
Object Orientation in Multidatabase Systems

EVAGGELIA PITOURA, OMRAN BUKHRES, AND AHMED ELMAGARMID

Purdue University, West Lafayette, Indiana 47907-1398 (pitoura@cs.purdue. edu)

A multidatabase system (MDBS) is a confederation of preexisting distributed,

heterogeneous, and autonomous database systems. There has been a recent proliferation

of research suggesting the application of object-oriented techniques to facilitate the

complex task of designing and implementing MDBSS. Although this approach seems

promising, the lack of a general framework impedes any further development. The goal

of this paper is to provide a concrete analysis and categorization of the various ways in

which object orientation has affected the task of designing and implementing MDBSS.

We identify three dimensions in which the object-oriented paradigm has influenced

this task: the general system architecture, the schema architecture, and the

heterogeneous transaction management. Then we provide a classification and a

comprehensive analysis of the issues related to each of the above dimensions. To

demonstrate the applicability of this analysis, we conclude with a comparative review

of existing multidatabase systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:

Distributed Systems—distributed applications, dlstrkbuted databases; D.1.5

[Programming Techniques]: Object-oriented Programming; H.2.1 [Database

Management]: Logic Design—data models, schema and subschema; H.2.3 [Database

Management]: Languages-query languages; H.2.4 [Database Management]:

Systems—distributed systems, query processing, transaction processing; H.2.5

[Database Management]: Heterogeneous Databases—data translation, program

translation

General Terms: Design, Languages, Management, Standardization

Additional Key Words and Phrases: Distributed objects, federated databases,

integration, multidatabases, views

1. INTRODUCTION

The computing environment in most con-
temporary organizations contains dis-
tributed, heterogeneous, and autonomous
hardware and software systems. There is
an increasing need for technology to sup-
port cooperation of the services this soft-
ware and hardware provides. The
requirement for building systems that
combine heterogeneous resources and
services can be met at the low level of
interconnectiuity or at the higher level of

interoperability [Manola et al. 1992; So-
ley 1992]. Interconnectivity simply sup-
ports system communication, while inter-
operability additionally allows systems to
cooperate in the joint execution of tasks.

In this paper we focus on the special
case in which the goal is to use and
combine information and services pro-
vided by database systems. A multi-
database system (MDBS) [Elmagarmid
and Pu 1990] is a confederation of pre-
existing, autonomous, and possibly het-
erogeneous, database systems. The pre-

termission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee prowded that copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and notice is given that copying M by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
@ 1995 ACM 0360. 0300/95/0600-0141 $03.50

ACM Computing Surveys, Vol. 27, No 2, June 1995

142 ● E. Pitoura et al.

CONTENTS

1 INTRODUCTION

11 Research Dmections m Object-Oriented

Multldatabase Systems

12 Preference Programmmg-Based Object

Model

13 Organlzatlon ofthls Paper

2. OBJECT-BASED ARCHITECTURES FOR

DISTRIBUTED HETEROGENEOUS SYSTEMS

21 MDBSsm Object-B ased Architectures

22 Standardization Efforts mObJect-Based

Architectures

3 MDBSSWITHAN OBJECT-ORIENTED

COMMON DATA MODEL

3.1 ObJect-Orlented Data Models Used as CDMs

32 Multldatabase Languages

33 Schema Translation

3.4 Schema Integration

35 Advantages of Adopting an ObJect-Oriented

CDM

4 OBJECT-ORIENTATION AND TRANSACTION

MANAGEMENT

41 Trends mTransactlon Management

42 ObJect-Orlented Transaction Management

43 Transaction Management mMultldatabases

44 Bringing the Two Concepts Together

5 CASE STUDIES

51 Pegasus

52 ViewSystem

53 01S

54 CIS

5.5 The EIS/XAIT Project

56 DOMS

57 UniSQL/M

5,8 Carnot

59 Thor

510 The InterBase Project

511 The FIB ProJect

5 12 Conclusions

6 SUMMARY

existin~ database svstems that partici-

pate in-the confederation are call~d local
or component database systems. The
high-level architecture of a multi-

database system is depicted in Figure 1.
The “global” layer provides access to the
underlying local systems. The complexity
of this layer varies from allowing direct
access to each local system to providing
sophisticated seamless access with con-
trol flow facilities.

Creating a MDBS is complicated by
the heterogeneity and autonomy of its
component systems. Heterogeneity mani-
fests itself through differences at the op-
erating, database, hardware, or commu-
nication level of the component systems
[Sheth and Larson 1990]. Here we con-
centrate on the types of heterogeneities
caused by differences at the database
system level, including discrepancies
among data models and query languages
and variability in system-level support
for concurrency, commitment, and recov-
ery. Building multidatabase systems is
further complicated by the fact that the
component databases are autonomous,
have been independently designed, and
operate under local control.

Recently, many researchers have sug-
gested using object-oriented techniques
to facilitate building multidatabase sys-
tems. Object-oriented techniques, which
originated in the area of programming
languages, have been widely applied in
all areas of computer science including
software design, database technology, ar-
tificial intelligence, and distributed sys-
tems. Although using them in building
multidatabases seems promising, the lack
of a common methodology impedes any
further development.

This survey analyzes the various ways
in which object-oriented techniques have
influenced the design and operation of
multidatabases. Our goal is to classify
the approaches proposed and provide a
comprehensive analysis of the issues in-
volved. Although this survey is self-con-
tained, a familiarity with basic database
concepts (e.g., database textbooks such as
Ozu and Valduriez [1991]) and with the
basic m-inciples of object orientation (e.g.,
the sirvey paper by Wegner [1987]) will

facilitate understanding the issues in-
volved.

1.1 Research Directions in Object-Oriented

Multidatabase Systems

In this section we classify the ways in
which object technology has influenced
the design and implementation of multi-
database systems. First, the application

ACM Computmg Surveys, Vol. 27, No 2, June 1995

Object Orientation ● 143

Multidatabase System

! !!
, ,
!

I
Global Layer, ,

! ,
I k

I acorn”””:’ ‘emO’kQ I

, I

1 ,

____ ---------------------------------- ----------------------- _-

Figure 1. The high-level architecture of a multidatabase system.

of object-oriented concepts in system ar-
chitectures provided a natural model for
heterogeneous, autonomous, and dis-
tributed systems. According tothis archi-
tectural model, called Distributed Object
Architecture, the resources of the various
systems are modeled as objects, while the
services provided are modeled as the
methods ofthese objects. Methods consti-
tute the interface of the objects. In the
special case in which the systems are
database systems, the resources are the
information stored in the database and
the facilities provided are efficient meth-
ods of retrieving and updating this
information.

Second, object technology has been
used in multidatabase systems at a finer
level of granularity. The information
stored in a database is structured accord-
ing to a data model. When a component
database participates in a multidatabase
system, its data model is mapped to a
data model that is the same for all par-
ticipating systems, the Common (or
Canonical) Data Model (CDM). Several
researchers have recently advocated the
use of an object-oriented data model as
the CDM. The objects of the database
model are of a finer granularity than the
distributed objects: at one extreme, an

entire component database may be mod-
eled as a single distributed complex ob-
ject [Li and McLeod 1991].

In a multidatabase system, multiple
users simultaneously access various com-
ponent systems. Heterogeneous transac-
tion management deals with maintaining
the consistency of each component
system individually and of the multi-
database system as a whole. Object tech-
nology has also influenced a number of
aspects of heterogeneous transaction
management. It offers an efficient method
of modeling and implementation, facili-
tates the use of semantic information,
and has independently introduced the
notion of local transaction management.

Summarizing, we can identify the fol-
lowing three dimensions in which the ob-
ject-oriented paradigm has influenced the
design and implementation of multi-
database systems:

(1) system architectures have been influ-
enced by the introduction of dis-
tributed object-based architectures;

(2) schema architectures have been in.
fluenced by the use of an object-ori-
ented common data model; and

(3) transaction management has been
influenced by the application of tech-

ACM Computing Surveys, Vol 27, No 2, June 1995

144 “ E. Pitoura et al.

niques from object-oriented transac-
tion management.

The above dimensions are orthogonal in
the sense that systems may sup~ort ob-
ject-orientation on one dimension but not
necessarily on others. For example, a
database system having a relational com-
mon data model can participate in a
distributed-object architecture by being
considered a (large) distributed object.
Analogously, database systems with ob-
ject-oriented common data models can
participate in nonobject-based system ar-
chitectures. Moreover, systems that do
not support objects can use object-ori-
ented techniques in developing their
transaction management schemes. In the
following sections, the relationships
among the above dimensions will be fur-
ther clarified.

Although all the above combinations
are viable, a fully object-oriented multi-
database should support the same object
model at all dimensions to avoid confu-
sions, incompatibilities, or errors and
repetitions in implementation. However,
different requirements are placed on each
one of these dimensions, resulting in data
models that emphasize different fea-
tures. Thus, different object-oriented data
models have been introduced for the
architecture. schema. and transaction
management level. At the level of system
architectures, models tend to be pro-
gramming-based and focus on such is-
sues as efficient ways of implementing
remote procedure calls and naming
schemas. At the level of schema architec-
tures, models tend to be database-ori-
ented, support persistency and database
functionality, and have extended view-
definition facilities. Finally, at the trans-
action-management level, models usually
support active objects appropriate for
modelirw transactions and their interac-
tion. Inv addition, at the transaction-
management level, different approaches
utilize different features of the object
model in the pursuit of efficiency. In this
paper we first provide a reference pro-
gramming-based model and then high-
light variations of this model appropriate
for each of the above dimensions.

1.2 A Reference Programming-Based Object

Model

Object orientation [Wegner 1987] is an
abstraction mechanism in which the
world is modeled as a collection of inde-
pendent objects that communicate with
each other by exchanging messages. An
object is characterized by its state and
behavior and has a unique identifier as-
signed to it upon its creation. The state of
an object is defined as the set of values of
instance variables. The value of an in-
stance variable is also an object, The be-
havior of an object is modeled by the set
of operations or methods that are appli-
cable to it. Methods are invoked by send-
ing messages to the appropriate object.
The state of an object can be accessed
only through messages; thus, the imple-
mentation of an object is hidden from
other objects.

Each object is an instance of a class, A
class is a template (cookie-cutter) from
which objects may be created. All objects
of a class have the same kind of instance
variables, share common operations, and
therefore demonstrate uniform behavior,
Classes are also objects. The instance
variables of a class are called class vari-
ables and the methods of a class are
called class methods. Class variables rep-
resent properties common to all in-
stances of the class. A typical class
method is new, which creates an in-
stance of the class.

Classes are organized in a class hierar-
chy. When a class B is defined as a
subclass of a class A, class B inherits all

the methods and variables of A. A is
called a superclass of 13. Class B may
include additional methods and vari-
ables. Furthermore, class B may redei%e

(overwrite) any method inherited from A
to suit its own needs. Inheritance from a
single superclass is called single inheri-
tance; inheritance from multiple super-
classes is called multiple inheritance.
Some systems also consider classes to be
instances of classes called metaclasses.
Metaclasses define the structure and be-

havior of their instance classes. The
metaclass concept is a very powerful one,
since it provides systems with the ability

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 145

to redefine or refine their class
mechanism.

The relations typically supported by
the object-oriented model are: the classi-
fication or instance-of relation between
an object and the class (typically one) of
which it is an instance, the generaliza-
tion/specialization or is-a relation be-
tween a class and its superclasses, and
the aggregation relation between an ob-
ject and its instance variables. We
discuss briefly below some design alter-
natives of the basic model.

Delegation versus Inheritance. Inheri-
tance is a mechanism for incremental
sharing and definition in class hierar-
chies. An alternative mechanism, inde-
pendent of the concept of class, is delega-
tion. Delegation [Stein 1987; Lieberman
1986; Wegner 1987] is a mechanism that
allows objects to delegate responsibility
for performing an operation to one or
more designated ancestors. A key feature
is that when an object delegates an oper-
ation to one of its ancestors, the opera-
tion is performed in the environment

(scope) of the ancestor.

Method Resolution. Since a class may
provide a different implementation for an
inherited method, methods are over-
loaded in object-oriented systems. The se-
lection of the appropriate method is called
method resolution. With single inheri-
tance (where the class hierarchy is a
tree), when a message is sent to an object
of a class A the most specific method is
used; that is the method defined in the
nearest ancestor class of A. This resolu-
tion method is also applied in the case of
multiple inheritance, although the prob-
lem there is complicated by the fact that
the same method may be defined in more
than one of A’s superclasses. In such an
instance, there is no default resolution

Subtyping versus Subclassing. Sub-
typing rules are rules that determine
which objects are acceptable in a specific
context. Every object of a subtype can be
used in any context where an object of
any of its supertypes could be used. Al-
though some systems relate subtyping
and subclassing, subtyping should be
based on the behavior of objects in order
to increase flexibility [Snyder 1986]. If
instances of type A meet the external
specification of class B, A should then be
a subtype of B, irrespective of whether A
is a subclass of B. Conformance [Blair et
al. 1989; Raj et al. 1991] is a mechanism
for implicitly deriving subtyping rela-
tions based on behavioral specifications.

1.3 Organization of This Paper

The remainder of this paper is organized
as follows. In Section 2, we discuss the
first direction, namely distributed
object-based architectures. Since the fo-
cus of this paper is on the integration of
database systems, the influence of the
architecture on multidatabase systems is
stressed. Thus, this section does not ex-
haust this very important research area

(for a review on this topic, see for exam-
ple Nicol et al. [1993]). The following two
sections discuss the other two directions
in detail. In Section 3, we describe how
the object-oriented model has been
adapted to serve as the data model of the
multidatabase and its role in facilitating
the tasks of schema translation and inte-
gration. In Section 4, we discuss the
impact of object-oriented transaction
management in multidatabases. Finally,
Section 5 is a comparative review of ex-
isting multidatabase systems that adopt
object-oriented techniques in one or more
of the above directions.

method for specifying which of the multi-
ply-defined methods A should inherit.

2. OBJECT-BASED ARCHITECTURES

Some systems support multimethods,
FOR DISTRIBUTED

which are methods that involve. as ara-
HETEROGENEOUS SYSTEMS

ments, more than one object and in wh~ch A popular way [Manola et al. 1992; Nicol
the classes of all the arguments are con- et al. 1993] of modeling a distributed

sidered in selecting the appropriate heterogeneous system is as a distributed
method during resolution [Dayal 1989; collection of interacting objects that rep-
Heiler and Zdonik 1990]. resent the distributed system resources.

ACM Computing Surveys, Vol 27, No 2, June 1995

146 * E. Pitoura et al.

Each component system defines an inter-
face of services and provides an imple-
mentation for these services. A client
interacts with the heterogeneous system
by issuing requests expressed in a com-
mon language. Distributed object man-
agers are responsible for translating the
client’s requests in terms of the available
services, for directing these requests to
the appropriate systems, and for provid-
ing the response expressed in the same
common language,

The use of objects to model distributed
components accommodates both the het-
erogeneity and the autonomy require-
ments. The modeling of distributed
resources as objects supports heterogene-
ity because the messages sent to a dis-
tributed component depend only on its
interface and not on the internal imple-
mentation of the method or the com-
ponent. This approach also respects
autonomy because the components may
operate independently and transpar-
ently, provided that their interfaces re-
main unchanged. The ultimate goal of
distributed object-based architectures is
the construction of a heterogeneous sys-
tem in which all system resources may
be treated as a commonly accessible col-
lection of objects that can be recombined
in arbitrary ways to provide new infor-
mation accessing capabilities.

2.1 MDBSS in Object-Based Architectures

Object-based architectures offer means of
integrating applications across technol-
ogy domains, including the domains of
GUIS, file systems, database systems, and
programming languages. MDBSS focus on
issues within the database system do-
main, As a consequence, an object model
for a heterogeneous system that includes
components that are database systems
should be a specialization of the object
model of the general object-based system
architecture that will support database
functionality such as persistence, query-
ing, transactions, and concurrent
sharing.

In the special case where an object-ori-
ented component database system partic-

ipates in a heterogeneous system with an
object-based architecture, there are two
types of objects, the local objects sup-
ported by the component database and
the distributed objects of the heteroge-
neous system. The component object-ori-
ented database system supports millions
of fine-g-rained objects. Providing clients
of the heterogeneous system with direct
access to these objects may involve sig-
nificant overhead or may violate the
autonomy or security of the database.
Instead, the heterogeneous system may
provide access to a containing object,
which in the extreme case may be the
whole database. Then, the containing ob-
ject can handle the requests. In this case,
the local, fine-grained objects are hidden
from the client of the heterogeneous sys-
tem. In other words, the distributed ob-
jects of the heterogeneous system may
not correspond directly to the local ob-
jects of the component database system.

Finally, research in architectures for
distributed systems has concentrated on
interconnectivity issues and has not yet
addressed interoperability aspects. Thus,
most research on integrating information
resources is expressed in terms of
database integration of the schemas of
the component databases.

2.2 Standardization Efforts

in Object-Based Architectures

The impact of object-orientation in the
architecture of heterogeneous distributed
systems is also evident in the fact that
most standardization efforts in this di-
rection are based on the object model. In
the following, we describe the prevailing
such approach, namely the OMG, and
report briefly on some others. In the long
run, future compliance of a database sys-
tem with the standards will ease the task
of building multidatabase systems. In the
short run, new multidatabase systems
should take into consideration such stan-
dards in defining their interfaces. Stan-
dardization efforts towards defining a
standard object model are also being
made in the database community. We
discuss two of these efforts, SQL3 and

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 147

Client Object Implementation

I Request
ORB I

(a)

r—————if—————m

Object Request Broker

I Object Services I

Figure z. (a) A request being sent through the object request broke~ (b) object manager architecture.

ODMG, in Section 3.1.1, since they are
pertinent to database modeling. These
efforts define the standard services that
should be provided by each component
database system and in this regard are
extensions of the object models defined
for distributed object-based systems.

Object Management Group. The Ob-
ject Management Group (OMG) [Soley
1992] is developing a suite of standards
addressing the integration of distributed
applications through object technology.
The architecture proposed by OMG, the
Object Management Architecture (OMA),
is depicted in Figure 2. In the OMA
model, every piece of software is repre-
sented as an object. Objects communicate
with other objects via the Object Request
Broker (ORB), which is the key commu-
nication element. ORB provides the
mechanisms by which objects transpar-
ently make requests and receive re-
sponses. Figure 2a shows a request being
sent by a client to an object implementa-

tion: The client is the entity that wishes
to perform an operation on an object and
the object implementation is the code and
data that actually implement the object.

The OMG categorizes objects into three
broad categories: Application Objects,

Object Services, and Common Facilities
(Figure 2b). Application Facilities is a
placeholder for objects that belong to the
specific applications that are being inte-
grated. The Common Facilities comprise
general facilities useful in many applica-
tions that will be made available through
OMA-compliant interfaces. The Object
Services provide the main functions for
implementing basic object functionality
using the ORB, e.g., the logical modeling
and the physical storage of objects. The
proposed standard for the ORB, CORBA
(Common Object Request Broker Archi-
tecture) [OMG 1991] supports a general
Interface Definition Language (IDL) that
may be mapped to any implementation
language. ORB provides for location
transparency and permits the integra-

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

148 ● E. Pitoura et al.

tion of applications via wrappers to im-
plement CORBA-compliant behavior.

All objects are expressed in a common
Object Model [OMG 1992]. In this model,
subtyping is based not on subclassing
(Section 1.2) but rather on the behavior
of objects. Inheritance is defined between
interfaces. An interface is a description of
a set of possible operations that a client
may request of an object. An interface
type is the type that is satisfied by any
object that complies with a particular in-
terface. An interface can be derived from
another interface, which is then called a
base interface of the derived interface. A
derived interface inherits all elements

(variables and methods) of the base in-
terface and may redefine them or define
new elements.

Other Efforts. In addition to the OMG
standardization efforts, 1S0 and CC!ITT
are also working on a joint standardiza-
tion effort known as Open Distributed
Processing (ODP) [Taylor 1992]. ODP’S
goal is the development of a reference
model to integrate a wide range of future
ODP standards for distributed systems.
The support of object-orientation in com-
mercial systems and in standardization
efforts for heterogeneous processing is
examined in Nicol et al. [1993]. Support
in commercial systems for heterogeneous
processing includes OSF’S DCE (a set of
tools and services to support distributed
applications) and the BBNs Cronus sys-
tem (a system that provides operating
system and communication services). Fi-
nally, X3H7, a new ANSI/X3 technical
committee, has the mission of harmoniz-
ing the object-oriented aspects of stan-
dards developed by other committees
[Kent 1993].

3. MDBSS WITH AN OBJECT-ORIENTED

COMMON DATA MODEL

The traditional 3-level architecture
[Tsichritzis and Klug 1978] used to
describe the schema architecture of a
centralized database system has been ex-
panded [Devor et al. 1982] to describe the
architecture of a MDBS. In this 5-level

architecture (see Figure 3, adapted from
Sheth and Larson [1990]), the conceptual
schema of each com~onent database is.
called the local schema. The local schema
is exm-essed in the native data model of
the ~omponent database; thus, the local
schemas of different component
databases may be expressed in different
data models. To facilitate access to the
system, most approaches translate the
local schemas into a common data model,
called the canonical or common data
model (CDM). The schema derived by
this translation is called the component
schema. Each database participates in
the federation by exporting a part of its
component schema, called the export
schema. A federated or global schema is
created by the integration of multiple ex-
port schemas. Finally, for customization
or access control reasons, an external
schema is created to meet the needs of a
specific group of users or applications.

Different types of multidat abase sys-
tems are created bv different levels of
integration of the e~port schemas of the
component databases [Bright et al. 1992;
Sheth and Larson 19901. The nonfeder-
ated approach [Litwin et al. 1990] as-
sumes no integration of the export
schemas. An important component of a
nonfederated multidatabase svstem is the.
multidatabase language, that allows uni-
form access to all component databases.
In contradistinction to the multidatabase
approach, the federated approach [Sheth
and Larson 1990] assumes the integra-
tion of the ex~ort schemas to create a
global schema: Federated database sys-
tems (FDBSS) can be further categorized
based on the distribution of integration.
Centralized FDBSS [Bertino 1991] sup-
port a single federated schema system-
wise. This federated schema is built by
the selective intimation of the ex~ort
schemas of the co-mponent sites. In’the
case of decentralized FDBSS [Czedjo and
Taylor 1991; Li and McLeod 1991] each
component site builds its own federated
schema by integrating its local schema
with the export schemas of some other
component sites. Decentralized FDBSS
are further characterized by the degree

ACM Computmg Surveys, Vol. 27, No 2, June 1995

Object Orientation e 149

-m [External Schema
Any Data Model

1

\ / I

Federated (Global) Schema Federated (Global) Schema
Common Data Model Common Data Model

\

Export Schema Export Schema

1

Export Schema

Common Data Model Common Data Model Common Data Model

\ /\ / I
. / T

-

Component Schema
Common Data Model

1.- ---------- ,
f \ (

! Component I
! pre-existing ~

database system’1-------------- -----1

.--------k ----------!

~@ziEzzJt Component I
, pre-existing ;

database system {I--------------

Figure 3. The 5-level schema architecture.

of consistency that they maintain among
the different federated schemas.

The translation of local schemas into
the CDM is essential to both the feder-
ated and nonfederated approaches. The
CDM should be both rich enough [Salter
et al. 1991; 13atini et al. 1986] to capture
the semantics expressed or implicit in
the local schemas and simple enough to
facilitate the creation of the federated
schema in the federated approach and
the multidatabase queries in the nonfed-
erated approach. Most systems [Bright et
al. 1992; Thomas et al. 1990; Schaller
1993] use a relational data model as the
CDM. Recently, many systems [Bukhres
et al. 1992] have been introduced that
use an object-oriented data model as their
CDM. In this section, we attempt to eval-
uate the rationale behind this approach
and discuss its effectiveness.

Introduction to Integration. Schema
translation alleviates the problems that
occur due to the use of different data
models. If there were no relations among
the concepts represented in each compo-
nent schema, then the federated schema
would simply be the union of the compo-

nent schemas. Unfortunately, the same
concepts may be represented in different
databases and furthermore, due to het-
er(+ymeity, these concepts may be repre-
sented differently.

Type of Conflicts. The following is a
general classification of the possible con-
flicts between component schemas. This
classification is independent of the type
of the CDM used.

(1) Identitv conflicts occur when the same

(2)

concep~ is ‘represented by different
objects in different component

databases.

Schema conflicts occur when the com-
ponent schemas that represent the
same concept are not identical.

(a)

(b)

Naming conflicts occur when the
same name is used for different
concepts (homonyms) or when the
same concept is described by dif-
ferent names (synonyms).

Structural conflicts occur when
(i) the same concept is repre-

sented by different constructs
of the data model, or

(ii) although the same concept is

ACM Computing Surveys, Vol 27, No 2, June 1995

150 “ E. Pitoura et al.

modeled by the same con-
structs, the constructs used
have either different structure
(missing or different rela-
tions/dependencies) or differ-
ent behavior (different or
missing operations).

(3) Semantic conjZicts occur when the
same concept is interpreted differ-
ently in different component
databases. This category includes
scale or rate differences.

(4) Data confZicts occur when the data
values of the same concept are differ-
ent at different component databases.

Similar taxonomies are presented in
Batini et al. [1986]; Dayal and Hwang
[1984]; Kim and Seo [1991]; Kim et al.

[1993]. In Batini et al. [1986], two types
of conflicts are described: naming and
structural conflicts. These largely corre-
spond to the naming and structural con-
flicts as defined above except from the
key structural conflict which, in our tax-
onomy, is considered a special case of the
identity problem. In Dayal and Hwang
[1984], a taxonomy is proposed of con-
flicts that might occur when all compo-
nent schemas are expressed in an ex-
tended functional model with three basic
constructs, functions, objects, and types.
This taxonomy differentiates between
schema and data conflicts. Our definition
of schema conflicts is an extension of this
formulation with the exception of scale
differences, that we classify as semantic
rather than as schematic differences. The
classification presented in Kim and Seo
[1991] is similar to Dayal and Hwang
[1984], but is tailored for the case of
relational schemas. Kim et al. [1993] pro-
vides a comprehensive taxonomy of con-
flicts which arise when the common data
model is a relational-object model, called
SQL,/M.

Table l(a) summarizes the different
types of conflicts along with some exam-
ples in the case of an object-oriented
CDM.

Interschema Relations. In order to
perform integration, it is crucial to iden-
tify not only the set of common concepts

ACM Computmg Surveys, Vol. 27, No 2, June 1995

but also the set of different concepts in
different schemas that are mutually re-
lated by some semantic properties. These
properties are called interschema proper-
ties [Batini et al. 1986]. They are seman-
tic relationships which hold between a
set of objects in one schema and a differ-
ent set of objects in another schema. For
reasons of completeness, these relations
should be represented in the federated
schema. Interschema relations that arise
when the common data model is a rela-
tional model have been extensively stud-
ied (e.g., Larson et al. [1989]) and are
most commonly expressed in terms of the
inclusion relationships among the do-
mains of the related entities. To the best
of our knowledge, there has been no com-
prehensive study of the different inter-
schema relations that can exist when an
object-oriented common data model is
used. The problem is complicated by the
fact that object-oriented models express
semantic relations that are difficult to
capture by such simple relations as the
set-inclusion relation.

Table l(b) lists some types of inter-
schema relations that correspond directly
to the relations supported by the refer-
ence object-oriented model along with
some examples.

Organization of the Remainder of this
Section. The tasks of translation and
integration are strongly influenced by the
data model used to represent the compo-
nent schemas. In the remainder of this
section, we discuss how object-oriented
data models facilitate both tasks. The
basic object-oriented model as introduced
in Section 1.2 lacks some concepts neces-
sary to a common data model. In Section
3.1, we discuss how it can be augmented
to serve as a common data model. In
Section 3.2, under the general title multi-
database languages, we present some
issues related to the languages used. Is-
sues related to schema translation where
the target of the translation is an object-
oriented model are discussed in Section
3.3. In Section 3.4, we focus on issues
germane to the creation of the global
(federated) schema. Section 3.5 concludes
this section with an overview of some of

Object Orientation ●

Table 1. (a) Taxonomy of the possible conflicts; (b) rrterschema relatlons*

Type

Identity conflict

Schemaconflict

Semantic conflict

Naming

Structural

Data conflict

Definition Example

Sameconcept representedby
Copiesof same book

different objects in different local
stored in both CSLibary

databases
and MathLibrary with
different local identifiers

In MathLibrary “media”

Homonyms: Same name used refers to magazines and

for different concepts newspapers; in CSLlbrwy
to videotapes

Synonyms: Same concept
In MathLibrary “references”

described by different names
is used; in CSLlbrary
“bibliography” is used.

Same concept represented by In CSLibmry number of
different constructs of the model, of citations is an instance
(i.e., by a method in one database variable of the book; in
and a class in the other) or MathLlbrarv it is a method

Same concept re resented by
recomputed-upon invocation

tsame construct, ut classes
have different methods, or Book has an instance variable

methods have different “keywords” in one library

parameters or return values but not in the other

Same concept interpreted Conference is a refereed
differently in different databases conference in one not in

the other

Data values of the same Same book appears to
entity are different in different have different authors
comDonent databases

E
Type

Aggregation

Specialization

Generalization

Arbitrary

(a)

Example

Edited book in one
library has as parts articles
stored in the other

Article of a specific
mathematical journal is a
special case of a journal

Books in the Math and CS
libraries are all books

Some books and articles of
interest to a particular
scientific area

151

(b)

*We consider two local database schemas, one that describes the library of the Corn~uter Science Dept.
(CSLibrary) and the other, the library of the Dept. of Mathematics (MathLibrary). ‘

the advantages of using an object-ori- to multidatabase systems. Various re-
ented common data model. search approaches have resulted in dif-

ferent extensions of the basic data model.

3.1 Object-Oriented Data Models Used
We first describe efforts in ODMG and

as CDMS
ANSI SQL3 in terms of defining a stan-
dard object-oriented data model. Then,

The object-oriented model as defined in we describe extensions of the model that
Section- 1.2 lacks some concepts pertinent facilitate integration and translation.

ACM Computmg Surveys, Vol 27, No. 2, June 1995

152 ● E. Pitoura et al.

Since there is no standard object-ori-
ented data model, in this section we dis-
cuss the most prevailing of the proposed
extensions.

3.1.1 Standardization Efforts in Ob -
ject-Oriented Database Models. SQL3 is

a new database language standard devel-
oped by both ANSI X3H2 and 1S0 DBL
committees targeted for completion in
1997 [Krishna 1993; Krishna 1994]. SQL3
is upwards compatible with SQL-92, the
current ANSI/ISO database language
standard [Gallagher 1992]. The major ex-
tension is the addition of an extensible
object-oriented type system based on Ab-
stract Data Types (ADTs). However,
SQL3 still maintains the restriction that
tables are the only persistent structures
[Krishna 1993]. ADT definitions include
a set of attributes and routines. Using
the terminology of our reference model,
ADTs correspond to classes, attributes to
instance variables and routines to meth-
ods. Routines can either be implemented
using SQL3 procedural extensions or us-
ing code written in external languages.
ADTs are related by subtype relation-
ships, where an ADT can be a subtype of
multiple supertypes. Resolution of over-
loaded routines is based on all argu-
ments in a routine invocation.

The Object Database Management
Group (ODMG) is a consortium of
object-oriented vendors that have devel-
oped a standard interface for their prod-
ucts called ODMG-93 [Cattell 1993]. The
ODMG members are also members of
OMG task forces, and OMG has adopted
the ODMG-93 interface as part of the
Persistence Service, which is one of
OMGS Object Services. Unlike SQL3,
ODMG choose not to extend SQL but
rather to extend existing programming
languages to support persistent data and
database functionality. ODMG combines
SQL syntax with the OMG object model
extensions to allow declarative queries,

3.1.2 Extensions for Object-Oriented
Common Data Models. In this section
we discuss a number of proposed exten-
sions of the reference object model for
providing database interoperability.

Types and Classes. A class, as defined
in the reference model, is a template for
creating objects with a specific behavior
and structure. A class is not directly re-
lated to the real objects whose structure
and behavior it models. In a database
system we need a language construct to
model a set of objects. In this section we
discuss how this construct should be de-
fined and related to the notion of a class,
so that integration and translation are
facilitated.

To express sets of objects and queries
on these objects, a new concept, called
the extent [Banerjee et al. 1987; Bertino
1991] of a class, is defined as the set of
all objects that belong-to the class. The
extent of a class defines how a class is
populated. To differentiate between the
extent of a class and the class itself, many
researchers [Gagliardi 1990] term these
aspects the intentional and the exten-
sional parts of a class, respectively.

We have informally defined the extent
of a class as the set of objects that belong
to the class. A natural way to define the

“belong-to a class” relation is as the set
of all objects that are instances of that
class. This approach proves to be restric-
tive. For example, assume a simple li-
brary database where the books in each
department’s library are modeled as a
class; for instance two such classes could
be CSLibrary _ Book and MathLibrary _
Book. All these classes are subclasses of
the class UnivLibrary_Book, which has
no instances. To find a book, a user must
name all existing libraries, though the
intuitive way to accomplish that is to
designate the extent of UnivLibrary _
Book as the target of his query. This
leads us to the following definition of the
belong-to relation: an object “belongs-to a

class” if it is an instance of that class or
of any of its subclasses. This is also called
the member-of relation [Bertino 1991;
Papazoglou and Marines 1990]. Under
this definition, the extent of the class
UnivLibrary _ Book is the union of the
extent of all its subclasses and one can
express the above request as a query
with the extent of UnivLibrary _ Book as
its target, This is a valid definition since

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation 0 153

an instance of a subclass has at least the
behavior of its superclass.

The implication of the above definition
is to impose a hierarchy of the extents
that parallels the hierarchy of their
classes. If a class A is a subclass of a
class B then the extent of class A is a
subset of the extent of class B. We should
stress that the class hierarchy is of a
semantic nature, whereas the extent hi-
erarchy is an inclusion hierarchy be-
tween sets of objects. We should also
mention that, although the definition of a
class remains the same, the extent of a
class changes with time as new instances
are created or deleted.

Many researchers go beyond that and
fully differentiate the structure of objects
from the real objects having that struc-
ture [Scholl et al. 1992; Scholl and Schek
1990; Geller et al. 1991; Geller et al.
1992]. In this case, types are defined as
templates and classes as sets of typed
objects. Inheritance of structure and be-
havior is supported in the subtype hier-
archy, whereas the subclass hierarchy, if
such exists, is based on set-inclusion re-
lations. A class may have an associated
type that defines the structure and be-
havior of its members. An object may
belong to more than one class and to
more than one type (or, more precisely,
to more than one type extent). Further-
more, a class may contain objects belong-
ing to different types but related by some
common property.

It is very diflicult to evaluate which is
the best choice for a canonical model.
Each of the proposed models is accompa-
nied by a related methodology that re-
solves some types of conflicts and ex-
presses some interschema relations. In
general, the distinction between sets and
types adds flexibility to the model. Inte-
gration may then be supported at two
different levels, at a type (structural)
level and at a class (set-based) level. At a
structural level, global types abstract
commonalities in the structure and be-
havior of the component types. At a set-
based level, objects (or parts of objects)
belonging to more than one component
class are brought together in some global

class. On the other hand, this distinc-
tion complicates the maintenance of rela-
tions among classes, among types, and
between classes and their associated
types.

Finally, we should mention that all the
above are not necessarily different mod-
els, but can be implemented as exten-
sions of the basic object model using the
metaclass mechanism. For example,

classes representing sets of objects, may
be considered a special kind of class (e.g.,

collective classes). For example, ORION
[Banerjee et al. 1987] offers an elegant
implementation of the concept of class
extent.

Schema Evolution Operations. Many
systems [Banerjee et al. 1987; Li and
McLeod 1991; Czedjo and Taylor 1991]
support schema evolution operations,
that is, operations for dynamically defin-
ing and modifying the database schema,
e.g., the class definitions and the inheri-
tance structure. These operations play an
important role in restructuring the
schema resulting from the merging of
component schemas.

Semantic Extensions. Many object-

oriented models used as CDM are ex-
tended to support additional relations
which can capture the semantics of the
local schemas and their interrelation-
ships. These extensions can be imple-
mented using the metaclass mechanism
of the basic model. The relations added
are either specializations of existing rela-
tions or correspond to relations explicitly
supported by other kinds of data models
(e.g., relational). One typical example of
the latter case is the part-of relation.
The basic object-oriented data model is
sufficient to represent a collection (ag-
gregation) of related objects by allowing
an object to have other objects as its
instance variables. However, it fails to
represent the notion of dependency be-
tween objects, since an object does not
own the value of its instance variables
but simply keeps references to them.
Many database models add the notion of
dependency by defining a composite ob-
ject [Papazoglou and Marines 1990;

ACM Computing Surveys, vol. 27, NO 2, June 1995

154 ‘ E. Pitoura et al.

Banerjee et al. 1987; Gagliardi 1990] as
an object with a hierarchy of exclusive
component objects. These component ob-
jects are dependent objects, in that their
existence depends upon the existence of
the composite object that they are part-of.

State and Behavior. Most object-ori-
ented data models used as CDMS do not
distinguish between the state and the
behavior of an object but use the same
construct, usually called function, to

model both instance variables and meth-
ods. An instance variable is modeled bv a
pair of set and get functions [Ungar &d
Smith 1987], where set assigns a value
to the variable and get returns its value.
This approach leads To a model with fewer
constructs and thus minimizes the num-
ber of possible structural conflicts. More
importantly, it offers increased flexibility
to the integrator by permitting the state
of an object to be redefined in the global
schema. For example, take an object of a
class named employee. Let us say that an
employees’s salary is represented in dol-
lars in one component database, in
drachmas in another, and in marks in
the global database. Then, if salary is
rem-esented as a function. we can define
an appropriate function’ in the global
schema that performs the necessary
transformations based on the dailv rate.
of exchange between these monetary
units. In contrast, if salary is repre-
sented as an instance variable, there is
no straightforward way to solve the above
conflict. Alternatively, schema evolution
operators may be applied to the compo-
nent database schemas prior to their in-
tegration, to restructure them appropri-
ately.

Upwards Inheritance. The reference
model suffers from an asymmetry. While
a subclass constructor is provided and
inheritance from a superclass is defined.
there is no superclas& constructor. Sug~
gested extensions provide such a con-
struct and also define inheritance from a
subclass to a superclass, called general-
ization or upwards inheritance [Pedersen
1989; Schrefl and Neuhold 1988]. Resolu-
tion problems related to upwards inheri-

tance are discussed later in this section
(Section 3.4.2).

3.2 Multidatabase Languages

There are two fundamental approaches
to the design of object-oriented database
languages [Kim 1990]. The first extends
a query language (usually SQL) to sup-
port the manipulation of object-oriented
databases and then embeds the extended
query language in the application lan-
guage. We call this type of languages
query-based. The second approach ex-
tends an object-oriented programming
language to support database opera-
tions. In this case, the application and
query languages are the same and no
impedance problem exists [Pitoura 1995].
We call this type of languages program-
ming-based. For the purposes of this
paper, we further characterize query lan-
guages as (1) language-oriented when
they allow operations (messages) to be
sent to single objects or as (2) set-
oriented when they permit queries to
sets (or collections) of objects other than
class extents.

In a multidatabase system, a Data Def-
inition Language (DDL) is used to define
the global schema while a Data Manipu-
lation Language (DML) is used to manip-
ulate data. Most object-oriented systems
use the same language for both purposes.
The language is extended [Krishna-
murthy et al. 1991] (a) to support queries
(or methods) that access data stored in
different component databases and (b) to
allow the definition of the dobal schema
by integrating the compo~ent schemas.
The definition of the global schema is
usually accomplished by using the view-
definition facilities of the language. Those
facilities are described in Section 3.4.1.
When a global schema is not provided,
uniform access to the com~onent schemas
is accomplished only’ through the
language.

Furthermore, object-oriented lan-
guages defined for multidatabases have
additional constructs to support the ex-
tensions of the data model described in
the previous section. These may include

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 155

declarations for defining types and
classes. Some languages [Ahmed et al.
1991] also provide constructs for defining
the mapping between local and compo-
nent schemas.

Finally, some multidatabase systems
allow the user to specify the flow of con-
trol of his interactions with the database
system at a finer level of detail. This
specification is expressed using an ex-
tended transaction model (see Section 4).
Some systems extend their DML or DDL
with constructs for defining and using
extended transaction models [Chen 1993].
Others offer a special language for defin-
ing transaction models [Woelk et al.
1992].

3.3 Schema Translation

Schema translation is performed when a
schema (schema A) represented in one
data model is mapped to an equivalent
schema (schema B) represented in a dif-
ferent data model. This task generates
the mappings that correlate the schema
constructs in one schema (schema B) to
the schema constructs in another schema
(schema A). The task of command trans-
formation [Sheth and Larson 1990] en-
tails using these mappings to translate
commands involving the schema con-
structs of one schema (schema B) into
commands involving the schema con-
structs of the other schema (schema A).
In the multidatabase context, schema
translation occurs (see Figure 3):

e when translating from the local model
to the common data model, and

. when translating from the federated
(global) model to the external model.

When the target schema B is ex-
pressed in an object-oriented data model,
roughly speaking, relations are mapped
to classes and tuples to objects. The in-
clusion relationship between two rela-
tions in schema A may be used to
determine the semantic (e.g., subclass-
ing) relationships between the corre-
sponding classes in schema B [Castel-
lanos and Salter 1991].

In addition, during translation, seman-

tic information is collected and repre-
sented in the common data model. This
process is called semantic enrichment
[Castellanos and Salter 1991] or semczn-
tic refinement [Mannino et al. 1988].

Some multidatabase languages (such
as HOSL [Ahmed et al. 1991]) provide
constructs that support procedural map-
pings of schemas expressed in other mod-
els to their object-oriented model.

Bertino et al. [1988] introduces a new
approach to schema translation; called
the Operational Mapping Approach. In-
stead of defining the correspondence be-
tween the data elements of the schemata
A and B (Structural Mapping Approach),
the correspondence is defined between
operations of the different schemata. A
number of basic operations of the schema
B (called abstract operations) are defined
in terms of a number of primitive opera-
tions of the schema A. All other opera-
tions of B are implemented using these
abstract operations, possibly automati-
cally by the integration system. The
primitive operations provided by A must
be an appropriate minimal set so that
the corresponding abstract operations
provide the necessary functionality. The
use of an object-oriented CDM facilitates
schema translation by operational map-
ping. The operational mapping approach
is based on the same principle as the
object-based architectures, that is, each
component system provides a specific in-
terface consisting of a set of primitive
operations.

3.4 Schema Integration

Schema integration is defined as the ac-
tivity of integrating the schemas of exist-
ing or proposed databases into a global,
unified schema [Batini et al. 1986]. In
the case of FDBSS, schema integration
occurs in two contexts (see Figure 3):

(1) when integrating the export schemas
of (usually existing) component sys-
tems into a single federated schema;
and

(2) during database design, as view inte-

gration of the multiple user views of

ACM Computmg Surveys, Vol 27, No 2, June 1995

156 ● E. Pitoura et al.

a proposed federated database
(federated schema) into a singleton-
ceptual description of this database

(external schema).

In many applications there is a need to
integrate nontraditional component
databases that do not support schemas.
It is necessary to generalize the concept
of schema integration to include the inte-
gration of such systems. Object-oriented
data models can be very useful, since
they permit the definition of the concep-
tual schemas of nondatabase systems in
terms of the operations they support, thus
completely hiding the structure of their
data.

Batini et al. [1986] identifies four main
steps in the process of integration: proin-
tegration, comparison of schemas, con-
forming of schemas, and merging and
reconstructing. Translation is considered
as part of the preintegration step. In gen-
eral, a data model to facilitate all steps of
the integration task should be semanti-
cally rich; it should provide mechanisms
for expressing not only the semantics ex-
pressed at the local databases but also
additional semantics relevant to schema
integration (schema enrichment). Fur-
thermore, it should ideally be capable of
expressing the semantics of any new lo-
cal database that might be added to the
system in possible future expansions.
From this perspective, object-oriented
models are especially appropriate.

During the comparison step, the com-
ponent schemas are compared to detect
conflicts in their representation and to
identify the interschema relations. The
comparison of the schema objects is pri-
marily based on their semantics, not on
their syntax. The CDM should be seman-
tically rich to facilitate comparison and
should also support abstraction mecha-
nisms to permit comparisons to be made
at a higher level of abstraction. The ob-
jective of the conformation step is to bring
the component schemas into compatibil-
ity for later integration. Comparison and
conforming activities are usually per-
formed in layers. These layers corre-
spond to the different semantic
constructs supported by the model, The

fewer the basic constructs supported by
the model the fewer the conflicts and the
easier the conformation activity. For this
reason, object-oriented mod~ls which
support a single construct (function) for
both instance variables and methods are
preferable. When only functions are sup-
ported, comparison and conformation are
~erformed first for classes (structural
~onformation) and then for functions (be-
havioral conformation [Bertino 1991]).

The search for identifying relations or
possible conflicts may be guided by the
class hierarchy. Instead of comparing all
classes in a random manner, classes may
be compared following the class hierar-
chy in a top-down fashion [Garcia-Solaco
et al. 1993].

As in the translation ~hase. relations
between different classes’must be identi-
fied. The difference is that now these
classes may belong to different databases.
Subclassing relations may be specified
based on inclusion relations between the
extents of the corresponding classes
(Mannino et al. 19881. Assertions mav be
used to express these relations. The as-
sertions should be checked for consis-
tency and completeness [Mannino et al.
1988]. The identification of relations be-
tween classes can also be made by com-
paring the definitions of classes [Savasere
et al. 1991] rather than their actual
extensions.

Most systems use view definition facili-
ties for defining the global schema, dur-
ing the last step of integration. The
creation of the global view is usually per-
formed in two phases. In the first phase,
the classes of the component schema are
imported or connected, that is, they are
mapped to corresponding global classes.
In the second phase, classes are com-
bined based on their interschema rela-
tions. View definition facilities are de-
scribed in the following section.

3.4.1 Object-Oriented Views. A view is
a way of de f~ning a virtual database on
top of one or more existing databases.
Views are not stored, but are recomputed
for each query that refers to them. The
definition of a view is dependent upon
the data model and the facilities of the

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 157

language used to specify the view. In a
relational model, a view is defined as a
set of relations, each populated by a query
over the relations of the existing
databases and sometimes over already-
defined view relations. There are as many
different approaches to defining an
object-oriented view as there are object-
oriented data models. In general, an ob-
ject-oriented view is defined as a set of
virtual classes that are populated by ex-
isting objects or by imaginary objects
constructed from existing objects. The set
of virtual classes defines a schema and
the objects that populate them define a

(virtual) database described by the
schema [Heiler and Zdonik 1990]. Once a
virtual class is created, it should be
treated like any other class. The classes
used in the definition of a virtual class
are called base classes.

The reference object-oriented model,
though rich in facilities for structuring
new objects, lacks some necessary mech-
anisms for grouping already-existing ob-
jects. Classes are defined as templates
for creating new objects and no mecha-
nism for grouping existing objects is sup-
ported. The most common view facilities
added to object-oriented systems are:

(i)

(ii)

facilities for importing classes from
the local databases into the view.
Virtual classes created in this man-
ner correspond directly to existing
classes; and

facilities for defining new classes,
called derived classes, that do not
directly correspond to an existing
class.

Importation. A view can incorporate
data from other databases via import
statements. Once a class is imported, its
definition and instances become visible
to the user of the view. Part of the im-
ported data can be hidden either by ex-
plicit hide commands [Abiteboul and
Bonner 1991] or by specifying in the im-
port command only the visible functions
[Dayal and Hwang 1984]. Import mecha-
nisms differ in whether the importation
of a class results in an implicit importa-
tion of all its subclasses.

Other types of importation statements
import in a single statement classes or
entire hierarchies belonging to more than
one component database. In essence,
these statements combine the importa-
tion phase with the class derivation
phase. The virtual class may be defined
either as the supertype of the top super-
classes of each component database
[Scholl et al. 1992] or by combining these
top classes based on their interschema
relation [Mannino et al. 1988]. During
importation of this sort, basic types, such
as integers and strings, can be implicitly
unified [Scholl et al. 1992].

Other approaches distinguish between
the importation of behavior (functions)
and the importation of objects [Fang et
al. 1992]. By doing so, local functions
may be executed on imported objects and
imported functions may be executed on
local objects.

Derived Classes. The definition of a
virtual class includes the specification of
the following three components: (1) the
initial members of the class (class exten-
sion); (2) the structure and behavior, that
is, the functions of the virtual class (class
intention); and (3) the relation between

the new class and the other virtual
classes.

As we have already pointed out, some
systems provide both classes and types.
In such systems, a virtual class may have
no intensional part. Furthermore, the re-
lations between the derived class and the
base classes in such systems, are purely
set-oriented (for example, relations such
as union, difference, etc.). Finally, in such
systems, the relation between the associ-
ated types of the derived class and its
base classes must also be specified.

Different methodologies provide differ-
ent language constructs for specifying the
above three components of a virtual class.
Most of these constructs define one com-
ponent directly and leave the other two
to be derived by the system. There are
three general methodologies:

(1) The language provides a variety of
class constructors that correspond to
the relations between classes sup-

ACM Computmg Surveys, Vol 27, No 2, June 1995

158 ● E. Pitouraet al.

ported by the model. These construc-
tors are applied to existing base
classes to create new derived classes
that have the corresponding relation
with the base classes [Dayal and
Ifwang 1984; Metro 1987; Kaul et al.
1991; Mannino et al. 1988; and Sheth
et al. 1993]. This methodology in ef-
fect defines explicitly the third com-
ponent of a virtual class and then
implies the other two, namely its
population and intention. The most
common such constructors are the
generalization or superclass con-
structor and the specialization or
subclass constructor.

A derived class defined as a sub-
class inherits all the functions of its
superclasses. In the subclass, func-
tions may be redefined and new func-
tions may be defined. There is no
standard definition of the extension
of the subclass. It is generally defined
as a subset of the extensions of the
superclasses. In Dayal and Hwang

[19841 and Metro [19871 (subclassing
is called join in this framework), the
extension is defined as the intersec-
tion of the extensions of the super-
classes.

A derived class defined as a super-
class inherits the common functions
of its subclasses (upwards inheri-
tance). Functions in a superclass may
be redefined. The extension of the su-
perclass is defined as the union of the
extensions of its subclasses.

(2) Derived classes are defined by speci-
f~ng their population. The popula-
tion of the derived class is defined as
the result of a query on existing base
classes. This is the most commonly
used approach [Bertino 1991; Manola
et al. 1992; Kim et al. 1993; Heiler
and Zdonik 1990; Abiteboul and Bon-
ner 1991]. The class intention and
the position in the hierarchy may or
may not be implied automatically by
the system. This methodology in-
cludes mechanisms for defining
classes populated by imaginary ob-
jects. Functions defined in a derived

class can typically use the functions
defined in the base classes.

A complete methodology for infer-
ring both the position of the derived
class and its intention, is presented
in Abiteboul and Bonner [1991]. A
class whose population is defined by
a selection predicate on some func-
tion of the base classes is considered
their subclass. A class whose popula-
tion includes the population of the
base classes is considered their su-
perclass. Abiteboul and Bonner [1991]
also introduce the notion of behav-
ioral and parametrized subclassing.
Behavioral subclassing allows a su-
perclass to include all classes that
have a specific property (function).
Parameterized subclassing allows the
partition of a superclass into sub-
classes based upon the value of one of
its functions. A mechanism similar to
parametric subclassing, called type
schemas, is presented in Chomicki
and Litwin [1992].

One important research issue
[Manola et al. 1992] concerning
classes defined by that way is the
definition of a query algebra with a
minimum number of operators for
creating arbitrary derived classes and

imaginary objects. This algebra
should also support efficient query
optimization.

(3) The structure (intention) of the de-
rived class is explicitly defined.

Combinations of the above methodologies
are also possible, especially in the form of
queries that involve class constructors.

When subclassing is used for subtyp-
ing purposes (see Section 1.2), some re-
strictions must be placed on the type of
arguments and on the type of the return
values of all functions defined in the vir-
tual class by inheritance. These restric-
tions should be such that every object of
a subclass could be used in any context
where an object of any of its superclasses
could be used. We call these restrictions
subtyping restrictions. Dayal and Hwang
[1984] define superfunctions as functions
that satisfy appropriate subtyping re-

ACM Computmg Surveys, Vol 27, No 2, June 1995

striations. In this framework, a virtual
class that is defined as superclass can
include only superfunctions of the func-
tions defined at its subclasses.

3.4.2 Issues in Integration. In the fol-
lowing, we discuss several subtle issues
concerning object-oriented integration.

Resolution Problems and Behavioral
Sharing. In an object-oriented system,
a method defined in a class may be rede-
fined in its subclasses, resulting in
method overloading. The default resolu-
tion method adopted by the object-ori-
ented systems states that, when a method
is applied to an object the most specific
method from those applicable to the ob-
ject is selected. The introduction of vir-
tual classes complicates the resolution
problem, when a virtual class A is de-
fined as a superclass of existing classes.
In that case, the default resolution
method always selects the most specific
method, i.e., one defined in one of A’s
subclasses, even when the user wants a
more general method defined in A to be
selected. The straightforward solution is
to allow the user to explicitly specify
which of the applicable functions should
be used [Abiteboul and Bonner 1991].
Schrefl and Neuhold [1988] introduce the
concept of object coloring; the color of an
object specifies the class from which the
search for a function should begin. If the
function is not defined in this class, it is
searched for in the appropriate sub-
classes. This method also identifies the
different semantic relations that may
hold between the subclasses being gener-
alized and their attributes. These rela-
tions are utilized to produce different de-
fault treatments of function resolution.

The above discussion refers to behav-
ioral sharing along the inheritance
hierarchy and specifies how the correct
function is chosen either implicitly by the
default resolution mechanism or explic-
itly by the user. An alternative method to
behavioral sharing is introduced in Heiler
and Zdonik [1990]. In this framework,
the functions of the virtual class may
invoke functions from the base classes,
but these functions will be applied not to

Object Orientation ● 159

the new objects but to the objects of the
appropriate base class. This corresponds
to using the delegation rather than the
inheritance method for sharing behavior

(see Section 1.2).

Assigning Identifiers to Imaginary Ob-
jects. Object-oriented systems associate
a unique identifier with each object upon
its creation. Accordingly, upon the cre-
ation of an imaginary object, an identi-
fier must be associated with it. An imagi-
nary object must be assigned the same
identifier at each invocation. Moreover, if
an imaginary object is defined as a com-
posite object (see Section 3.1.2) then its
identity should be modified when the real
objects, that constitute it, are updated.
The most common solution [Abiteboul
and Bonner 1991; Heiler and Zdonik
1990; Kifer et al. 1992] is to define the
identifier of the imaginary object as a
function of the identifiers of the real ob-
jects upon which the imaginary object
depends.

Resolving Conflicts and Expressing In-
terschema Relationships. The following
outlines the most common ways of resolv-
ing conflicts based upon the taxonomy
presented in the introduction of this sec-
tion:

0

e

●

Identity conflicts in object-oriented
data models are in general very diffi-
cult to resolve since the identity of an
object is not based upon the value of
some of its attributes but is character-
ized by an identifier (oid) assigned to
the object upon creation. Most systems
[Ahmed et al. 1991; Huhns 1992] allow
the user to specify which objects are
equivalent and should share the same
oid. Scholl et al. [1992] uses the meta-
class mechanism to define a function,
called the same-function, which is ap-
plicable to all objects and specifies ob-
ject equivalences. The user may appro-
priately define the same-function so
that equivalent objects are treated as
the same object.

Naming conflicts are handled by defin-
ing renaming operators.

Structural conflicts correspond to re-

ACM Computing Surveys, Vol 27, No. 2, June 1995

160 0 E. Pitouraet al.

e

structuring of the class hierarchy or to
modifications of the aggregate rela-
tions. There is no standard method of
resolving structural conflicts; examples
are presented in Ahmed et al. [1991];
Kim et al. [1993]; Dayal and Hwang
[1984]. Klas et al. [1995] proposes a
method of resolving structural conflicts
by applying graph operations, called
augmenting transformations. These
transformations are performed on the
graphs that represent the conflicting
component schemata so that these
graphs become isomorphic.

Semantic and data conflicts are re-
solved by defining an appropriate func-
tion in the virtual class [Dayal and
Hwang 1984; Ahmed et al. 1991; Kim
et al. 1993].

There is no systematic way of expressing
interschema relations in the global
schema. The most common relations ex-
pressed are those that correspond to se-
mantic relations directly supported by the
object-oriented model. The most common
such relations are the subclass, super-
class, and aggregation relations [Kaul et
al. 1991; Abiteboul and 130nner 1991].

3.5 Advantages of Adopting an
Object-Oriented CDM

We enumerate below some of the distinc-
tive characteristics of the object-oriented
data model that render it suitable to
serve as the CDM. The usefulness of these
characteristics has been demonstrated
throughout this section, and the follow-
ing listing serves as a final recapitula-
tion.

(1)

(2)

The object-oriented data model is se-
mantically rich, in that it provides a
variety of type and abstraction mech-
anisms. It supports a number of rela-
tions between its basic constructs
which are not expressed in tradi-
tional models.

The object-oriented data model ~er-
mits the behavior of objects to be cap-
tured through the concept of meth-
ods. Methods are very powerful be-

ACM Computmg Surveys, Vol 27, No 2, June 1995

(3)

(4)

(5)

cause they enable arbitrary combina-
tions of information stored in local
databases. For example, if books with
similar topics exist in different
databases, a method can be defined
in the global schema that eliminates
duplicates, sorts different editions,
translates titles to a common natural
language (e.g., English).

The object-oriented model makes it
possible to integrate nontraditional
databases through behavioral map-
ping.

Since the actual storage and retrieval
of data is supported by the underly-
ing local systems, there is no impor-
tant performance degradation of the
overhead of supporting objects in the
conceptual CDM.

Finally, the metaclass mechanism
adds flexibility to the model, since it
allows arbitrary refinements of the
model itself, e.g., additions of new re-
lationships.

4. OBJECT-ORIENTATION AND
TRANSACTION MANAGEMENT

This section discusses the impact of ob-
ject-orientation on transaction manage-
ment in multidatabase systems. In
Section 4.1, the current trends in trans-
action management are reviewed to pro-
vide a perspective on multidatabases and
object-oriented transaction management
methods. Section 4.2 relates object-ori-
ented approaches to the reviewed litera-
ture. Section 4.3 introduces the specific
challenges of transaction management in
multidatabases, many of which moti-
vated the new trends. In Section 4.4, the
object-oriented approach is applied to
transaction management in multi-
databases. In this section, we will use the
term method rather than function since
this is the term most commonly used in
the transaction management literature.
Also, the terms class and type will be
used interchangeably, since the subtle
differences between the two terms, al-
though central to database modeling, do
not affect transaction management
techniques.

4.1 Trends in Transaction Management

A database consists of a set of named
data items, while a database state is an
assignment of values to these data items
[Papadimitriou 1986]. Not all possible
combinations of values represent a legal
database state. For example, a state that
represents a negative balance in a bank
database or an overbooked flight in an
airline database is not a legal state. These
real-world restrictions are called in-
tegrity constraints of the database. A
database state that satisfies the integrity
constraints is a consistent state.

A transaction is an execution of a pro-
gram that consists of a sequence of oper-
ations that access and manipulate
database items. In the traditional model,
transactions consist of simple read and
write operations and have a single begin
and commit point. Individual transac-
tions maintain database consistency; that
is, if they are applied to a consistent
state, they result in a consistent state.
Transactions are executed concurrently
and their operations execute in an inter-
leaved fashion, potentially creating an
inconsistent database state. Further-
more, transactions may fail while execut-
ing. The objective of transaction manage-
ment is to ensure that the concurrent
execution of transactions leaves the
database in a consistent state, even in
the event of failures.

Classical transaction management
deals with executions rather than with
specifications of programs (as in concur-
rent program proofs). We call the execu-
tion of several transactions a history. A
history is correct if it leaves the database
in a consistent state. The approach taken
to prove the correctness of a history is
based on the observation that a serial
history (a history that corresponds to a
serial execution of transactions) is cor-
rect—by induction on the number of
transactions involved. That leads us to
the following correctness criterion: a his-
tory is correct if it is serializable; that is,
if it is equivalent to a serial history. Fail-
ures are accounted for by including in
the definition of serializability only com-

Object Orientation “ 161

mitted transactions, which are transac-
tions that have successfully completed
their operations. Thus, the definition of
correctness may be restated as follows: a
history is correct if its committed projec-
tion is serializable. In practice, a more
restrictive notion of serializability, called
conflict-serializability is used because
there is an efficient graph-based algo-
rithm for testing it. Two operations
conflict if the result of their execution
depends upon the order in which they
are processed. Two histories are conflict-
equivalent if they consist of the same
transactions and order conflicting opera-
tions of committed transactions in the
same way. Papadimitriou [1986] and
Bernstein et al. [1987] offer an excellent
treatment of the above issues.

Current research has called the above
assumptions regarding transaction cor-
rectness and database consistency into
question and new approaches to the
problem of maintaining consistent
databases are under development. We
identify the following directions in the
development of new transaction mecha-
nisms [Ramamritham and Chrysantis
1992; Buchmann et al. 1992; Barghouti
and Kaiser 1991; Elmagarmid 1992]:

New database consistency require-
ments. The requirement that database
correctness be preserved, which can be
alternatively characterized as the
preservation of integrity constraints,
has been relaxed in various ways
[Ramamritham and Chrysantis 1992].
For example, while consistency has
traditionally been defined with respect
to all items in the database, new ap-
proaches require consistency only for
parts of the database.

New transaction models. In the tradi-
tional model, transactions were
sequences of simple read and write op-
erations with a single begin and com-
mit point. New transaction models in-
troduce transactions with an extended
structure, that is, transactions that
consist of a number of subtransactions
related by model-specific relations.
Nested transactions [Weikum 1991;

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

162 * E. Pitouraet al.

Beeri et al. 1989] are an example of
this type. Additionally, new models
provide complex operations on complex
data items instead of read and write
operations on single-valued items. Fur-
thermore, to model the execution of
complex tasks at various heteroge-
neous systems workflows models have
been proposed. Workflows extend
transaction models by adding even
more elaborate structure to transac-
tions.

The above directions are by no means
orthogonal.

As a result of the above advances, new
correctness criteria for database consis-
tency and transaction correctness are un-
der development to provide alternatives
to serializability and to the atomicity,
consistency, isolation, and durability

(ACID) properties of transactions.

4.2 Object-Oriented Transaction
Management

Conventional database concurrency con-
trol can be used in object-oriented
database systems (ORION Kim [1990],
GemStone Bretl et al. [1989]). In this
case, each object is treated as a data item
and the methods as a set of read and
write operations on this data item. Lock-
ing algorithms can use objects as the
granularity of the lock, and hierarchical-
based locking algorithms can take advan-
tage of the class hierarchy. However,
many researchers have utilized the par-
ticular characteristics of object-oriented
systems to introduce new approaches to
transaction management. This section
discusses these approaches.

4.2.1 Modular Concurrency Control.
According to this approach, each object is
responsible for the correct execution of
the transactions applied to it [Hadjilacos
and Hadjilacos 1991; Weihl 1989;
Schwartz and Spector 1984], More than
one transaction is allowed to execute in
an object simultaneously and transac-
tions may be executed in more than one
object. The correct execution of the trans-
actions applied to an object is referred to

as in traobject synchronization [Hadjila-
cos and Hadjilacos 1991]. To ensure
global database consistency, in addition
to intraobject synchronization, there is a
need to control the correct execution of
transactions not only locally at each ob-
i ect but also aloballv over all involved. .
objects; this is referred to as interobject
synchronization [Hadjilacos and Hadjila-
cos 1991]. The advantage of separating
the intra- from the interobject synchro-
nization is that each object can individu-
ally select the most suitable definition of
correctness and al~orithm for its reser-
vation. The conc&rency proper~ies of
each object are defined according to the
semantics of its tvwe and o~erations.
These properties ca~ be specified in dif-
ferent ways, for example, in terms of ac-
ceptable histories by using state ma-
chines [Weihl 1989] or in terms of depen-
dencies between the methods of the type
[Schwartz and Spector 1984].

Most models employ serializability as
their correctness criterion. Each object
ensures the serializability of the transac-
tions submitted to it. Then, roughly
speaking, global serializability (serializa-
bility of all transactions executed at all
objects) is ensured if there is a serializa-
tion order compatible with the serializa-
tion order at each object.

Weihl [1989] identifies a property P,
called the local atomicity property, such
that if every object in the system satis-
fies P, then every history is globally seri-
alizable. In that case, there is no need for
interobj ect synchronization. Any local
atomicity property must be such that, in
satisfying the property, the objects agree
on at least one (dobal) serialization or-
der for the commi~ted transactions. Weihl
[1989] identifies three optimal local

properties such that no strictly weaker
local constraint on obiects suffices to en-.
sure global atomicity for transactions.
These three properties are dynamic
atomicity (a generalization of two-phase
locking), static atomicity (a generaliza-
tion of timestamp ordering) and hybrid
atomicity (a combination of the other
two). In cases of dynamic and hybrid
atomicity, global control may still be

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation o 163

needed to resolve deadlocks. Finally,
combining objects with different atomic-
ity properties does not guarantee global
serializability. Schwartz and Spector
[1984] identify groups of types called co-
operative types consisting of types whose
objects produce compatible serial histo-
ries. No interobject synchronization is
needed for objects belonging to coopera-
tive types.

4.2.2 Semantic Serializability and
Type-specific Operations. In an object-
oriented system, information is repre-
sented by typed objects that can be
accessed only through a number of pre-
define type-specific methods. Systems
typically exploit this property to enhance
concurrency [Skarra and Zdonik 1989]
by:

(1) Modifying the definition of history
equivalence. A history is equivalent
to another history when a difference
between their results cannot be de-
tected by data operations. Thus, two
histories are semantically indistin-
guishable, even though they may
leave objects in slightly different
states, as long as these differences
cannot be detected by operations.

(2) Permitting operations to be charac-
terized in finer detail than simply as
reads and writes. Most approaches
also consider arguments and results
as part of operations. This offers more
concurrency because it allows for
more precise definitions of conflicts.
The most common definitions of con-
flicts in the object-oriented database
context are: (1) Commutativity-based:
Under this definition, two operations
conflict if they do not commute. In
Badrinath and Ramamritham [1988]
commutativity for complex objects is
defined based on the structure of ob-
jects. Two operations on an object O
commute if they do not affect the
same component objects (e.g., in-
stance variables) of O. Weihl [1988]
defines commutativity as forward
commutativity and backward com -
mutativity. The definition is given in

terms of state automata that de-
scribe the acceptable sequence of op-
erations by each object, depending on
its type. Let S be a sequence of oper-
ations and s a state, then let S(s)
stand for the state reached after ap-
plying S on s. Two sequences of op-
erations S and T commute forward
if, for every state s of the object in
which T and S are both acceptable,
T(S(S)) = S(T(S)) and S(T(S)) is an
acceptable state; and commute back-
ward if T(S(S)) = S(7’(s)). The defi-
nition of commutativity chosen for
the conflict relation determines the
recovery algorithm used, An inten-
tion list algorithm is used with a
conflict relation based on forward
commutativity, while an undo log
algorithm is used with backward
commutativity. (2) Dependency-
based: Under this definition, two op-
erations conflict if one depends on
the other. A binary relation R on
operations is a dependency relation
[Herlihy and Weihl 1991] if for all
sequences of operations T and S and
all operations p, such that S and p
are acceptable after 7’ and no opera-
tion q in S depends on p (e.g., (p, q)

@ R), it should be acceptable to do S
after p. An example of a dependency
relation is the invalidated-by rela-
tion [Herlihy and Weihl 1991], where
operation p invalidates operation q
if there are sequences of operations T
and S such that T o p o S and
T o S o q are acceptable but T o p 0 q
is not (o is the concatenation opera-
tion).

Most algorithms used for ensuring
concurrency are locking schemas
where nonconflicting operations are
assigned locks with compatible
modes.

The above description does not clearly
specify which are the primitive opera-
tions of a transaction. Traditionally, the
primitive operations are read and write
operations, but object-oriented transac-
tion management techniques differ on
how they define them. A primitive opera-

ACM Computmg Surveys, Vol. 27. No 2, June 1995

164 “ E. Pitoura et al.

tion must be implemented atomically by
the system (for example using mecha-
nisms as semaphores or monitors). Some
researchers [Weihl 1989; Skarra and
Zdonik 1989] define methods as the
primitive operations implying that meth-
ods are performed atomically by the sys-
tem. This is not a realistic assumption,
es~eciallv when methods invoke methods.
in other objects, which is necessary when
complex objects (objects that have other
objects as instances) are supported. In
addition it provides less concurrency than
the concurrency provided by approaches
[Hadjilacos and Hadjilacos 1991] that de-
fine methods as transactions of low-level
primitive operations.

4.2.3 Nested Transactions. There is
an implicit nesting in object-oriented
transactions imposed by the way meth-
ods are invoked. Methods may invoke
other methods leading to a nested trans-
action structure. The objective is to allow
methods to exhibit internal parallelism
by exploiting their semantics. A variation
of nesting is introduced in Skarra [1991]
and Skarra and Zdonik [1989] as a con-
ceptual framework for modeling design
applications. Here nesting is not the re-
sult of the invocation order of methods
but is based on the application require-
ments. A design task is modeled as a
nested structure of transactions, where
the root is an atomic transaction and the
nodes are either atomic transactions or
Transaction Groups (TG). The members
of a TG are called cooperating transac-
tions. While atomic transactions are
consistent, members of a cooperative
transaction may or may not be individu-
ally consistent. Synchronization is modu-
lar and is controlled at two levels by TGs
and by objects. Objects synchronize
atomic transactions. TGs produce consis-
tent histories of their members, where
consistency is defined in terms of seman-
tic patterns. A pattern is a sequence of
operations that represent semantic ac-
tions, and it preserves consistency within
or among objects. A history of cooperat-
ing transactions is consistent if it satis-
fies the semantics patterns that apply to
the group.

4.3 Transaction Management
in Multiclatabases

Transaction management in a multi-
database system is performed at two lev-
els, at a local level by the preexist-
ing transaction managers of the local
databases (LTMs) and at a global level
by a global transaction manager (GTM)
superimposed on them. There are two
types of transactions, local and global
transactions. Local transactions access
data managed by a single local database
system and are submitted to the appro-
priate LTM outside the control of the
GTM. Global transactions may access
data in more than one local database
system, and are submitted to the GTM,
where they are parsed into a number of
global subtransactions each of which ac-
cess data in a single local database. These
subtransactions are then submitted for
execution to the appropriate LTM. Global
subtransactions are viewed by an LTM
as ordinary local transactions. The GTM
retains no control over the execution of
global subtransactions after their sub-
mission to the LTMs and can make no
assumptions about the LTMs.

4.3.1 Multi database Consistency
Criteria. In a multidatabase, a local
history includes all local and global sub-
transactions executed at a local site, and

a global history includes all local and
global transactions. The most commonly
used criterion for ensuring consistency is
based on conflict-serializability. The goal
is to ensure global serializability, that is
serializability of global histories, under
the assumption that all local histories
are serializable. In general, to ensure
global serializability it suffices to ensure
that there is a serialization order for the
global transactions that is consistent with
all local serialization orders. Ensuring
global serializability is difficult because
the GTM has no knowledge or control
over the serialization order of local histo-
ries. Local transactions can be the cause
of indirect conflicts between global trans-
actions that do not conflict directly.

One practical solution to the problem
of maintaining global serializability was

ACM Computmg Surveys, Vol 27, No, 2, June 1995

Object Orientation ● 165

proposed in Georgakopoulos et al. [1991]
and is based on the concept of a ticket. A
ticket is a special data item stored at
each local database. Each global transac-
tion before starting executing at any site,
must read the ticket at this site, incre-
ment it, and write back the incremented
value. These operations force direct con-
flicts between all subtransactions at the
site, and thus the ticket value read by a
subtransaction indicates its serialization
order at this site and can be used by the
GTM to ensure global serializability.
Zhang and Elmagarmid [1993] discusses
the properties that global transactions
must have such that their serialization
order at each local site can be deter-
mined without using any knowledge
about the local transaction management.
These properties are realized by enforc-
ing additional conflicts between global
transactions.

Both of the above approaches require
the enforcement of conflicting operations
among global subtransactions at each lo-
cal site. However, enforcing conflicts may
result in poor performance if most global
transactions would not naturally conflict.
Relaxing global serializability is thus a
significant issue for concurrency control
in multidatabases. Alternative defini-
tions of consistency criteria that are less
restrictive than global serializability have
been introduced. Examples include two-
level [Blair et al. 1992], quasi- [Du and
Elmagarmid 1992] and view-based
[Zhang and Pitoura 1993] serializability.

Many researchers have studied differ-
ent properties of local histories and how
they affect global serializability [Blair et
al. 1992]. One interesting such property
of histories is rigorousness [Breitbart et
al. 199 1]. Rigorous histories disallow con-
flicts between uncommitted transactions.
The commitment order of the transac-
tions in a rigorous history determines
their relative serialization order, thus the
GTM can ensure global serializability by
ensuring that the order of commitment of
transactions at all local databases is
compatible.

4.3.2 Atomicity and Failures. Even a
greater challenge than satisfying global

serializability is maintaining the atomic-
ity of a global transaction in the presence
of failures; that is, ensuring that either
all its subtransactions commit or they all
abort. It is proven that there is no algo-
rithm that can ensure atomic global
transactions in the absence of a prepare-
to-commit state [Mullen et al. 1992]. Two
techniques are used for handling
nonatomic commitment. The first tech-
nique attempts to ensure atomicity of a
global transaction by trying to commit its
aborted subtransactions. To do so, either
an aborted subtransaction is resubmitted
for execution as a new subtransaction of
the original transaction (retry approach)
or only the write operations of the aborted
transaction are resubmitted (redo ap-
proach). The second technique attempts
to undo the results of a committed sub-
transaction by executing a compensating
transaction at the corresponding local site
that undoes from a semantic point of
view the effects of the subtransaction
[Breitbart et al. 1992].

4.3.3 Extended Transaction Models.
The traditional transaction concept is
very difficult to maintain in a multi-
database system. As we have already
pointed out, it is very hard to ensure
global serializability. Moreover, due to
local autonomy, a local database is enti-
tled to delay or even reject a global trans-
action. Thus global transactions tend to
be long-lived and error-prone and the
traditional transaction model seems in-
adequate to model them efficiently.
Moreover, global transactions often model
complex tasks with arbitrary dependen-
cies among their subcomponents. Many
researchers have proposed extended
transaction models and flow-of-control
structures that take into account the
above considerations [Elmagarmid et al.
1990; Georgakopoulos et al. 19931.

4.4 Bringing the Two Concepts Together

Although research in object-oriented
transaction management and research in
multidatabase transaction management
are being performed in parallel, it seems
that they both lead to what we call lay-

ACM Computing Surveys, Vol 27, No 2. June 1995

166 “ E. Pitoura et al.

ered transaction management. Layered
transaction mana~ement is introduced in
Section 4.4.1, w~ere the common con-
cepts between object-oriented and multi-
database transaction management are
discussed. In Section 4.4.2 we describe
how ideas pertinent to object-oriented
transaction management can be adapted
for multidatabase transaction mana~e-
ment. Since this is a new research direc-
tion, the following sections are only a
first attempt to address the issues
involved.

4.4.1 Layered Transaction Manage-
ment. Traditional transaction manage-
ment coped with the problem of main-
taining consistency in a single database.
Research in transaction mana~ement in
multidatabase systems and research in
transaction management in object-ori-
ented database systems have indepen-
dently introduced the notion of layered
databases, where each object (local
database) is a single database responsi-
ble for its own consistence. and where
transactions span more th~n one single
database. The structure of these systems
has led to layered transaction manage-
ment; local or intraobject transaction
management; and global or interobject
transaction management.

The traditional treatment of layered
transaction management is based on the
sole assumption that each local database
accepts correct histories, e.g., histories
that maintain local consistency. Then,

mo~erties of histories or local transac-
~io~ managers are identified such that
global consistency is maintained. Re-
search to identify properties of local his-
tories sufficient for maintaining global
consistency is being pursued in both the
multidatabase and the object-oriented
database communities [Breitbart et al.
1991; Weihl 1989].

4.4.2 Adapting Object-Oriented Tech-
niques. In this section we discuss the
effect of object-orientation on multi-
database transaction management. We
identify two important impacts. The first
is the use of object-oriented techniques to
implement extended transaction models.

The second is the use of semantic infor-
mation. In the following, we elaborate on
them.

One application of object-orientation in
multidatabase systems is the use of ob-
ject-oriented techniques to implement ex-
tended transaction models. ‘Under this
implement ation, transactions are mod-
eled as objects and their interactions as
the methods of these objects [Heiler et al.
1992; Buchmann et al. 1992]. Flat trans-
actions (transactions with a single begin
and commit point) correspond to simple
objects and extended transactions corre-
spond to complex objects. Implementing
transactions as objects requires neither
an object-oriented common data model
nor an object-based architecture.

In particular, most systems that sup-

port extended transactions model their
~ransactions as active objects [Buchmann
et al. 1992; Manola et al. 1992]. Active
objects [Buchmann et al, 1992; Dayal et
al. 1988] are defined as objects capable of
responding to events by triggering the
execution of actions when certain condi-
tions are satisfied. An event-condition-
action (E CA) rule specifies the events
that are to be monitored, the conditions
that must be fulfilled. and the actions
that are to be executed. Transactions in-
volving active objects are intrinsically
nested, since events may be detected
while a transaction is being executed in
that object, and thus the corresponding
rule is s~awned as a nested transaction.

Resea~ch in object-oriented transaction
management has advanced the use of se-
mantic information in transaction man-
agement (see Section 4.2.2). Principles
and techniques from this area may be
used to produce more efficient transac-
tion management in multidatabase sys-
tems that support an object-oriented
common data model. Since each database
object comes with a specific set of meth-
ods, semantic serializability can be
employed as the correctness criterion.
Moreover, type-specific operations may be
utilized to provide more appropriate defi-
nitions of the conflict relation.

In the special case where the opera-
tional mapping approach is used in

ACM Computmg Surveys, Vol. 27. No 2, June 1995

Object Orientation w 167

translation, each object in a local system
provides a number of predefine primi-
tive operations. In that case, the inter-
face of a local system is a set of methods
[Klas et al. 1995] rather than read and
write operations as in traditional multi-
database transaction management. These
methods are assumed to always ensure
local consistency constraints if executed
in a (locally) serializable way.

As regards the maintenance of atomic-
ity by employing the undo approach,
multidatabase systems with an object-
oriented common data model allow com-
pensating actions to be defined at the
method level. Since each class has only a
specified set of methods, it is easy to
define a compensation method for each
one of them.

Finally, semantic information can be
used during query processing to produce
subtransactions with known interdepen-
dencies based on the way the target class
is defined. For example, to support paral-
lelization within a transaction, if a query
has as its target a superclass whose ex-
tension is defined as the disjoint union of
the extensions of two subclasses in com-
ponent databases, the extensions of the
two subclasses can be computed concur-
rently. This approach of combining query
processing and transaction management,
though promising, has not yet been fully
explored.

5. CASE STUDIES

We conclude this review with a compre-
hensive study of existing object-oriented
multidatabase projects. The projects pre-
sented in this section serve as a means to
demonstrate how the issues analyzed in
the previous sections are being handled
in practice. Their inclusion does not, by
any means, imply that there are no other
systems at least as important as those
presented here. The previous analysis
applies to other systems as well.

Pegasus provides an interesting,
though not yet well-formalized, approach
to integration and a practical treatment
of query optimization. The ViewSystem
provides a comprehensive and consistent

approach to performing integration by
using constructors. OIS(CIS) serve as
representatives of the operational map-
ping approach. EIS/XAIT proposes an
object algebra for performing integration
by queries and also an application-
specific transaction management model.
DOMS is the only system whose architec-
ture corresponds directly to the object-
based architecture and the proposed
standards. In addition, DOMS supports
“customized transaction management.
UniSQL/M provides a detailed classifi-
cation of conflicts and a number of con-
flict resolution techniques. Carnot offers
a knowledge-based approach to integra-
tion. Although Thor is not a multi-
database system, it is included in this
section to show how sharing of informa-
tion from nonpreexisting systems raises
new research issues. FBASE offers an
example of the use of class hierarchies in
integration, while Interbase* provides a
complete transaction specification lan-
guage for its extended transaction model.
Finally, FIB introduces the notion of
classification, which is based on the
structural properties of its proposed data
model, and can lead to the automation of
the integration process.

The presentation of the systems is
structured as follows. The “System Archi-
tecture” section describes the structure of
the system. The CDM is described in the
section titled “Common Data Model.” In
the “Translation and Integration”
section, we describe the processes of
translation and integration following the
analysis in Section 3. In the “Query Pro-
cessing” section we describe issues rele-
vant to the execution of global queries.
Transaction management is studied in
the “Transaction Management” section.
Finally, the section entitled “Important
Features” emphasizes the main charac-
teristics of the system reviewed.

5.1 Pegasus

Pegasus [Ahmed et al. 1991; Ahmed et al.
1991(a); Ahmed et al. 1993] is a multi-
database system being developed by the
Database Technology Department at

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

168 “ E. Pitoura et al.

Information Mmmg Intelligent Information ,

Browsers
Access

------------------------------ -----

===:----,

.. .

Parser Cooperative Infomnation

I Management

Executwe

Query
Processor

: Schema Manager
Global Interpreter

Object Manager I
.- --

Storage Services : Local Translator : TransactIon :

Mapper : Manager :

.
I

----- ----

I I

Communication Services !

I

Pegasus Agent ~

I

Local DBMS ~

Local :
Data Access ;

Figure 4. Pegasus system architecture.

Hewlett-Packard Laboratories. Pegasus
provides access to native and external
autonomous databases. A native
database is created in Pegasus and both
its schema and data are managed by Pe-
gasus. External databases are accessible
through Pegasus, but are not directly
controlled by it.

System Architecture. The functional
layers provided by Pegasus, shown in
Figure 4, are adapted from Ahmed et al.
[1991(a)]:

.

*

m

The intelligent information access layer
provides such services as information
mining, browsers, schema exploration
and natural language interfaces.

The cooperative information manage-
ment layer deals with schema integra-
tion, global query processing, local
query translation, and transaction
management.

The local data access layer manages
schema and command translation, lo-

ACM Computmg Surveys, Vol 27, No 2, June 1995

cal system invocation, network commu-
nications, data conversion and routing.

Common Data Model. The model,
based on the Iris object-oriented model,
consists of three basic constructs: objects,
types, and functions. Types is the Iris
term for classes. Types are organized in a
directed acyclic graph that supports gen-
eralization and specialization and pro-
vides multiple inheritance. Iris uses
functions to model both instance vari-
ables and methods. Properties of objects,
relationships among objects and compu-
tations on objects are expressed in terms
of functions. Pegasus uses the same lan-
guage, called HOSQL (Heterogeneous
Object SQL), both as a data definition
and as a data manipulation language.
HOSQL is a superset of OSQL, which is
the language of Iris, and is query-ori-
ented. HOSQL provides nonprocedural
statements to manipulate multiple
databases and also supports statements
for creating types, functions, and objects

both in Pegasus and in the component

databases. Furthermore, HOSQL pro-
vides for attachment and mapping of
schema of local databases. Specification
of types and functions can also be im-
ported from underlying databases.

Translation and Integration. An ex-
ternal database is represented in Pega-
sus by its imported schema (which corre-
sponds to the component schema of the
extended architecture presented in Sec-
tion 3). The translation from the native
schema to the imported schema and the
importation of the external schemas are
performed in a single step, using the view
mechanism of the HOSQL language. The
importation facilities are provided in a
modular fashion. For each external data
model a separate module can be devel-
oped, sold, and installed independently.
A technique for importing automatically
an external relational schema is de-
scribed in Albert et al. [1993].

The imported classes are called pro-
ducer types. Their extension is defined by
a special kind of query, called producer
expression, over a base type called pro-
ducer set. The producer expression de-
fines the instances of the producer type
based on some stable and identifying lit-
eral-valued property for each entity in an
external database. Oids are fabricated
for instances of the producer types and
have a suffix value taken from the pro-
ducer set and a prefix unique to the pro-
ducer type. The functions of the producer
type are called imported functions and
are mapped to properties or relations in
external data sources. A characteristic of
the function importation mechanism is
that a program written in some general-
purpose programming language and
compiled outside Pegasus may be linked
to an Iris function, called foreign fiunc-
tion [Chomicki and Litwin 1992].

Pegasus’ approach to integration dis-
tinguishes between the views of the data
administrator and of the end user. This
distinction is supported by defining two
types: unifying types and underlying
types. Administrators see both kinds
whereas users see only underlying types.

Object Orientation w 169

Producer types are underlying types.
Each underlying type has a unifying type.
The initial assumption is that every type
is its own unifier but unifying types and
their instances can also be defined by
combining more than one underlying type
using HOSQL statements. Pegasus sup-
ports unifying inheritance; that is, every
function defined for a type is also defined
for its unifjcing type. Resolution problems
are resolved explicitly by the administra-
tor who defines a reconciler algorithm
for each overloaded function. The recon-
ciler algorithm specifies which of the ap-
plicable functions will be used.

Pegasus handles the following types of
conflicts:

●

●

m

Semantic conflicts (called domain mis-
match) are handled by defining appro-
priate functions at the unifying type.

Schema conflicts. Naming conflicts re-
ferring to function synonyms are solved
by defining aliases. Additionally,
names of functions and types can be
prefixed by their database names to
prevent ambiguities. Structural con-
flicts (called schema mismatch) can be
handled by defining adequate imported
functions. An example is presented
[Ahmed et al. 1991] for handling the
conflicts introduced when the same
concept is represented by a function in
one local schema and by a class in
another. In this example, a function is
created in the global schema that re-
turns the value of the local function or
the associated object of the local class.

Identity conflicts (called object identifi-
cation) are resolved by allowing the
user to specify equivalences among
objects.

Query Processing. The user issues
HOSQL queries against the unified

schema of Pegasus. These queries are
decomposed into a set of possibly para-
metric subqueries, each one of which
refers to data residing in a single exter-
nal database. In a parametric subquery
some predicates include parameters
whose values are received from other
subqueries at evaluation time. Query op-
timization in Pegasus is either cost-based

ACM Computing Sumeys, Vol. 27, No. 2, June 1995

170 “ E. Pitoura et al.

or heuristic-based, depending on the
availability of statistical data. The pro-
cess of cost-based query optimization is
modeled by three characteristics: an exe-
cution space, a cost model, and a search
strategy. For the case of heterogeneous
environments, the traditional execution
space is extended to include multisite
joins and the traditional search strategy.
Because of the autonomy of the external
databases, Pegasus may not be able to
control physical parameters such as page
1/0 and CPU time. Thus, instead of us-
ing cost formulas based on physical pa-
rameters, it has developed a set of cost
formulas based on logical parameters
such as data cardinality and selectivity.
A set of calibrating databases has been
designed to estimate the values of the
coefficients in the cost formulas. If the
external databases do not provide ade-
quate information for cost-based query
optimization, a number of heuristics is
used to generate the evaluation plan. One
simple heuristic is to put functions that
reference one another and belong to the
same external database in the same sub-
query. This minimizes invocations of an
external database. For query evaluation,
each decomposed subqueryj after being
translated into the DML of its external
database, is sent to its external DBMS
for evaluation. The result is returned to
the central query processor of Pegasus,
and is used to drive other subqueries
which make reference to it.

e

0

e

Important Features

Treatment of conflicts [Ahmed et al.
1991];

Implementation of foreign functions
[Connors and Lyngbaek 19881:
Cost-based or heuristic-based query op-
timization, depending on the availabil-
ity of statistical data [Ahmed et al.
1993].

5.2 ViewSystem

The KODIM (Knowledge Oriented Dis-
tributed Information Management) [Kaul
et al. 1991] project at GMD-IPSI is mainly

ACM Computmg Surveys, Vol 27, No 2, June 1995

concerned with the dynamic integration
of heterogeneous and autonomously ad-
ministered information bases. An
object-oriented environment, called
ViewSystem, has been developed as a
first prototype. The ViewSystem provides
an object-oriented query language with
extensive view facilities for defining vir-
tual classes from base classes. The
ViewSystem is implemented in an
object-oriented environment, namely the
Smalltalk environment, and in this way
benefits from a large set of tools and
reusable software.

Common Data Model. The CDM,
called the VODAK data model [Duchene
et al. 1988], consists of four basic con-
structs: instances (or objects), types,
classes, and methods. Classes are not
templates for creating objects, but rather
an abstraction for naming collections of
objects and associating a number of
methods with each collection. Types are
templates for defining the structure and
behavior of their instances and are orga-
nized in a subtype hierarchy (see Section
3.1.2). Classes are related by a number of
semantic relationships, such as special-
ization, generalization, grouping and ag-
gregation. These semantic relationships
have a set-theoretic counterpart, indicat-
ing how the objects of semantically re-
lated classes correspond to each other;
namely, specialization corresponds to
subsetting, category generalization to
disjoint union, role generalization to
overlapping union, grouping to power set,
and aggregation to Cartesian product.
The query language, called DML, is pro-
gramming-based and set-oriented.
Queries are directed against classes of
interest and return the set of instances
satisfying a qualification predicate.
Queries may be nested to arbitrary depth,
i.e., a query may occur at any place in the
qualification part where a set-valued
term is allowed.

Integration. To support semantic in-
tegration the VODAK model allows the
definition of virtual classes called inten-
tional classes. There are two kinds of
intensional classes, external and derived

classes. An external class is the VODAK
representation of an information unit im-
ported from an underlying database. De-
rived classes are constructed using a
repertoire of class constructors from a
number of base classes. Derived classes
in some sense correspond to relational
views. The only difference is that derived
classes can have methods attached to
them that are written in an object-ori-
ented programming language. There is a
one-to-one correspondence between class
constructors and semantic relationships;
when an operator is applied to a number
of classes, it establishes a new (derived)
class having the corresponding semantic
relationship with the argument classes.
The methods of the derived class are
computed using the methods of the argu-
ment classes. The ViewSystem also offers
a concept to support the modularization
of views. Different views are organized in
different modules. A module M consists
of a number of classes, an input inter-
face, which is a list of all imported meth-
ods of all classes imported to M, and an
output interface that consists of all meth-
ods exported from M.

Query Processing. The ViewSystem
identifies two different ways of perform-
ing query processing in the presence of
derived classes. One way is to material-
ize all derived classes that are affected
by the query. The other way is to get rid
of derived classes by transforming the
query into an equivalent set of sub-
queries that refer to external and base
classes only. The ViewSystem takes a
hybrid approach; it lets the kind of de-
rived class determine whether material-
ization or query transformation is more
appropriate. Aggregation operators, such
as role generalization, grouping, and ag-
gregation, raise the problem of identify-
ing the corresponding objects and for that
reason materialization is favored over
query transformation. On the other hand,
query transformation is more preferable
in the case of specialization and category
generalization because the objects of the
derived classes have a unique counter-
part in the related classes, and thus a

Object Orientation ● 171

query can be split into a number of sub-
queries such that no subquery is faced
with the identification problem.

●

e

0

e

Important Features

It is embedded in an object-oriented
programming environment and bene-
fits from reusable software;

Provides a concrete methodology for
creating virtual classes based on a set
of class constructors;

Offers a hybrid approach to query pro-
cessing; and

Allows for organizing views in different
modules.

5.3 01s

The Operational Integration System

(OIS) [Gagliardi 19901 is a generalized
integration tool that provides the appli-
cation environments with a uniform in-
terface for accessing data managed by
heterogeneous systems. These systems
are expected to be file systems, DBMSS,
information retrieval systems, remote
databank services or ad hoc applications.
01S has been partially developed in the
framework of the Esprit Project 2109

(TOOTSI). 01S is similar to CIS, and
both are described together in the follow-
ing section (Section 5.4).

5.4 Cls

The Comandos Integration System (CIS)

[Bertino et al. 1989; Bertino et al. 1988]
has been implemented as part of the ES-
PRIT project COMANDOS. It has been
used for integrating several different ap-
plication environments, including rela-
tional DMBSS, graphical databases, and
public databanks.

System Architecture. The system ar-
chitecture is depicted in Figure 5. A client
is an application based on CIS, that ac-
cesses services provided by one or more
servers. A server is the abstraction of
(part of) a preexisting application. The
role of a server is to make available to
clients a uniform object-oriented inter-
face on top of the preexisting application.

ACM Computmg Surveys, Vol 27, No 2, June 1995

172 “ E. Pitouraet al.

m / .
/ \

Object-Oriented Inte@ace

RF
Mk!E!EE_

Figure 5. CIS system architecture

Common Data Model. The CDM,
called abstract data model in the CIS
framework (or integration data model

(IDM) in the 01S framework), consists of
the following basic constructs: objects,
classes, methods (called operations) and
instance variables (called definitional
properties). The notion of a class is both
intentional and extensional (see Section
3.1); a class is considered both as a set of
objects and as a pattern for creating
them. The model supports a number of
additional features (see Section 3.1) such
as independent and dependent objects,
constant properties, the possibility of
defining a property as the inverse of an-
other property, and the notion of key. A
property can be defined as optional or
mandatory. Furthermore, properties can
be variant, that is, they can be instances
of several different classes. The query
language, QL, is logic and query-based.
Queries are issued against all instances
(not members) of a class. Thus, the ob-
jects resulted from the query belong to
the same class, and the type of the result
is known at compile time.

Translation. Bertino et al, [1989] in-
troduce the concept of operational map-
ping. The operational mapping approach

(Section 3.3) is based on defining corre-
spondences between operations instead
of defining correspondences between data

elements. An object-oriented abstract
view is defined on top of each local
database system using the abstract data
model (the abstract view corresponds to
the component schema of the extended
architecture, see Section 3). The abstract
view is defined as a set of operations on a
set of abstract data. The operational
mapping is defined as the implementa-
tion of these abstract operations in terms
of primitive operations of the underlying
systems. The abstract operations is a set
of predeflned generic operations classi-
fied as: (i) operations on classes, that
include insertion and deletion of an ob-
ject from a class and inspection of the
instances of a class, and (ii) operations
on objects, which deal with object prop-
erty manipulations. More complex opera-
tions can be built using the primitive
ones. Some local systems may not be able
to implement some of the generic opera-
tions. The drop clause specifies which
operations cannot be applied to the re-
lated classes.

An implementation of the generic oper-
ations must be provided for each local
system. The implementation of these op-
erations realizes the 01S ob]”ect-at-a-time
interface, that is, an operation always
returns a single object. The object-at-a-
time interface uses oids. The validity of
an oid is bound to the duration of a
specific client/server interaction. A spe-

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 173

cial data structure is allocated by the
server whenever an object is activated.
An object is active if there is at least one
client which has a reference to it. An
active-object-table contains references to
the data structures of all active objects.
An oid is the address of an entry in this
table. The restriction that oids are valid
only during a single client/server inter-
action makes the implementation of oids
possible even when the component sys-
tems do not support the identification of
objects directly (e.g., the component sys-
tems include file or graphical systems).

Query Processing. The CIS query pro-
cessor (QP) at the client parses queries
written in QL. Since no integration is
supported, queries access data only at
one server, thus the resulting parse tree
is sent to the QP of that server. The QP
at the server, after completing the type
checking, generates the query evaluation
tree according to optimization rules. Fi-
nally, the query evaluation is performed
using the object-at-a-time interface. The
optimization adopts heuristic techniques
that use the information stored in the
data dictionary at the server.

●

Important Features

Introduction of the concept of opera-
tional mapping along with an implem-
entation [Bertino et al. 1989;
Gagliardi et al. 1990].

5.5 The EIS /)(AIT Project

The object management system (OMS)

[Pathak et al. 1991; Heiler and Zdonik
1990] is an object-based interoperability
framework for engineering information
systems (EIS) designed at Xerox Ad-
vanced Information Technology (xAIT).

Common Data Model. The CDM
(called FUGUE) is an object/function
model that consists of three basic con-
structs: objects, functions, and classes

(called types). The query language is set-
oriented and comprises a set of built-in
functions that apply to collection objects.
These functions take instances of specific
set types as input arguments and pro-

duce set types as output. Built-in func-
tions include functions for predicate-
based selection of objects (select), collec-
tion manipulation (union, intersection,
difference, and flatten-i. e., unnest col-
lections), and creation of new types and
instances. They also include an object
join (OJoin) function that when applied
to classes A and B it produces a class
populated by pairs of objects (a, b) where
a G A and b = B (this operation is simi-
lar to a form of subclassing). Built-in
functions are mapped to local functions.

Integration. The global schema is de-
fined through a view mechanism. The
population of the virtual classes (called
derived types) is defined by a query over
the base classes. The objects that popu-
late the virtual class are always assigned
new oids. The functions of a derived class
may invoke functions from the base
classes, but these functions will be exe-
cuted in the scope of the class where they
were originally defined; that is, they will
be applied not to the new objects but to
the objects of the appropriate base class
(delegation). The procedure that imple-
ments a function has its own view. Each
client that requests the application of a
function is assigned a view that provides
the context in which it will operate.

Transaction Management. In Heiler
et al. [1992] the idea of cooperation be-
tween transactions in the context of engi-
neering environments (see Section 4.2.3)
is further pursued and a framework is
developed for coordinating the different
groups in an integrated organization. The
model supports a hierarchy of groups.
The topmost group represents the whole
organization. Transaction management is
implemented modularly, as a transaction
manager hierarchy, which consists of a
set of local transaction managers and a
global transaction manager that coordi-
nates the local managers. The algorithm
employed by the global transaction man-
ager is fixed, and is delivered with the
framework. Each group provides its own
local transaction manager. These local
transaction managers have two parts: a
group specific protocol and a uniform

ACM Computmg Surveys, Vol. 27, No 2, June 1995

174 “ E. Pitoura et al.

capability (over all groups) for coordinat-
ing with neighboring transaction man-
agers. The protocols can be written in
any convenient specification language.
Each group provides its own correctness
criterion relative to its protocol. Global
correctness is relative to these individual
protocols but the relation has not yet
been formalized.

The long term goal is to provide a
toolkit for building customized transac-
tion managers. The toolkit will include
the algorithm for the global transaction
and a number of commonly used proto-
cols. Organizations will describe their
structure and will either write their own
protocol or select one from the ones pro-
vided. Note that the above transaction
model relaxes the requirement for auton-
omy of local sites in two ways. First, the
algorithm employed by local sites
(groups) is known to the global transac-
tion manager, and second, transactions
of different groups can cooperate and
share intermediate results.

Finally, since the transaction model is
designed to be used with an object-based
system, it provides high-level operations
that correspond to the functions sup-
ported by the system classes. Transac-
tions, functions, protocols, and transac-
tion managers are modeled as objects.

Important Features

Definition of view facilities [Heiler and
Zdonik 1990], also note that sharing is
implemented by delegation;

Extended transaction model that suw
ports cooperation between transactio&
and user-specified correctness [Heiler
et al. 1992].

5.6 DOMS

The distributed object management sys-
tem (DOMS) [Buchmann et al. 1992;
Manola et al. 1992] that is being devel-
oped at the GTE Laboratories, is an
object-oriented environment in which au-
tonomous and heterogeneous local sys-
tems can be integrated and native objects
can be implemented. The local systems
are not limited to database systems but
may be conventional systems, hyperme-

ACM Computmg Surveys, Vol. 27, No 2, June 1995

dia systems, application programs, etc. A
prototype DOMS was implemented con-
necting Apple Macintosh Hypercard ap-
plications, the Sybase relational DBMS
and the ONTOS object DBMS. The proto-
type supports a simplified version of the
data model and language and does not
currently support concurrency control
and recovery facilities but supports a
limited form of “distributed commit.”

System Architecture. DOMS architec-
ture is depicted in Figure 6 as adapted
from Manola et al. [1992]. The architec-
ture is built based on the general princi-
ples of the distributed object-based archi-
tectures described in Section 2. DOMS
serve as object managers. A local appli-
cation interface (LAD provides an inter-
face between a DOM and a local system
that allows the DOM to access local data
and the local system to make requests to
access objects from other local systems or
to use DOM services.

Common Data Model. The CDM,
called FROOM (functional/relational ob-
ject-oriented model), consists of three ba-
sic constructs: objects, functions, and
types. Functions model both state and
behavior. The subtype relation is deter-
mined implicitly; any type that supplies
the interface required by a type T is a
subtype of T. FROOM distinguishes be-
tween implementation and interface,
thus objects of the same type may sup-
port different implementations of the
same function. FROOM supports event-
condition-action (ECA) rules (see Section
4.4.2). Rules, events, conditions, and ac-
tions are defined as object types. The
definition of FROOM includes an object
algebra that resembles an extended rela-
tional algebra. The object algebra in-

cludes a set of high-level functions, which,
as in FUGUE, are defined for collections
of objects, and create new collections as
results. The functions provided by the
algebra include functions that corre-
spond to operations of the relational al-
gebra (select, project, join), standard set
operators (union, intersect, difference),
functions for creating new oids, and other

miscellaneous functions. Current re-
search is pursuing the definition of a

Object Orientation ● 175

r Local
System

, [-LA1--~ ,

1
I
~. -----

I

–1

1

Local
System

I
1

1
1

; LAI \
1
~_------;1

1
1

t
1

1
,

~ DOM /
! I
1 1
1 i
---- ,---,

~

Figure 6. DOMS system architecture.

more primitive “RISC” object model
[Manola and Heiler 1992]. This model
provides the definition of a small set of
fundamental concepts to allow the defini-
tion of other object models (including
FROOM) in terms of this single set. The
basic approach involves incorporating at
the object level constructs that are repre-
sentation or metalevel constructs at other
models, for example, types for describing
methods, state, and object identifiers.

Integration. Integration is accom-
plished by defining views through
queries. When objects involved in the
query belong to local attached systems,
DOMS maps these queries through ob-
ject algebra expressions into expressions
in the local query languages of the at-
tached systems. Future work will tackle
the difficult issue of providing general
facilities for creating arbitrary objects
and functions using algebra expressions.
It will also address the problem of deter-
mining an optimum set of algebra func-
tions for use in query optimization.

Transaction Management. The ap-
proach taken by DOMS is to identify an
extended transaction model that would
capture the capabilities of most extended

transaction models, to provide the basis
for a programmable transaction manage-
ment facility. In this context, a transac-
tion specification and management envi-
ronment (TSME) has been suggested in
Georgakopoulos et al. [1993] and Geor-
gakopoulos et al. [1994]. The TSME is a
toolkit that supports the definition and
construction of specific extended transac-
tion models corresponding to application
requirements. It provides a transaction
specification language and a pro-
grammable transaction management
mechanism that configures a run-time
environment to support the specified
transaction model.

DOMS transactions consist of a set of
flat transactions, together with a set of
transaction dependencies among them.
Transactions support operations on the
following types of objects:

Local objects that represent data and
functionality in local systems that sup-
port transactions.

Local objects that represent data and
functionality in local systems that do
not support transactions (transaction-
less systems) but instead provide only
primitive atomic operations.

ACM Computmg Surveys, Vol 27, No. 2, June 1995

176 “ E. Pitoura et al,

e Native objects whose state and behav-
ior are maintained by DOMS.

DOMS models transactions as objects. A
simple transaction object is a flat trans-
action that issues operations only on na-
tive objects, or issues operations only on
objects that are in the same local
database system, or issues only a single
atomic operation on a transactionless
system. DOMS supports two general
classes of extended transactions: multi-
system and multidatabase transactions.
Multisystem transactions are extended
transactions that have constituent flat
transactions. Multidatabase transactions
are a special case of multisystem trans-
actions in which flat transactions are
submitted only to native objects or to
objects supported by local database sys-
tems. In addition, local transactions can
be executed autonomously at the local
sites. Multidatabase transactions follow
the traditional model of heterogeneous
transactions presented in Section 4.3.

Multisystem transactions are modeled
as complex transaction objects. Complex
transaction objects are defined from sim-
ple transaction objects using dependency

descriptors, (DDs). DDs are FROOM
functions that describe the interrelations
between transaction objects in terms of
transaction dependencies. DDs will be
implemented using ECA rules. The im-
plementation of DDs for multidatabase
transactions is complicated by the fact
that the serialization orders of the trans-
actions at each local site are not known

(see Section 4.3). If the local histories are
rigorous, DOMS will control the commit-
ment order of the transactions, otherwise
DOMS will use the ticket method (see
Section 4.3).

Important Features

● Complete framework in the context of
distributed object architecture;

* Support of transaction management
that includes operations at transaction-
less systems, however transaction cor-
rectness and recovery is not formalized
especially under the presence of local
transactions;

Q An attempt to apply state-of-the-art
knowledge at all parts of the system
and include most of the features that
appear in the literature.

5.7 UniSQL/M

UniSQL/M [Kim et al. 1993; Kim 1992]
is a heterogeneous database system, be-
ing developed at UniSQL, that allows the
integration of SQL-based relational
database systems and the UniSQL/X
unified relational and object-oriented
database system.

System Architecture. UniSQL/M is a
full database system in that it supports a
database definition language, a database
manipulation language, automatic query
processing, access authorization, and dis-
tributed transaction management.

Common Data Model—Translation
and Integration. ‘l’he query language,
called SQL\M, is an extension of ANSI
SQL that incorporates object-oriented
data modeling concepts. SQL/M sup-
ports view-definition facilities and con-
flict-resolution techniques. No transla-
tion is necessary since the data model of
SQL/M is a superset of the relational
data model. Tables and classes are uni-
formly called entities, columns and in-
stance values are called attributes, and
tuples and objects are called instances.
The population of a class is defined using
the member-of relation.

The integration of multiple entities (ta-
bles and classes) is accomplished by
defining a virtual class. The population
of the virtual class is defined by a query
on the base entities. The attributes and
the methods are defined by explicitly
enumerating them along with their do-
main. It is the responsibility of the user
to define both methods and attributes in
conformity with the subtyping restric-
tions. No special import operation is de-
fined. An entity A may be imported as
the virtual class V(A), by defining the
population of V(A) as equal to the popu-
lation of A and the attributes and meth-
ods of V(A) as equal to the attributes
and methods of A. Hiding of attributes

ACM C!omputmg Surveys, Vol 27, No 2, June 1995

Object Orientation o 177

and methods can be achieved by not enu-
merating them.

Kim et al. [1993] provides a taxonomy
of possible conflicts along with the reso-
lution techniques used by SQL/M. We
present them using the framework intro-
duced in Section 3. V(A) stands for the
virtual class that results from the impor-
tation of A.

(1) Identity conflicts are not discussed.
Actually, it is not clear whether the
model supports object identity or not.

(2) Schema conflicts:

(i) Naming conflicts are handled by
using renaming operations.

(ii) Structural confZicts. Since the
different constructs supported by
the model are entities and at-
tributes (methods are not consid-
ered in Kim et al. [1993]), the
basic taxonomy can be adjusted
as follows.

(a)

(b)

When the same concept is
represented by different con-
structs of the data model,
namely by an entity and an
attribute, then an entity may
be split into multiple parts, or
two entities may be inte-
grated into one by performing
a vertical join.

When the same concept is
modeled by the same con-
structs, then:

If the constructs are classes

(entities) and have the same
intentions, a union compati-
ble join is applied. If, in addi-
tion, there is an inclusion re-
lation between the extents of
the classes then one can be
defined as the subclass of the
other. In the special case
where a missing attribute has
an implicit value, a special
expression is provided for de-
termining this value. When
the extent of a class A is a
subset of the extent of a class
B and the attributes and
methods of A subsumes those

of B (meaning they respect
the subtype restrictions), then
A and B are called extended
union compatible and an ex-
tended union compatible join
can be used; that is, V(A) may
be defined as a subclass of
V(B). If both entities are ta-
bles, then to integrate multi-
ple tables into a single class,
vertical join is used.

When the same construct is
an attribute then, if one at-
tribute is of a primitive type
and the other is a complex
object, the projection of the
aggregation hierarchy is used;
that is, only one of the compo-
nents of the complex attribute
is selected in the virtual class.
Default coercion operations

(e.g., from integer to real) are
provided for resolving C(p-
flicts between attributes hav-
ing different primitive types.
In addition, a concatenation
operation is provided for at-
tributes of the primitive type
string. If the attributes of two
classes A and B are in-
stances of classes related by a
subclass relation that may
imply the same subclass rela-
tion between A and B. Reso-
lution techniques for resolv-
ing conflicts between at-
tributes that are complex ob-
jects of different classes are
not discussed.

(3) Semantic confi!icts discussed in Kim
et al. [1993] refer to different repre-
sentation for the same data. These
different representations include dif-
ferent units, different precision, or
different expressions. They are han-
dled by homogenizing representa-
tions, that is, by defining the corre-
spondence between different repre-
sentations and using arithmetic ex-

pressions or look-up tables to convert
from one to the other.

(4) Data conflicts are not discussed.

ACM Computmg Surveys, Vol 27, N. 2, June 1995

178 ● E. Pitoura et al.

● Accessing Services : 2D and 3D Gra hical Interaction
Envmxmnent, ~pplication Frameworks, et,.

e Semantic Services : Integration, Knowledge Discovery, etc

0 Distribution Services : Relaxed Transaction Mana ement
FDeclarative Resource Cons ramt B’ase,

Communication Agents, etc.

* Support Services : EES, RDA, TP, IRDS, ORB, X.500, etc.

@ Communication Services : 0S1, Internet, Atlas, SMDS, etc.

Access

Services

“:’facP====J
i

Distribution Services

I t ,

/
Applic. Communication Services

Interface

Figure 7. Carnot system architecture

Transaction Management. The first System Architecture. Carnot has de-
release of UniSQL/M presumes two- veloped and assembled a large number of
phase commit support in local database generic facilities. These facilities are or-
systems but it supports concurrency con- ganized into five sets of services (see Fig-
trol, global deadlock detection,/resolu- ure 7 adapted from Woelk et al, [1993]):
tion, and distributed database recovery
[Kim 1992]. (1)

Important Features

● Systematic treatment of conflicts,

o Commercial database system already (2)
released.

5.8 Carnot

The Carnot project at MCC [Woelk et al. (3)
1993; Huhns et al. 1992; Woelk et al.
1992; Tomlinson et al. 1992] addresses
the problem of logically unifying physi-
cally distributed, enterprise-wide hetero- (4)

geneous information, coming from a
variety of systems including database
systems, database applications, expert
systems, and knowledge bases, business (5)
workflows, and the business organization
itself.

Communication services provide the
user with a uniform method for inter-
connecting heterogeneous equipment
and resources.

Support services implement basic
network-wide utilities. An important
component of the support services is
a distributed shell environment called
Extensible Service Switch (ESS).

Distribution services support relaxed
transaction processing and a dis-
tributed agent facility.

Semantic services provide a global

(enterprise-wide) view of all the re-
sources integrated within a Carnot-
supported system.

Access services provide mechanisms
for manipulating the other four
Carnot services,

ACM Computmg Surveys, Vol 27, No 2. June 1995

Object Orientation ● 17’9

The Extensible Service Switch (ESS).
ESS [Tomlinson et al. 1992] provides in-
terpretive access to communication re-
sources, local information resources and
applications at a local site. The switch
can be thought of as a component of a
distributed command interpreter that is
used to implement heterogeneous dis-
tributed transaction execution and gen-
eralized workflow control. It may also be
viewed as a high level programmable
communication front-end for applications
in a distributed information system. ESS
is constructed on top of Rossette. Ros-
sette is a high performance implementa-
tion of an interpreter for an Actor-based
model [GuI 1986] enhanced with object-
oriented mechanisms for inheritance.

Common Data Model—Translation
and Integration. In addition to database
schemas, Carnot [Huhns et al. 1992] con-
siders the integration of knowledge-base
systems and process models. Instead of
translating the schemas (models) of the
local resources into a common data model,
Carnot compares and merges them with
Cyc [Collet et al. 1991], a common-sense
knowledge base. Cyc, besides its com-
mon-sense knowledge of the world, has
knowledge about most data models and
about the relationships among them. The
common language is called Global Con-
text Language (GCL) and is based on
extended first-order logic.

A resource is integrated by specifying a
syntax and a semantics translation be-
tween the resource and the global con-
text. The syntax translation provides a
bidirectional translation between the lo-
cal resource management language and
GCL. The semantics translation is a
mapping between two expressions in GCL
that have equivalent meaning. This is
accomplished by a set of articulation ax-
ioms. An articulation axiom has the form
ist(G, +) + ist(C,, v), where @ and @ are
logical expressions and ist is a predicate
that means “is true in the context.” This

axiom says that the meaning of @ in the
global context G is the same as that of $
in the local context Cl. After integration,
one can access the resources through the

global view using GCL. Carnot provides
a graphical tool, the Model Integration
Software Tool (MIST), that automates

some of the routine aspects of model inte-
gration.

Query Processing—Transaction Man-
agement. Carnot’s Distributed Seman-
tic Query Manager (DSQM) [Woelk et al.
1992] executes queries and/or updates
against integrated information resources.
DSQM has been implemented as an ESS
actor object. DSQM’S query graph gener-
ator module accepts an SQL string and
generates a query graph using informa-
tion from a global dictionary. The query
graph is passed to the semantic augmen-
tation module. This module uses articu-
lation axioms to expand the query graph
to include other sources that contain rel-
evant information. If the original query
included modifications in a database, the
query graph is passed to the relaxed
transaction augmentation module, which
uses the information stored in a declara-
tive resource constraint base to determine
which other databases should be modi-
fied and creates separate query graphs
for each one of the modifications. The
separate query graphs are then related
to each other using a transaction graph
that defines the relaxed transaction se-
mantics to be used. A language, based on
the ACTA formalism [Chrysanthis and
Ramamritham 1994], is being designed
and implemented that will be used to
specify the relationships among sub-
transactions in the transaction graph. An
optimal query plan is then generated for
each query graph. Finally, the query
plans and the transaction graph are
passed to the ESS script generator, which
generates a script to be executed at each
site.

Important Features

Use of a common-sense knowledge base
as the global schema instead of a data
model [Huhns et al. 1992; Collet et al.
1991]; and

Implementation of the ESS.

ACM Computing Surveys, Vol 27, No 2, June 1995

180 ● E. Pitoura et al.

Object-Orientation in Carnot. Carnot
does not follow any of the three dimen-
sions of object-orientation introduced in
Section 1.1. It is included in this survev
because it takes advantage of the deve~-
opment of object technology in the imple-
mentation of its various tools. Such tools
include the ESS that is an actor obiect:

“.

an object-oriented deductive environ-
ment called LDL + + used for applica-
tion develo~ment—this can be viewed as
providing ‘an object-oriented external
schema on top of the global schema (see
Section 3) and a 3D visualization tool.

5.9 Thor

Thor [Liskov et al. 1992] is an object-ori-
ented distributed DBMS being imple-
mented at MIT. Thor is intended to be
used in heterogeneous distributed sys-
tems to allow programs written in differ-
ent programming languages to share a
universe of persistent objects in a conve-
nient manner, Thor is not a multi-
database system since it does not support
the integration of preexisting systems,
but rather a distributed database system
that allows different systems to share
information by means of objects of the
Thor’s universe. A prototype of Thor,
called TH has been implemented in Ar-
gus [Liskov 1988].

System Architecture. Thor is intended
to run in a distributed environment. Some
of the nodes are Thor servers, which store
the objects in the Thor universe. Others
are client nodes where users of Thor run
their programs. The Thor system runs
frontends (FEs) at the client nodes, and
backends (BEs) and object repositories
(ORS) at the servers. Every resilient ob-
ject resides at one of the ORS. A user
always interacts with Thor via an FE,
which typically resides at the user’s
workstation. Each FE acts on behalf of a
single principal client, An FE is authenti-
cated to the ORS with which it interacts
using the Kerberos authentication ser-
vice. The client program interacts with
Thor by executing Thor commands such
as start or terminate transactions and

run operations. An FE makes use of BEs
and ORS to carry out these client re-
quests. FEs and BEs perform operations
and understand types. ORS are con-
cerned only with managing the resilient
storage for objects. Delays in accessing
objects from several different ORS are
handIed by caching objects at the FEs.
Caching also reduces the load at the ORS
servers. Another method used to reduce
delay is to combine all calls that can be
performed at one OR into a larger “com-
bined operation.”

Common Data Model. The Thor data
model is language-independent in that it
is not being embedded in a particular
programming language. It provides a type
system that allows programs written in
different programming languages to
share data. A type is defined by a specifi-
cation; specifications are independent of
the programming language used to ac-
cess the type’s objects and of the lan-
guage used to implement the type. Thor
also provides access to objects through
both navigation and queries. It supports
full indexing for queries over sets of ab-
stract objects. Thor does not support the
integration of preexisting database sys-
tems but provides for information shar-
ing among heterogeneous applications
through a number of persistent objects
that are being shared among the applica-
tions.

Query Processing. Queries run at
ORS. When a set object is used at an FE,
metadata about the set is sent to the FE,
but the elements of the set are not. The
metadata includes information about in-
dexes. Using this information the FE can
make decisions about how to carry out
the query most effectively.

Transaction Management. Thor is not
a heterogeneous DBMS but a homoge-
neous distributed object-oriented DBMS.
Transaction management in Thor is sim-
ilar to the traditional transaction man-
agement in a distributed database sys-
tem, with the difference that the basis of
the concurrency control are objects in-
stead of pages or segments. Concurrency

ACM Computmg Surveys, Vol 27, No 2, June 1995

control and recovery are provided for in-
dividual objects. Objects become persis-
tent only when the transaction that made
them persistent commits. Two-phase
commit is used as the commitment proto-
col. The coordination of concurrent trans-
actions from different FEs at the ORS
will be accomplished by using an opti-
mistic schema. A primary copy schema
will be used for replication.

Important Features

A different approach to the problem of
handling heterogeneous information,
that allows the heterogeneous system
to conveniently share information
stored in the form of Thor’s objects;

Addressing performance issues, such as
object-caching and combined opera-
tions, as well as physical storage
issues that are not considered by
MDBSS because such issues are han-
dled by the local systems.

5.10 The InterBase Project

In this section we describe two prototype
systems developed at Purdue University
as part of the InterBase project [Bukhres
et al. 1993]. FBASE [Mullen 1992] con-
centrates on data modeling issues, while
InterBase* [Mullen and Elmagarmid
1993] provides complete transaction sup-
port. Currently, work is underway to in-
tegrate the data model of FBASE in the
InterBase* system.

5.10.1 FBASE [Mullen 1992] is an
object-oriented multidatabase system
that can be characterized as
decentralized.

Common Data Model. The FBASE
model uses the core characteristics of the
object-oriented model, i.e., classes, ob-
jects, and methods (functions) to define a
class hierarchy appropriate for modeling
the schemas of the component systems.
The FBASE class hierarchy is depicted in
Figure 8 adapted from Mullen [1992].
Each component database system is con-
sidered an instance of the predefine
class Database. Commands such as cre-
ate, insert, update, and select are prede-

Object Orientation ● 181

fined methods of the objects of the
Database class. Each object of the
Database class is considered to be a col-
lection of instances of the class Relation.
Relations have several predefine meth-
ods such as project, Cartesian product,
union, minus. The FBASE query lan-
guage, called Federated SQL (FSQL), is
an extension of SQL. It extends SQL in
the following ways:

It allows the specification of remote
system data. Remote system data are
specified by prepending the name of
the remote system to the relation name
being accessed.

Complex objects can be defined and ref-
erenced.

Object methods can be defined and ref-
erenced.

Translation and Integration. Each
component has a private schema that
describes the data available to its local
users (corresponds to the local schema of
the 5-level architecture, see Section 3),
an export schema that describes the data
that other systems may import from it
(corresponds to the export schema), and
an import schema that describes the data
at other component systems that the sys-
tem knows about (corresponds to the ex-
port schema of those systems). No feder-
ated schema is created. The data struc-
tures used to represent the three schemas
are stored at each component system as
relations. In addition, a special data
structure, called directory, contains a list
of remote sites that the component sys-
tem knows about. A component system
can be integrated as an importer (i.e., it
can execute global queries), exporter (i.e.,
global queries can access its data), or
both, and various degrees of integration
can be supported. Special FBASE servers
may perform query language transition
and data format translation for each dif-
ferent exporter system.

Important Features

e The class hierarchy provides a uniform
way of mapping different data models
to the object-oriented model.

ACM Computmg Surveys, Vol. 27, No 2, June 1995

182 ● E. Pitoura et al.

Figure 8. FBASE class hierarchy.

5.10.2 InterBase. Currently, Inter-
base* runs on an interconnected network
with a variety of hosts such as Unix
workstations and IBM mainframes. It
supports global application accessing
many local systems, including SAS,
Sybase, Ingres, DB2, and Unix utilities.

System Architecture. InterBase* con-
sists of four types of components (see
Figure 9, adapted from Mullen and
Elmagarmid [1993]):

e

e

e

s

InterBase* servers maintain the data
dictionary and are responsible for pro-
cessing global queries.

InterBase* clients connect to Inter-
Base* servers and issue global queries.

Component database systems (CDBSS)
are the systems being integrated.

Component system interfaces (CS15) act
as an inte~face for the InterBase*
servers to the component systems. The
CSIS are responsible for translating
global queries to the native query lan-
guage of the local systems and for
translating data from the native for-
mat to the global format.

Common Data Model. InterBase*
uses the same language, called Inter-
SQL, as both a query language and a

transaction specification language. Inter-
SQL combines IPL [Chen et al. 1993], the
transaction specification language of In-
terBase, with FSQL used in FBASE (see
previous section on FBASE) and adds
high-level support for atomic commit-
ment. Translation and integration are not
currently supported. To access data
stored in a local system, the user must
issue queries expressed in the native lan-

guage. The characteristics of InterSQL
related to transaction specification are
described in the next section.

Transaction Management. Inter-
Base* supports the Flex transaction
model [Elmagarmid et al. 1990] which is
an extended transaction model. A Flex
transaction is composed of a set of tasks.
For each task, the model allows the user
to specify a set of functionally equivalent

subtransactions, each of which, when
completed, will accomplish the desired
task. The model also allows the specifica-
tion of dependencies on subtransactions
that might take the form of internal or
external dependencies. Internal depen-
dencies define the execution order of sub-
transactions, while external dependen-
cies define the dependency of a subtrans-
action execution on events that do not
belong to the transaction (such as the

ACM Computing Surveys, Vol 27, No 2, June 1995

Object Orientation . 183

I
InterBase* Server

Computer Network

8

:~$~gnent

Interface
. . .

Corn orient
XData ase

System

I

Corn orient
%Data ase

System

Figure9. InterBase system architecture.

start/end events). Finally it allows the
user to control the isolation granularity
of a transaction through the use of com-
pensating transactions.

Commitment in InterBase* is specified
at the subtransaction level. The desired
commitment method is specified for each
subtransaction. Each subtransaction may
use various and multiple commitment
methods. The three basic commitment
methods allowed are as follows:

(1)

(2)

(3)

Prepare. The subtransaction is exe-
cuted to a prepare-to-commit state,
where it is guaranteed to be commit-
table, but can still be aborted. This
method will be provided for systems
that support a visible prepare-to-
commit state.

Reservation (Redo). The subtransac-
tion is redone (or reexecuted) until it
successfully commits.

Compensation (Undo). The subtrans-
action is committed independently of
the global transaction, and if the

global transaction ultimately aborts,
the subtransaction is undone.

InterSQL provides transaction specifica-
tion facilities to allow the user to define
Flex tasks and appropriate commitment
methods. An InterSQL program consists
of the following fundamental compo-
nents: objects and types, subtransactions
definitions, dependency description
among subtransactions, preference de-
scriptions, and a reservation list. Objects
serve as results of, and as arguments to,
subtransactions. Objects are categorized
by types and are capable of participating
in a specific set of subtransactions. A
subtransaction definition specifies the
name of the subtransaction, the system
at which it executes, its arguments, the
commands to be executed, and the com-
mitment methods that can be used to
commit it. In addition, the definition of a
subtransaction may include guards (de-
scribed below) and time options such as
the valid time period of its execution and

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

184 - E. Pitoura et al.

‘------------------”---------------!
B —-----

““ha’cata’”>~=\ i~ (@i@jJ Cji@IEd> c-@Exii.~m ~,oba,,c,ema~
, !

1---,.gZ*------
// Wchema _=-’

i/
~ I Local Access Manager I—==Z

1 I l—

4up___________u
Local Catalog

Local DBMS
Local Site

. . .

Figure 10. FIB system architecture.

its maximum execution time. The depen-
dency description part of the InterSQL
program allows the user to define the
execution dependencies between sub-
transactions. When the dependency con-
ditions and the time constraints for a
subtransaction are satisfied, its guard is
evaluated, and, if it holds, the execution
of the transaction is granted; otherwise
the execution is delayed until after an-
other evaluation of the guard takes place.
The preference description allows the
user to specify the conditions under which
a subtransaction is preferred over an-
other. Finally, the reservation list repre-
sents explicit reservation actions to be
taken in an attempt to ensure that the
subtransaction can be committed.

Important Features

. Use of an extended transaction model;

. Use of a Transaction Specification Lan-
guage to support the extended transac-
tion model; and

● Treatment of commitment.

5.11 The FIB Project

The Federated Information Bases (FIB)
project at Georgia Tech [Navathe et al.
1994] focus mainly on the semantic inter-
operability problems encountered in mul-
tidatabase systems.

System Architecture. The architecture
of FIB is shown in Figure 10 adopted
from Navathe et al. [1994]. The flow of
control between the components is ex-
plained below in the query processing
section.

Common Data Model. FIB’s CDM,
called CANDIDE, is a terminological
knowledge representation model that
supports classes, attributes (instance
variables), instances, and disjoint classes
(classes whose subclasses cannot have
any common instances). So far it does not
provide methods or any other form of
behavioral support. The database schema
consists of two partially ordered lattices,
one for the class taxonomy and one for

ACM Computmg Surveys, Vol. 27, No 2, June 1995

Object Orientation 8 185

the attribute hierarchy. In the attribute
hierarchv. each attribute can have at

“.

most one parent attribute along with an
associated domain. This domain is either
an instance, or a set of instances of a
class described in the class taxonomv.
The domain of an attribute must be “a
subclass of the domain of its parent at-
tribute. An attribute appearing in a class
definition can be qualified by additional
value constraints on its domain. These
constraints must logically imply the con-
straints on each attribute of its super-
classes.

The same language is used as both a
DDL and a DML. Quervinz is based on
the notions of subs~mp~io~ and classifi-
cation. A class A subsumes a class B if
and only if every instance of B is also an
instance of A, i.e., A is a superclass of B.
The subsumption relationship is com-
mted on the basis of whether the at-
~ribute constraints for class A logically
imply the attribute constraints for class
B. Classification is a search technique
which correctly places new classes into
an existing lattice. The correct location
for a class A is immediately below the
most s~ecific classes which subsume A.
and immediately above the most general
classes subsumed by A. Querying by
classification is the process of specifying
a query object and then searching for
objects which are structurally related to
this object using classification.

Translation. The mapping of a rela-
tional schema into the CANDIDE data
model is described in Navathe et al.
[1994]. Each relation is mapped to a class,
and tuples are mapped to instances of a
class. The key of a relation is associated
with the class name. The values within
an attribute domain become instances of
a class representing the attribute.

Integration. The schema integration
process is divided into two distinct phases
[Sheth et al. 1993]. In the first phase, the
user gives as input to the integration
module a set of attribute relationships.
Two attributes al and a~ can be related
as follows: al is-equivalent-to az, al is-
aboue, or is-below a ~ in the attribute

hierarchy, or they may be unrelated. In
the second phase, the classification and
the subsumption techniques are em-
ployed to deduce the class relationships
automatically. The relationships that are
identified between two classes are: sub-
sume, equivalent (each class subsumes
the other), disjoint (the classes have no
common instances), overlap (none of the
classes subsumes the other and are not
disjoint), and unrelated. Schema merging
operators are automatically applied to
pairs of classes according to the nature of
relationships between them to generate
the global schema. Any changes in the
underlying component schemas require
only reclassification of the global schema
along with any new attribute correspon-
dence. A schema integration tool based
on this approach is described in Savasere
et al. [1991].

Query Processing. The flow of control
among the FIB’s components is shown in
Figure 10. The user interface allows a
user to browse the global schema and
formulate queries. The query processor is
responsible for accepting the user queries
and generating the subqueries with the
help of a global catalog. The RCM sched-
uler detects any dependencies and paral-
lelism and generates a schedule for the
subqueries. The results of the subqueries
must be combined to generate the final
results. The result combination is per-
formed by one of the component
databases. The DEC scheduler generates
a schedule for the result combination op-
erations. The program generator gener-
ates the program to be executed by the
transaction execution supervisor. The ex-
ecution order of subqueries and the se-
quencing information is encoded in the
generated program using constructs
adapted from DOL [Elmagarmid et al.
1990] (a transaction specification lan-
guage that is a predecessor of IPL de-
scribed in the previous section).

The execution supervisor coordinates
the execution of the subqueries as speci-
fied by the DOL program. First it set-ups
connections with the local access man-
agers (LAM). Next, it sends the

ACM Computmg Surveys, Vol. 27, No 2, June 1995

186 “ E. Pitoura et al.

subrequests to the specified LAMs in the
specified order. The subrequests are
translated into the local model using in-
formation from a local catalog. The sub-
queries are executed by the local database
system and the results are translated
back to the CDM. The result combination
is performed at a suitable local site. The
LAM at this site executes the result com-
bination as it would execute a subquery.
First, it waits for the partial results from
subqueries at other local sites. Then it
creates temporary tables for these re-
sults and executes result combination op-
erations. The final result is sent to the
user interface.

e

●

5.

Important Features

Use of classification to perform query
processing and schema integration; and

Automation of the schema integration
process.

12 Conclusions

Tables 2, 3, 4 and 5 present a compara-
tive analysis of the systems. In Table 2,
we characterize as complete systems,
systems that, in addition to providing an
integration framework and a transaction
model, support network communication
and various operating system facilities.
Thor is different from the other systems
described in that it does not support the
integration of preexisting systems.

System Architecture. DOMS, EIS, and
OIS/CIS support an object-based archi-
tecture. DOMS in particular, being the
most recent of them, provides the func-
tionality and adapts the terminology of
most of the proposed architectural stan-
dards. In an object-based architecture,
all resources are modeled as objects and
all provided services are modeled as ob-
ject methods. Object managers handle
objects and the communication between
them.

Translation and Integration. From
the systems described, 01S, CIS, FBASE,
and InterBase* can be characterized as
nonfederated since they do not support
the creation of a global schema. All other

systems fall in the category of federated
databases. 01S and CIS propose an oper-
ational mapping approach. Following this
approach, each local database must pro-
vide a minimum interface, in the form of
an implementation for a predefine set of
generic operations. These operations are
basic operations such as operations for
accessing the instance variables (compo-
nents) of an object or operations for cre-
ating new objects. More complex opera-
tions are built on top of the generic oper-
ations.

All federated systems define the global
schema by using the view definition facil-
ities of their query language. FIB bases
integration on classification, a technique
that explores the structure of a class to
automatically place it in a given class
taxonomy by applying appropriate merg-
ing constructors. The ViewSystem pro-
vides the most comprehensive set of class
constructors. EIS and DOMS define an
object algebra for their model and pose
the question of optimality for the set of
class constructors in terms of query opti-
mization and expressive power. An inter-
esting issue is how virtual classes share
the functionality of their base classes.
Inheritance is the most popular method,
but the classical definition of inheritance
from a subclass to a superclass must be
formally generalized to provide for classes
constructed by methods other than sub-
classing. EIS introduces the use of dele-
gation as a means for information shar-
ing. The usefulness of all approaches to
sharing needs to be evaluated by perfor-
mance studies. Other interesting issues
in object-oriented integration include
method resolution and the treatment of
identifiers for imaginary objects.

Transaction Management. Most sys-
tems that discuss transaction manage-
ment (DOMS, Carnot, EIS, InterBase*)
support extended transaction models. The
general trend is for “customized” or “pro-
grammable” transaction management.
According to this approach, the user will
specify the criterion of correctness in
terms of desired relationships between
different subtransactions. DOMS and

ACM Computing Surveys, Vol 27, No 2, June 1995

188 “ E. Pitoura et al.

Table 3. Data Models and Translation

System

Pegasus

ViewSystem

CISIOIS

OMS

DOMS

UniSQfJM

Camot

Thor

FBASE

InterBase*

FIB

Data Model

[ris data model

VODAK
iata model

4bstract
iata model (CIS)

[integration
iata model (01S)

WJGUE model

FROOM

Unified relational
and object-oriented
model

Instead of a CDM,
uses a
common-sense
knowledge base,
called Cyc

Based on Argus

Ob’ect-oriented
De~nes a class
hierarchy to model
the integrated
systems

Object-oriented

CANDIDE

Terminological
knowledge-based

Emphasis on
structure rather
han on behavior

DD/DM Language

HOSQL

Extension of S L
9

Query-based ()

DML

Programming-based
and set-oriented

QL

Extension of a logic-
based query language

Query-based

Extension of a frmctional-
based query language

Set-oriented

Extension of a functional-
based query language

Set-oriented

SQUM

Query-based

GCL
Global context
language

Based on extened
first-order logic

Based on Argus

Programming-based

FSQL

Extension of SQL

Query-based

InterSQL

Based on FSQL

Provides transaction
specification facilities

Based on classification

(*) theclramckmzationof Ian uagesN basedon
f“definitions given in Sec Ion 2.2

Translation

During importation

Sup rts automatic
Y“.rans atlon of relational

models

During importation

Re;&;~s mapped to

Special Smafblk library
routines (classes)
su port translation

?o most qommon
mfortnatlon sources

Operational mapping

Not discussed

Not discussed

Not necessag,
CDM is a superset
of the relational model

Special frames
defined for common
information sources

Not applicable

Performed by special
FBASE servers

Performed by s cial
t?servers, called S1s

Performed at runtime
by s cial translation

O&m ules

ACM Computmg Surveys, Vol. 27, No 2, June 1995

Object Orientation e

Table 4. Integration

Integration
(*)

System
Importation Derived Classes Conflicts

By queries By queries Domain mismatch
(semantic)

Virtual classes Virtual classes called Naming and
Pegasus called producer types unifying types schema mismatch

and the uery that
‘isdefines t em,

(schema)
Function inherited f~om base

producer expression classes by umfymg mherrtartce
Object identification
(ldentlty)

Maps external By applying constructors
information sources
to methods Const~ctors supported:

ViewSystem speclahzatlon, gene~alization,
grouping, aggregation

Not discussed

Virtual classes
called external classes Virtual classes called

derived classes

CIS/OIS Not supported

By queries and functions (constructors)

OMS
Virtual classes called derived classes Not discussed
Object-algebra defined with a set of fun$tions
that produce new sets of objects from exlstmg ones

By queries and functions (constructors)

DOMS Object-algebra defined with a set of functions
Not discussed

that produce new sets of objects from exlstmg ones

UniSQL/M By queries
Comprehensive
treatment

Carnot
Uses articulation axioms to express mappings between
two expressions that have eqmvalent meamrrg

Not discussed

Thor
Not applicable

Provides for information sharing among heterogeneous sytems through a
umverse of objects

FBASE Not supported

InterBase* Not supported

Relationships between the base classes induced by
FrB a class] ficatlon method Not discussed

Class constructors are then applied automatically

(*) the description follows the methodology introduced in Section 2.4

Carnot propose ACTA- and DOL-based
transaction specification languages, res-
pectively. This work is based on earlier
work on extended transaction models
done in InterBase [Ehnagarrnid et al.
1990] and Omnibase [Rusinkiewicz and
Sheth 1991]. In addition, InterBase* pro-
vides an elaborate treatment of the com-
mitment problem.

189

6. SUMMARY

Using object-oriented techniques to build
heterogeneous databases is a promising
approach. Objects provide a natural
model of a heterogeneous environment.
Modeling resources as objects and their
services as methods hides the hetero-
geneity of their implementation and res-
pects their autonomy. At a lower level,

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

190 “ E. Pitoura et al.

Table 5. Query and Transaction Processing

System Transaction Management

Pegasus Not supported

ViewSvstem I Not srumorted

CISIOIS Not supported
I

OMS

Nested (cooperative) transactions

Goal: Customize transaction management

No formal definition of correctness

DOMS

UnlSQL/M

Goal: Programmable transaction management

Two types of transactions :

(i) multisy~tem transactions (extended
transactions defined using ECA rules)

(Ii) multidatabase transactions (traditional
‘ heterogeneous transactions)

Supports concurrency control

Assumes a meDare-to-commit state

Goal: User-specified correctness
Camot Provides a language based on ACTA for defining

relationships between subtransactlons

Not a multidatabase, but
a (homogeneous) distributed DBMS

Thor Basis of concurrency control are objects

Commitment protocol : 2PC
Optimistic concurrence control algorithm

1Prlmarv coDv schema or reohcatlon

FBASE I Not supported

InterBase*

FIB

] Supports the Flex extended transaction model

Prowdes transaction specification language for
defining the model

Provides an elaborate treatment of commitment
at the subtransaction level

Not supported

Constructs based on the DOL transaction
specification language may be used to
specify dependencies among subquerles

providing an obiect-oriented model for the
data in tie het&ogeneous database facil-
itates the expression of relatiorm and the
resolution of conflicts that exist between
entities at different component database
systems. Finally, object technology offers
an efficient method for modeling and im-
plementing heterogeneous transaction
management and for supporting the use
of semantic information to allow more
concurrency.

Unfortunately, the abundance of mod-
els and techniques makes the study and

evaluation of object-oriented approaches
intricately difficult. In this paper we have
presented a unifying analysis of the
process of building object-oriented het-
erogeneous database systems. Various
methods have been examined, and a
number of real-life systems have been
compared. We believe that this compre-
hensive review will enhance our under-
standing of these issues, substantiate the
use of object-oriented techniques, and
help put into perspective existing and
future projects.

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 191

REFERENCES

ABITEBOUL, S. AND BONNER, A. 1991. Objects and

views. In Proceedings of the ACM SIGMOD
ACM Press, New York, 238-247.

AGHA, G. 1986. Actors. The MIT Press, Cam-

bridge, Mass.

AHMED, R., ALBERT, J., Du, W., KENT, W., LITWIN,

W., .mD Sw, M.-C. 1993. An overview of
Pegasus. In Proceedings of the RIDE-IMS

(April), 273-277.

AHMED, R., DESCHEDT, P., KKNT, W., KETABCHI, M.,

LITWIN, W., RAFH, A., AND SHAN, M.-C. 1991.
Pegasus: A system for seamless integration of

heterogeneous information sources. In COMP-

COIV 91 (March), 128-136.

AHMED, R., DESCHEDT, P., Du, W., KENT, W.,
KETABCHI, M., LITWIN, W., Rim, A., AND SHAN,

M.-C. 1991. The Pegasus heterogeneous
multidatabase system. IEEE Computer 24, 12

(Dec.), 19-27.

ALBERT, J., AHMED, R., KETABCHI, M., KENT, W., AND

SW, M.-C. 1993. Automatic importation of
relational schemas in Pegasus. In Proceedings

of the RZDE-IMS (April), 105–113.

BADRINATH, B. R. AND RAMAMRITHAM, K. 1988.
Synchronizing transactions on objects. IEEE
Trans. Computers 37, 5 (May), 541-547.

BANERJEE, J., CHOU, H.-T., GMU, J. F., KIM, W.,
WOELK, D., AND BALLOU, N. 1987. Data

model issues for object-oriented applications.

ACM Trans. Office Inf. Syst. 5, 4 (Jan.), 3-26.

BARGHOUTI, N. S. AND KAISER, G. E. 1991. Con-
currency control in advanced database applica-
tions. ACM Comput. Surv. 23, 3 (Sept.),
269-317.

BATINI, C., LENZERINI, M., AND NAVATHE, S. B.
1986. Comparison of methodologies for

database schema integration. ACM Comput.

Surv. 18, 4 (Dec.), 323-364.

BEERI, C., BERNSTEIN, P. A., AND GOODMAN, N.

1989. A model for concurrency in nested

transaction systems. J. ACM, 36, 2 (April),

230-269.

BERNSTEIN, P. A., HADJILACOS, V., AND GOODMAN, N.
1987. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading,
Mass.

BERTINO, E. 1991. Integration of heterogeneous

data repositories by using object-oriented views.
In Proceedings of the First International Work-

shop on Znteroperability in Multidatabase Sys-
tems (April), 22–29.

BERTINO, E. 1992. A view mechanism for object-

oriented databases. In Advances in Database
Technology—EDBT ’92, C. Delobel and G. Got-
tlob, Ed~., Springer Verlag, New York, 136–151,

BERTINO, E., NEGRI, M., PELAGGATI, G., AND
SBATELLA, L. 1988. The comandos integra-
tion system: an object-oriented approach to the
interconnection of heterogeneous applications.

In proceedings of the Second International

Workshop on Object-Oriented Database Sys-
tems (Sept.), 213–218.

BERTINO, E., NEGRI, M., PELAGGATI, G., AND

SBATELLA, L. 1989. Integration of heteroge-

neous database applications through an
object-oriented interface. Inf. Syst. 14, 5,
407-420.

BLAIR, G. S., GALLAGHER, J. J., AND MALIK, J. 1989.
Genericity vs inheritance vs delegation vs con-
formance vs. . . . JOOP (Sept. \Oct.), 11-17.

BREITBART, Y., GARCIA-M• LINA, H., AND

SILBERSCHATZ, A. 1992. Overview of multi-

database transaction management. VLDB

Journal 1, 2, 181-239.

BREITBART, Y., GEORGAKOPOULOS, D., AND

SILBERSCHATZ, A. 1991. On rigorous transac-
tion scheduling. IEEE Trans. Softw. Eng. 17,9

(Sept.), %54-960.
BRETL, R. ET m. 1989. The GemStone data man-

agement system. In Object-Oriented Concepts,
Databases, and Applications, W. Kim and F. H.
Lochovsky, Eds., ACM Press, New York,

283-308.

BRIGHT, M. W., HURSON, R., AND PAKZARD, S. H.

1992. A taxonomy and current issues in mul-

tidatabase systems. IEEE Computer (March),
50-60.

BUCHMANN, A., Ozsu, M. T., HORNICK, M.,

GEORGAKOPOULOS, D., AND MANOLA, F. A. 1992.
A transaction model for active distributed sys-

tems. In Database Transaction Models for Ad-
vanced Applications, A. K. Elmagarmid, Ed.,

Morgan Kaufmann, San Mateo, Calif., 123-158.

BUKHRES, O. A., ELMAGARMID, A. K., AND MULLEN,

J. G. 1992. Object-oriented multidatabases:
Systems and research overview. In Proceedings
of the International Conference on Information
and Knowledge Management (Baltimore, MD,

Nov.), 27-34.

BUKHRES, O. A., CHEN, J., Du, W., ELMAGARMID,

A. K., AND PEZZOLI, R. 1993. InterBase: An

execution environment for heterogeneous soft-

ware systems. IEEE Computer, (Aug.), 57–69.

CASTELLANOS, M. AND SALTOR, F. 1991. Semantic

enrichment of database schemas: An object-ori-
ented approach. In Proceedings of the First
International Workshop on Interoperability in
Multidatabase Systems (April), 71-78.

CATrELL, R. G. G. Ed. 1993. The Object Database

Standard: ODMG-93. Morgan Kaufmann, San
Mateo, Calif.

CHEN, J., BUKHRES, O., AND ELMAGARMID, A. K.

1993. IPL: A multidatabase transaction speci-
fication language. In Proceedings of the 1993

International Conference on Distributed Com-
puting.

CHOMICKI, J. AND LITWIN, W. 1992. Declaratwe
definition of object-oriented multidatabase
mappings. In Proceedings of the Internat~onal
Workshop on Distributed Object Management

(Edmonton, Canada, Aug.), 307-325.

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

192 ● E. Pitouraet al.

CHRYSANTHIS, P. K. AND RMMAMRITHAN, K. 1994
Synthesis of extended transaction models using
ACTA ACM Trans. Database Syst 19, 3

(Sept.), 450-491.

COLLET, C., HUHNS, M. N., AND SHEN, W.-M. 1991.

Resource mtegratlon using a large knowledge
base in Carnot. IEEE Computer 24, 12 (Dec.),

55-62.

CONNORS, T AND LYNGBAEK, P. 1988. Providing

uniform access to heterogeneous information

bases. In Proceedings of the Second Interna-
tional Workshop on Object-Orzented Database

Systems(Sept.), 162-173.

CZEDJO, B. AND TAYLOR, M. 1991, Integration of
database systems using an ob]ect-oriented ap-
proach. In Proceechngs of the Fu-st Interna-

t~onal Workshop on Interoperabll~ty m Multl -
database Svstems (April), 30-37.

DAYAL, U. 1989 Queries and views in an object-

oriented data model. Database Programmmg

Languages, Proceedings of the 2nd Interna-
tional Workshop. Morgan Kaufmann, San Ma-

teo, Calif.

DAYAL, U., BUCHMANN, A. P., AND MCCARTHY, D. R.

1988. Rules are objects too A knowledge
model for an active, ob] ect-oriented database

system. In Advances m Database Technology
—EDBT ’88, Springer Verlag, New York,
127-143.

DAYAL, U. AND HWANG, H. 1984. View definition

and generalization for database integration in
a multidatabase system. IEEE Trans Softw.
Eng. 10, 6, 628-645.

DEVOR, C,, ELMASRI, R., LARSON, J., RAHIMI, S., AND

RICHARDSON, J. 1982, Five-schema architec-

ture extends DBMS to distributed applications.

Electron. Des. (March 18), 27-32,

Du, W. AND ELMAGARMID, A. K. 1989. Quasi seri-
ahzability: A correctness criterion for global
concurrency correctness in Interbase. In Pro-
ceedings of the International Conference on Very
Large Databases (Amsterdam).

DUCHENE, H., KAUL, M.j AND TURAU, V. 1988.

VODAK kernel data model. In %oceedmgs of
the Second International Workshop on ObJect-

Oriented Database Systems (Sept.), 174-192.

ELMAGARMID, A. K. (Ed.) 1992. Database Trans-

action Models for Aduanced Applications
Morgan Kaufmann, San Mateo, Cahf.

ELMAGARMID, A K , LEU, Y., LITWIN, w?,, AND

RUSINhIEWICS, M. 1990. A multidatabase
transaction model for InterBase. In Proceed-
ings of the 16th International Conference on
Very Large Data Bases (Aug. 1990), 507-518,

ELMAGARMID, A. AND Pu, C. (Eds.) 1990. Special
Issue on heterogeneous databases. ACM Com-
put. Surv. 22, 3 (Sept.),

FANG, D , HAMMER, J , AND MCLEOD, D. 1992, An

approach to behavior sharing in Federated
database systems In Proceedings of the Inter-
national Workshop on Dmtributed Object Man-
agement (Edmonton, Canada, Aug.), 66–80

GAGLIARDI, R.j CANEVE, M., AND OLDANO, G. 1990.
An operational approach to the integration of
distributed heterogeneous envmonments. In
Proceedings of the PARBASE-90 Conference

(Miami Beach, Fla, March), 368-377,

GALLAGHER, L J. 1992. Object SQL: Language
extensions for object data management. In Pro-

ceedings of the 1st Internat~onal Conference on
Information and Knowledge Management,

GARCIA-S• LACO,M., CASTELLANOS, M., AND SALTOR,
F 1993. Discovering interdatabase resem-

blance of classes for interoperable databases.
In proceedings of the 2nd International Work-
shop on In teroperabzllty in Multldatabase Sys-
tems, 26–33.

GELLER, J , PERL, Y., AND NWHOLD, E. J 1991.
Structure and semantics in 00DM class speci-
fication. SIGMOD Rec 20, 4 (Dee), 40-43.

GELLER, J., PERL, Y., NEUHOLD, E., AND SHETH, A.
1992. Structural schema integration with full

and partial correspondence using the dual
model. Znf. Syst. 17, 6, 443–464.

GEORGAKOPOULOS, D., HORNICK, M,, AND KRYCHNIA~,
P. 1993. An environment for the specifica-
tion and management of extended transactions

in DOMS. In Proceedings of the RIDE-IMS

(April), 253-257.

GEORGAKOPOULOS, D., HORNIC~, M., KRYCHNIAK, P,,
AND MANOLA, F. 1994. Specification and
management of extended transactions m a pro-

grammable transaction environment, In Pro-
ceedz ngs of the 10th In ternatzona 1 Conference
on Data Engmeermg (Feb.).

GEORGAKOPOULOS, D., RUSINKIEWICZ, M,, AND SHETH,
A, 1991. On serializability of multidatabase

transactions through forced local conflicts. In
Proceedings of the 7th International Conference

on Data Engmeermg (Kobe, Japan, April),
314-323.

HADJILACOS, T. AND HADJILACOS. V. 1991. Trans-
action synchronization in object bases. J. Com-
put. Syst SCL 43, 2–24.

HEILER, S. AND ZDONIK, S 1990 Object views
Extending the vision In Proceedings of the 6th
International Conference on Data Engmeenng,

86-93.

HEILER, S., HARADHV~LA, S., ZDONIK, S., BLAUSTEIN,
B., AND ROSENTHAL, A, 1992 A flexible
framework for transaction management in en-

gineering environment. In Database Transac-
tion Models for Advanced Apphcatzons, A K
Elmagarmld (Ed.) Morgan Kaufmann, San
Mateo, Cahf., 88–121,

HERLIHY, M P. AND WEIHL, W. E. 1991. Hybrid
concurrency control for abstract data types. J,
Comput S.vst Sci 43, 25-61

HUHNS, M N , JACOBS, N , KSIEZyK, T., SHEN, W -M.,
SINGH, M. P., AND CANNATA, P. E 1992. En-
terprise information modehng and model inte-
gration in Carnot In Enterprise Zntegratzon
Modehng, proceedings of the First Interna -

ACM Computmg Surveys, Vol 27, No 2, June 1995

Object Orientation ● 193

tional Conference, The MIT Press, Cambridge,

Mass., 290-299.

KAUL, M., DROSTEN, K., AND NEUHOLD, E. J. 1991.
Viewsystem: Integrating heterogeneous infor-

mation bases by object-oriented views. In IEEE
Internat~onal Conference on Data Engmeermg,

2-1o.

KENT, W. 1993. The objects are coming! Comput.
Standards Interfaces 15.

KIFER, M., KIM, W., AND SAGIV, Y. 1992. Query-

ing object-oriented databases. In Proceedings

of the 1992 ACM SIGMOD Conference,

392-402.

KIM, W. 1990. Introduction to Object-Oriented
Databases. MIT Press, Cambridge, Mass.

KM, W. 1992. The UniSQL\M system. Personal

communication, Sept.

KIM, W. AND SEO, J. 1991. Classifying schematic

and data heterogeneity in multidatabase sys-
tems. IEEE Computer 24, 12 (Dec.), 12-17.

KIM, W., CHOI, I., Gw, S., AND SCHEEVEL, M.
1993. On resolving schematic heterogeneity
in multidatabase systems. Int. J. Parallel Dis-

trib. Databases 1, 251–279.

KLAS, W., FANKHAUSER, P., MUTH, P., RAKOW, T.,

AND NEUHOLD, E. J. 1995. Database integra-

tion using the open object-oriented database
system VODAK. In Ob~ect-Oriented Multz-

clatabases, Prentice Hall, Englewood Cliffs,
N.J., 1995, to appear.

KRISHNAMURTHY, R., LITWIN, W., AND KENT, W.
1991. Language features for interoperability

of databases with schematic discrepancies. In
Proceedings of the ACM SZGMOD, 40-49.

KULKARNI, K. G. 1993. Object orientation and the

SQL standard. Comput. Standards Interfaces
15, 287-301.

KULKARNI, K. G. 1994. Object-oriented exten-
sions in SQL3: A status report. In Proceedings
of the 1994 ACM SIGMOD Conference (May),
478.

LARSON, J., NAVATHE, S., AND ELMARSI, R. 1989.

A theory of attribute equivalence in databases
with applications to schema integration. IEEE
Trans. Sof3w. Eng. 15, 4 (April), 449-463.

LI, Q. AND MCLEOD, D. 1991. An object-oriented

approach to federated databases. In Proceed-
ings of the Fu-st International Workshop on
Interoperabihty m Mult~database Systems

(APril), 64-70.

LIEBERMAN, H. 1986. Using prototypical objects

to implement shared behavior in object-ori-
ented systems. In Proceedings of 00PSLA ’86

(Sept.), 214-223.

LISKOV, B. 1988. Distributed programming in
Argus. Commun. ACM, 31,3 (March), 300-312.

LISKOV, B., DAY, M., AND SHIKA, L. 1992. Dis-
tributed object management in Thor. In
Proceedings of the International Workshop on
Distributed Object Management (Edmonton,
Canada, Aug.), 1-15.

LITWIN, W., MARK, L., AND ROUSSOPOULOS, N. 1990.
Interoperability of multiple autonomous

databases. ACM Comput. Suru. 22, 3 (Sept.),
267-293.

MANNINO, M. V., NAVATHE, S., AND EFFELSBERG, W.
1988. A rule-based approach for merging gen-
eralization hierarchies. Info. Syst. 13, 3,
257-272.

Mwom, F. AND HEILER, S. 1992. An approach to
interoperable object models. In Proceedings of
the International Workshop on Distributed Ob-
ject Management (Edmonton, Canada, Aug.),

326-330.

Mwou, F., HEILER, S., GEORGAKOPOULOS, D.,

HORNICK, M., AND BRODIE, M. 1992. Dis-
tributed object management. Int. J. Intell. Co-

operative Info. Syst. 1, 1 (June).

MOTRO, A. 1987. Superviews: Virtual integration

of multiple databases. IEEE Trans. Softw. Eng.
13, 7 (July), 785-798.

MULLEN, J. G. 1992. FBASE: A federated object-

base system. Int. J. Comput. Syst. Sci. Eng. 7,
2 (April), 91-99.

MULLEN, J. G. AND ELMAGARMID, A. 1993. Inter-
SQL: A multidatabase transaction program-
ming language. In Proceedings of the 1993

Workshop on Database Programming Lan-

guages.

MULLEN, J. G., KIM, W., AND SHARIF-ASKARY, J.

1992. On the impossibility of atomic commit-
ment in multidatabase systems. In Proceedings
of the 2nd International Conference on System
Integration (Morristown, N.J.).

NAVATHE, S., SAVASERE, A., ANWAR, T., BECK, H.,
AND GALA, S. 1994. Object modeling using

classification in CANDIDE and its application.
In Advances m Object-Oriented Database Sys-
tems, Springer Verlag, New York.

NICOL, J. R.j WILKES, C. T., AND MANOLA, F. A.
1993. Object orientation in heterogeneous dis-

tributed computing systems. IEEE Computer
26, 6 (June), 57-67.

OBJECT MANAGEMENT GROUP. 1991. The common
object request broker: Architecture and specifi-

cation. OMG Dec. 91.12.1, Dec.

OBJECT MANAGEMENT GROUP. 1992. Object man-
agement architecture guide. OMG Dec. 92.11.1,
Sept.

Ozsu, M. T. AND VALDURIEZ, P. 1991. Principles
of Distr~buted Database Systems, Prentice-Hall,

Englewood Cliffs, N.J.

PAPADIMITRIOU, C. 1986. The Theory of Database

Concurrency Control. Computer Science Press,
Rockville, Md.

PAPAZOGLOU, M. P. AND MARINOS, L. 1990. An
object-oriented approach to distributed data
management. J. Syst. Softw. 11, 2 (Feb.),

95-109.

PATHAK, G., STACKHOUSE, B., AND HEILER, S. 1991.
EIS/XAIT project: An object-based interoper-

ACM Computmg Surveys, Vol. 27, No 2, June 1995

194 “ E. Pitoura et al.

ability framework for heterogeneous systems,
Comput. Standards Interfaces 13, 315-319,

PEDERSEN, C. 1989. Extending ordinary inheri-

tance schemes to include generalization. In

Proceedings of 00PSLA ’89 (Oct.), 407-417.

PITOURA, E. 1995. Extending an object-oriented

programming language to support the integra-

tion of database systems. In 28th Annual
HawaLi International conference on System
Sc~ences (HICSS-28) (Maui, Hawaii, Jan.),
707-716.

RAJ, R, K.j TEMPERO, E., LEVY, H. M., BLACK, A. P.,
HUTCHINSON, N. C., AND JUL, E. 1991. Emer-
ald: A general-purpose programming language.
Softw. Pratt, Exper. 21, 1 (Jan.).

RAMAMRITHAM, K. AND CHRYSANTIS, P. K. 1992. In

search of acceptability criteria: Database
consistency requirements and transaction cor-
rectness properties. In Proceedings of the Inter-

national Workshop on Distributed Object Man-

agement (Edmonton, Canada, Aug.), 120–140.

RUSINKIEWICZ, M. AND SHETH, A. 1991. Multi-

transaction for managing interdependent data.
IEEE Data Eng. Bull. 14, 1 (March),

SALTOR, F., CASTELLANOS, M., AND GARGIA-SOLACO,
M. 1991. Suitability of data models as
canonical models for federated databases. ACM
SIGMOD Rec. 20, 4, 44-48.

SAVASERE, A., SHETH, A., GALA, G , NAVATHE, S.,
AND MARKUS, H. 1991. On applying classifi-

cation to schema integration. In Proceedings of
the Fu-st International Workshop on Interoper-
abdlty m Multldatabase Systems (April),
258-261.

SCHALLER, T., BUKHRES, O. A., CHEN, J., AND
ELMAGARMID, A. K. 1993. A taxonomic and
analytical survey of multidatabase systems.
Tech. Rep. CSD-TR-93-040, Purdue Univ., West
Lafayette, Ind.

SCHOLL, M. H. AND SCHEK, H.-J. 1990. A rela-
tional object model. In Proceedings of the Inter-
national Conference on Database
Theo~—ZCDT ’90 (Dec.), 89-105.

SCHOLL, M, H., SCHEK, H. J., AND TRESCH, M. 1992.
Object algebra and views for multiobjectbases.

In Proceedings of the Internat~onal Workshop
on DwtrLbuted Object Management (Edmonton,
Canada, Aug.), 336-359.

SCMREFL, M AND NEUHOLD, E. J 1988 Object
class definition by generalization using upward
inheritance, In proceedings of the IEEE Inter-
national Conference on Data Engineering, 4– 13.

SCHWARTZ, P. M. AND SPECTOR, A. Z. 1984. Syn-
chronizing shared abstract types. ACM Trans.
Comput. Syst. 2, 3 (Aug.), 223-250.

SHETH, A. P., GALA, S. K., AND NAVATHE, S. B.
1993. On automatic reasoning for schema in-
tegration. Int. J. Intell. Cooperattue Inf. Syst.
2, 1 (March).

SHETH, A. AND LARSON, J. 1990. Federated
database systems, ACM Comput. Surv. 22, 3

(Sept.), 183-236.

SHETH, A. P., LARSON, J, A., CORNELIO, A,, AND

NAVATHE, S. B. 1988. A tool for integrating
conceptual schemas and user views. In Pro-

ceedings of the 4th International Conference on
Data Engineering (Feb.), 176-183.

SKARRA, A. H. 1991. Localized correctness speci-
fication for cooperating transactions in an ob-

ject-oriented database. IEEE Bull. Office
Knowl. Eng. 4, 1,79-106.

SKARRA, A. H. AND ZDONIK, S. 1989. Concurrency
control and object-oriented databases. In Ob-
ject-Oriented Concepts, Databases, and ApplL -
catzons ACM Press, New York, 359–421.

SNYDER, A. 1986. Encapsulation and inheritance

in object-oriented programming languages. In
Proceedings of OOPSLA ’86 (Sept.), 38-45.

SOLEY, R. M. 1992, Using object technology to
integrate distributed applications. In Erzter-

prise Integration Modehng, Proceedings of the

Fwst International Conference, MIT Press,
Cambridge, Mass., 446-454,

STEIN, L. A. 1987. Delegation is inheritance. In
proceedings of OOPSLA ’87 (Oct.), 138-146.

TAYLOR, C. J. 1992. A status report on open dis-

tributed processing. Fwst Class (Object Man-
age. Group Newsl.) 2, 2 (June/July), 11–13,

THOMAS, G., THOMPSON, G. R., CHUNG, C.-W.,
BARKMEYER, E., CARTER, F., TEMPLETON, M.,

FOX, S., AND HARTMAN, B 1990. Heteroge-
neous distributed database systems for produc-

tion use. ACM Comput. Suru. 22, 3 (Sept.),
237-265.

TOMLINSON, C., LAVENDER, G., MEREDITH, G,,

WOELK, D., AND CANNATA, P. 1992. The
Carnot extensible service switch (EES)—Sup-

port for service execution. In Enterprise
Integration Modeling, proceedings of the Fwst
International Conference MIT Press, Cam-
bridge, Mass., 493-502.

TSICHRITZIS, D. AND KLUG, A 1978. The
ANSI/X3 /SPARC DBMS framework Inf.
Syst. 3, 4,

UNGAR, D, AND SMITH, R. B. 1987. Selfi The power
of simplicity. In Proceedings of OOPSLA ’87

(Oct.), 227-242.

WEGNER, P. 1987. Dimensions of object-based
language design. In Proceedings of- 00PSLA

’87 (Oct.), 168-182.

WEIHL, W. E. 1988. Commutativity-based con-
currency control for abstract data types. IEEE
Trans. Computers, 37, 12, 1488-1505.

WEIHL, W. E. 1989 Local atomicity properties:
Modular concurrency control for abstract data
types. ACM Trans. Program, Lang. Syst. 11, 2
(April), 249-282.

WEIKUM, G. 1991. Principles and realization of
multilevel transaction management. ACM
Trans. Database Syst. 16, 1 (March), 132-180.

WOELK, D., SHEN, W.-M., HUHNS, M., AND CANNATA,
P. 1992. Model driven enterprme informa-
tion in Carnot. In Enterprwe Integration Mod-

ACM Computmg Surveys, Vol. 27, No, 2, June 1995

Object Orientation ● 195

cling, Proceedings of the First International ZHANG, A. AND 13LMAGARM1D, A. K. 1993. A theory
Conference, MIT Press, Cambridgej Mass.,
301-309.

of global concurrency control in multidatabase
systems. VLDB J. (July).

WOELK, D., CANNATA, P., HUHNS, M., SHEN, W.-M., ZHANG, A. AND PITOURA, E. 1993. A view-based
AND TOMLINSON, C. 1993. Using Carnot for approach to relaxing global serializability in
enterprise information integration. In Proceed- multidatabase systems. Tech. Rep. CSD-TR-93-
mgs of the Second In ternat~onal Conference on 082, Purdue Univ., West Lafayette, Ind.
Parallel and Distributed Information Systems

(Jan.), 133-136.

Received January 1994; flnalrevlsion accepted November l994; accepted April 1995,

ACM Computing Surveys, Vol 27, N0 2, June 1995

