:

Definition 5 (ε-CRF). A faSet f is called ε-CRF for
a set of tuples S, if and only if, it is rare for S and it has
no proper immediate rare subset f ′, i.e., |f ′| = |f | − 1, such
that, count(f ′, S) < (1 + ε) count(f, S), where ε ≥ 0.

Intuitively, a rare faSet f is an ε-CRF if, even if we increase
its count by a constant ε, all its subsets still have a larger fre-
quency than f . This means that f has a different frequency
from all its subsets and cannot be estimated (or represented)
by any of them.

Let us assume that a set of ε-CRFs is maintained for some
value of ε. We denote this set C. An RF f either belongs to
C or not. If f ∈ C, then the support of f is stored and its
count is readily available. If not, then, according to Def. 5,
there is some subset of f that belongs to C whose support
is close to that of f . We use C(f) to denote the faSet in C
that is the most suitable one to estimate the count of f , i.e.,
the largest subset of f in C. The following lemma holds:

Lemma 1. Let C be a set of ε-CRFs for a set of tuples
S and f be a faSet, f /∈ C. Then, there exists f ′, f ′ ∈ C,
such that, count(f ′, S) ≤ φ count(f, S), where φ = (1 +

ε)(|f |−|f ′|).

To provide estimations, each ε-CRF is stored along with
its frequency extension defined as follows:

Definition 6 (Frequency Extension). Let C be a set
of ε-CRFs for a set of tuples S and f be a faSet in C. Let
also X (f) be the set of all RFs represented in C by f . Then,
Xi(f) = {x|x ∈ X (f) ∧ |x| − |f | = i}, 1 ≤ i ≤ m, where
m = max{i|Xi(f) �= ∅}. The frequency extension of f for i,
1 ≤ i ≤ m, is defined as:

ext(f, i) =

∑
x∈Xi(f)

count(x,S)
count(f,S)

|Xi(f)|
Intuitively, the frequency extension of f for i is the average
count difference between f and all the faSets that f rep-
resents whose size difference from f is equal to i. Given a
faSet f , the estimation of p(f |D), denoted p̃(f |D), is:

p̃(f |D) = count(C(f), S) · ext(C(f), |f | − |C(f)|)

It holds that:

Lemma 2. Let f be an ε-CRF. Then, ∀i, it holds that
1
φ
≤ ext(f, i) ≤ 1, where φ = (1 + ε)i.

It can be shown that the estimation error is bounded by φ,
i.e., by ε. More specifically, let f be an RF and |f |−|C(f)| =
i. The estimation error for p(f |D) is bounded as follows:

1

φ
− 1 ≤ p̃(f |D) − p(f |D)

p(f |D)
≤ φ − 1

3.2 The Two-Phase Algorithm
Given a query Q, our goal is to locate the k faSets with

the highest interestingness scores. Clearly, the brute-force
method of generating all possible faSets in Res(Q) and com-
puting their score is exponential on the number of distinct
values that appear in Res(Q). Applying an a-priori ap-
proach for generating and pruning faSets is not applicable
either, since score is neither an upwards nor a downwards
closed measure. Recall that, a measure d is upwards closed
if for any two sets S and S′, S ⊆ S′ ⇒ d(S) ≤ d(S′) and
downwards closed if S ⊆ S′ ⇒ d(S) ≥ d(S′).

Proposition 1. Let Q be a query and f a faSet. score(f, Q)
is neither an upwards nor a downwards closed measure.

This implies that we cannot employ any subset or superset
relations among the faSets of Res(Q) to prune the search
space.

As a baseline approach to reduce the number of examined
faSets of Res(Q), we consider only the most frequent faSets
of Res(Q), motivated by the fact that faSets that appear
in Res(Q) frequently are likely to be highly interesting to
the user. To this end, we apply an adaptation of a frequent
itemset mining algorithm to generate all frequent faSets of
Res(Q), that is, all faSets with support larger than some
pre-specified threshold minsuppf . Then, for each frequent
faSet f , we use the maintained statistics to estimate p(f |D)
and compute score(f, Q).

This baseline approach has the problem of being highly
dependent on minsuppf . A large value of minsuppf may
lead to losing some less frequent in the result but very rarely
appearing in the database faSets, whereas a small value
may result in a very large number of candidate faSets being
examined. Therefore, we propose a Two-Phase Algorithm
(TPA), described next, that addresses this issue by setting
minsuppf to an appropriate value so that all top-k faSets
are located without generating redundant candidates. TPA
assumes that the maintained statistics are based on keeping
rare faSets of the database D. Let minsuppr be the support
threshold of the maintained rare faSets.

In the first phase of the algorithm, all facet conditions, or
1-faSets, that appear in Res(Q) are located. TPA checks
which rare faSets of D, according to the maintained statis-
tics, contain only facet conditions from Res(Q). Let X be
the set of faSets. Then, in one pass of Res(Q), all faSets of
Res(Q) that are supersets of some faSet in X are generated
and their support in Res(Q) is measured. For each of the
located faSets, score(f, Q) is computed. Let s be the kth

highest score among them. TPA sets minsuppf equal to
s × minsuppr and proceeds to the second phase where it
executes a frequent itemset mining algorithm with thresh-
old equal to minsuppf . Any faSet in Res(Q) less frequent
than minsuppf has score smaller than the kth faSet located
in the first phase and thus can be safely ignored. To see
this, let f be a faSet examined in the second phase of the
algorithm. Since the score of f has not been computed in
the first phase, then p(f |D) > minsuppr. Therefore, for
score(f, Q) > s to hold, it must be that p(f |Res(Q)) > s ×
p(f |D), i.e., p(f |Res(Q)) > s × minsuppr. TPA is shown
in Alg. 1.

1550

Algorithm 1 Two-Phase Algorithm (TPA).

Input: Q, Res(Q), k, C, minsuppr of C.
Output: The top-k interesting faSets for Q.
1: S ← ∅, A ← all 1-faSets of Res(Q)
2: for all faSets f ∈ C do
3: if all 1-faSets g ⊆ f are contained in A then
4: f.score = score(f, Q), S ← S ∪ {f}
5: end if
6: end for
7: for all tuples t ∈ Res(Q) do
8: generate all faSets f ⊆ t, s.t. ∃ g ∈ S with g ⊂ f
9: for all such faSets f do
10: f.score = score(f, Q), S ← S ∪ {f}
11: end for
12: end for
13: minsuppf ← (kth highest score in S) × minsuppr

14: candidates ← frequentFaSetMiner(Res(Q), minsuppf)
15: for all faSets f in candidates do
16: f.score = score(f, Q), S ← S ∪ {f}
17: end for
18: return The k faSets in S with the highest scores

4. EXPERIMENTAL RESULTS
In this section, we present experimental results of the de-

ployment of our approach. We use two real datasets: (i)
“AUTOS”, a single-relation database consisting of 41 charac-
teristics for 15,191 used cars from Yahoo!Auto [2] and (ii)
“MOVIES”, a database with 13 relations whose sizes range
from around 10,000 to almost 1,000,000 tuples, containing
information extracted from the Internet Movie Database [1].
We use also synthetic datasets consisting of a single relation
with 5 attributes and 1,000 tuples, taking values generated
using a zipf distribution from a 5-value domain.

Statistics Generation: First, we evaluate the proposed
method for maintaining statistics based on ε-CRFs in terms
of (i) storage, measured as the number of stored faSets and
(ii) generation time. We report results for all intermedi-
ate computation steps, i.e., locating MRFs, RFs and CRFs.
We base our implementation for locating MRFs and RFs
on the MRG-Exp and Arima algorithms [18] and use an
adapted version of the CFI2TCFI algorithm [8] for produc-
ing ε-CRFs. For a given minsuppr, all MRFs are located.
However, locating all RFs is inefficient due to the exponen-
tial nature of algorithms such as Apriori. To overcome this,
we use a random walk based approach [10]: instead of pro-
ducing all RFs, we produce only a subset of them discovered
by random walks initiated at the MRFs.

Table 1(a) reports the number of produced faSets for dif-
ferent values of minsuppr and ε. In the reported results,
we kept the number of random walks fixed (equal to 20).
As ε increases, an ε-CRF represents faSets with larger sup-
port differences and, thus, the number of maintained statis-
tics decreases. As minsuppr increases, more faSets of the
database are considered to be rare and, thus, the number
of maintained faSets should also increase. However, this is
not always the case because of the random walks technique
employed to retrieve RFs. Note also that the number of
ε-CRFs is much smaller than the number of RFs, even for
values of ε as low as 0.5. For comparison, we also report the
number of 2-faSets (Table 1(b)with id attributes excluded)
that could alternatively be used for estimating frequencies,
as discussed in Sec. 3, which is considerably large for the
real databases. Finally, in terms of execution time, the main
overhead was induced by the stage of generating RFs which
can take up many minutes, while all other stages require a
couple of seconds for all datasets (see [9] for details).

Estimation Accuracy: Next, we evaluate the accuracy
of estimating the support of rare faSets using the support
of the stored ε-CRFs. For this, we employ our synthetic
datasets and probe our statistics to retrieve estimations for

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
0

50

100

150

200

Query

In
te

re
st

in
gn

es
s

Baseline − 1st score
Baseline − 20th score
TPA − 1st score
TPA − 20th score

(a) ZIPF

q1 q2 q3 q4 q5
0

10

20

30

40

50

60

70

80

Query

In
te

re
st

in
gn

es
s

Baseline − 1st score
Baseline − 20th score
TPA − 1st score
TPA − 20th score

(b) AUTOS
Figure 3: Baseline vs. TPA.

the frequency of 10 rare faSets for each possible size. We
observed that, even though we do not maintain the com-
plete set of ε-CRFs, because of our random walks approach,
the estimation error remains low and below the theoretical
bound. For example, for ε = 0.9, and minsuppr = 10%, the
absolute error was 3.0 to 4.0 on average. The same holds for
the real datasets (see [9] for details).

We also experimented using IPF. This approach turned
out to be very inefficient for estimating the frequency of
rare faSets. This was mainly due to two reasons. Take for
example rare 3-faSets. When they consist of rare 2-faSets,
their estimated support was too small (most often equal to
zero) due to the maximum entropy principle that tends to
considers faSet co-occurrences independent. On the other
hand, when rare 3-faSets consist of frequent 2-faSets, their
support was over-estimated (often at a ten-fold order).

Top-k FaSet Discovery: We compare the baseline and the
Two-Phase (TPA) algorithms. For the synthetic datasets,
we generate random queries, while for the real databases
we use predefined queries selected so that their result sets
include various combinations of rare and frequent faSets.
Fig. 3 shows the 1st and 20th highest ranked interestingness
score retrieved. For TPA we set k = 20 and for the baseline
approach we start with a high minsuppf and gradually de-
crease it until we get at least 20 results. TPA retrieves more
interesting faSets, mainly due to the first phase where rare
faSets in Res(Q) are examined. For the reported results ε
was equal to 0.5. In general, the value of ε did not affect
the interestingness scores of the top-k results considerably.
In most cases TPA located k results during phase one and,
thus, phase two was not executed.

Exploring the two Real Databases: We experimented
with the exploration of the real databases. Due to space lim-
itations, we just present two of our observations about the
acquired results. For example, take a query in the AUTOS
database about car models with navigation systems which
is a query whose result set includes many rare faSets, all hav-
ing a high interestingness score, e.g., the car models “Land
Rover Discovery II HSE7” and “Mercedes-Benz G55 AMG”.
Expanding the query towards the “state” attribute reveals
interesting faSets not present in the original result, such as
the “Land Rover Range Rover”model in VA and the “Cadil-
lac” model in DE, suggesting that such combinations are
highly related with navigation systems but only in specific
states. As another example take the query in the MOVIES
database for the countries and genres of movies directed by
F.F. Coppola. FaSet {“Switzerland”, “Sci-Fi”} is retrieved
as the most interesting, since this is extremely rare in the
database, and it is very interesting that it was located by
the user query. Another highly ranked faSet for this query
is {“Romania”} (and its supersets).

5. RELATED WORK
In this paper, we have proposed a novel database explo-

ration model. A common exploration technique is faceted
search (e.g., [14, 11]), where query results are classified into
different multiple categories, or facets, and the user refines

1551

Table 1: Number of FaSets.

minsuppr # MRFs # RFs # CRFs
ε-CRFs

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

ZIPF

5% 186 2983 2283 2283 2177 1319 778 243
10% 145 3402 2639 2639 2505 1541 881 254
20% 54 3238 2547 2547 2443 1556 876 154

AUTOS

5% 2106 2960 2737 2715 2683 2617 2547 2446
10% 2014 2856 2606 2591 2561 2486 2437 2338
20% 1960 2654 2421 2398 2365 2278 2231 2126

MOVIES

5% 11533 11809 11787 11787 11783 11757 11730 11630
10% 11537 11820 11803 11803 11798 11768 11734 11621
20% 11538 11826 11802 11802 11799 11776 11750 11643

(a)

1-faSets # 2-faSets

ZIPF

25 250

AUTOS

17664 851954

MOVIES

67094 561223

(b)

these results by selecting one or more facet condition. Our
approach is different in that we do not tackle refinement,
instead, our goal is to discover other interesting results re-
lated to the results of the original query. There is also some
relation to query reformulation, where a query is relaxed or
restricted when its results are too few or too many respec-
tively, using term rewriting or query expansion to increase
recall and precision (e.g., [15]). Again, our aim is locating
interesting results that are highly related to the results of the
original query. Besides restricting the query, another com-
mon method of addressing the too-many answers problem is
ranking its results and presenting only the top-k ones to the
user. This line of research is extensive; the work most re-
lated to ours is research on automatically ranking the results
[7, 3]. Besides addressing a different problem, our approach
is also different in that the granularity of ranking is at the
level of faSets as opposed to whole result tuples. We also
propose a novel method for frequency estimation. In terms
of the interestingness score, similar measures have been used
in the literature, such as unexpectedness [21] and χ2 [5].

Yet another method of exploring results relies on why
queries that consider the presence of unexpected tuples in
the result and why not queries that consider the absence of
expected tuples in the result. For example, ConQueR [19]
proposes posing follow-up queries for why not by relaxing the
original query. In our approach, we find interesting faSets in
the result based on their frequency and other faSets highly
correlated with them. Another line of research considers
how to “output” a query whose execution will yield results
equivalent to a given result set [20, 16]. Our work differs in
that we do not aim at constructing queries to match given
result sets but rather guiding the users towards novel results.

Finally, in some respect, exploration queries may be seen
as recommendations. In a previous position paper [17], we
have discussed various approaches for making recommen-
dations in relational databases. Extending database queries
with recommendations has been studied in two recent works,
namely [13] and [6]. In [13], a general framework and a re-
lated engine are proposed for the declarative specification
of the recommendation process. Recommendations in [6]
are based on the past behavior of similar users, whereas we
consider only the content of the database and the result.

6. CONCLUSIONS
In this paper, we introduced ReDRIVE, a novel database

exploration framework for recommnding to users items which
may be of interest to them although not part of the results of
their original query. The computation of such additional re-
sults is based on identifying the most interesting sets of (at-
tribute, value) pairs, or faSets, that appear in the result of
the original user query. The computation of interestingness
is based on the frequency of the faSet in the query result and
in the database instance. We also proposed a frequency es-
timation method based on storing an ε-CRF representation

and a two-phase algorithm for computing the top-k faSets.
There are many directions for future work, such as, extend-
ing our work to more general types of facet conditions and
considering that a history of previous database queries and
results exists.

7. REFERENCES
[1] The Internet Movie Database. http://www.imdb.com.
[2] Yahoo!Auto. http://autos.yahoo.com.
[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.

Automated ranking of database query results. In CIDR,
2003.

[4] Y. M. Bishop, S. E. Fienberg, and P. W. Holland. Discrete
Multivariate Analysis: Theory and Practice. Springer, 2007.

[5] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: Generalizing association rules to correlations. In
SIGMOD, 1997.

[6] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[7] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for ranking of
database query results. ACM Trans. Database Syst., 31(3),
2006.

[8] J. Cheng, Y. Ke, and W. Ng. delta-tolerance closed
frequent itemsets. In ICDM, 2006.

[9] M. Drosou and E. Pitoura. ReDRIVE: Result-driven
database exploration through recommendations, TR
2011-10. Computer Science Dept., Univ. of Ioannina, 2011.

[10] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharm. Discovering all most specific
sentences. ACM Trans. Database Syst., 28(2), 2003.

[11] A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor:
cost-driven exploration of faceted query results. In CIKM,
2010.

[12] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, 2006.

[13] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs:
expressing and combining flexible recommendations. In
SIGMOD, 2009.

[14] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. K.
Mohania. Minimum-effort driven dynamic faceted search in
structured databases. In CIKM, 2008.

[15] N. Sarkas, N. Bansal, G. Das, and N. Koudas.
Measure-driven keyword-query expansion. PVLDB, 2(1),
2009.

[16] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom. Synthesizing view definitions from data. In
ICDT, 2010.

[17] K. Stefanidis, M. Drosou, and E. Pitoura. “You May Also
Like” results in relational databases. In PersDB, 2009.

[18] L. Szathmary, A. Napoli, and P. Valtchev. Towards rare
itemset mining. In ICTAI (1), 2007.

[19] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD, 2010.

[20] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query by
output. In SIGMOD, 2009.

[21] K. Wang, Y. Jiang, and L. V. S. Lakshmanan. Mining
unexpected rules by pushing user dynamics. In KDD, 2003.

1552

