Privacy Preservation in Social Networks with Sensitive Edge Weights

Lian Liu (speaker), Jie Wang, Jinze Liu, and Jun Zhang
Computer Science Department, University of Kentucky,

$$
\text { May 1, } 2009
$$

Outline

- Privacy-Preserving Social Networks
- Gaussian Perturbation
- Greedy Perturbation
- Experimental Results
- Conclusion

Unweighted social networks

A part social network of Enron email communication.

Source: Priebe et. al. Scan
Statistics on
Enron Graphs.

Weighted Social Networks

Source: Zhou et. al. Towards Discovering Organizational Structure from Email Corpus.

Weighted Social Networks

After adding weights to the social network, a new data pattern appears, such as leadership as follows.

Source: Zhou et. al. Towards Discovering Organizational Structure from Email Corpus.

Data Privacy and Data Utility

- Data Privacy

The individual edge weights (essentially a local information)

Data Privacy and Data Utility

- Data Privacy

The individual edge weights (essentially a local information)

- Data Utility

The shortest path, i.e., a path with a minimum sum of weights (essentially a global property)

Goals

- Our goal:

Preserving privacy while maintaining data utility. In this paper,

- perturb edge weights as much as possible,
- keep shortest paths (and lengths) approximate to the original ones as much as possible.

Challenges

Theorem: There does NOT exist one perfect scheme such that it can modify all weights but at the same time keep all shortest paths (and lengths). *

[^0]
Anonymization method:

No edge or node deletion/insertion
--> edge weight perturbation

$$
\mathrm{w}_{\mathrm{ij}}->\mathrm{w}_{\mathrm{ij}}^{*}
$$

Two (utility) metrics:

- Keep the same shortest path
- Preserve the lengths of the perturbed shortest path within some bounds of the original

Outline

- Privacy-Preserving Social Networks
- Gaussian Perturbation
- Greedy Perturbation
- Experimental Results
- Conclusion

Gaussian Perturbation

Gaussian Perturbation

Gaussian Perturbation

- Privacy: almost all weights are changed.
- Utility: Same shortest path between New Supplier and Walmart and length is 99.

Analysis on Gaussian perturbation

Let the length of a path be L in original networks and L^{*} be the length of the corresponding path in perturbed networks.

1. approximately $68 \% L$ satisfy $\quad\left|\frac{L-L^{*}}{L}\right|, \leq \sigma$
2. Approximately $98 \% L$ satisfy $\quad\left|\frac{L-L^{*}}{L}\right| \leq 2 \sigma$
3. approximately $99.7 \% L$ satisfy $\left|\frac{L-L^{*}}{L}\right| \leq 3 \sigma$
[^1]
Analysis on Gaussian perturbation

Let $d_{i, j}$ be the length of the shortest path between node i and node j, and $d_{i, j}$ second be the length of the second shortest path between same node pair.
We define $\beta_{i, j}=\frac{d_{i, j}^{s e c o n d}-d_{i, j}}{d_{i, j}}$.
If $\beta_{i, j}>=2 \sigma$, the shortest path is highly possible to be preserved after Gaussian perturbation. *

$$
\text { Recall approximately } 98 \% L \text { satisfy }\left|\frac{L-L^{*}}{L}\right| \leq 2 \sigma^{\circ}
$$

[^2]
An example

The shortest path, length is 21
The second shortest path, length is 30

$\boldsymbol{\beta}_{1,6}=(30-21) / 21=0.429>=2 \boldsymbol{\sigma}$. So the shortest path between \boldsymbol{v}_{1} and \boldsymbol{v}_{6} can be maintained no matter how you choose the random value from Gaussian distribution.

Gaussian Perturbation

- Gaussian Perturbation is quick and independent with global structure. But It cannot always keep the same shortest paths when perturbation get larger (i.e., σ is large).
- So we propose alternative Greedy Perturbation which can keep the exact shortest paths, and make sure that their corresponding lengths are similar to the original ones.

Outline

- Privacy-Preserving Social Networks
- Gaussian Perturbation
- Greedy Perturbation
- Experimental Results
- Conclusion

Greedy Perturbation

- Gaussian Perturbation is quick and independent with global structure. But It cannot always keep the same shortest paths when perturbation get larger
- So we propose alternative Greedy Strategy which can keep the exact shortest paths, and try to make corresponding lengths close to the original ones.

An example: Shortest Path Set \boldsymbol{H}

the shortest path $\boldsymbol{p}_{1,6}$

the shortest path $\boldsymbol{p}_{3,6}$

Edge Categorization

Edge Categorization

the shortest path $\boldsymbol{p}_{1,6}$

the shortest path $\boldsymbol{p}_{3,6}$

Edge Categorization

the shortest path $\boldsymbol{p}_{1,6}$

the shortest path $\boldsymbol{p}_{3,6}$

Edge Categorization

__ partially-visited edges
_ all-visited edges

the shortest path $\boldsymbol{p}_{1,6}$

the shortest path $\boldsymbol{p}_{3,6}$

Non-Visited Edge

For a non-visited edge, increasing its weight will NOT change all shortest paths (and lengths) in H. *

$$
\begin{aligned}
& P_{1,6} \text { (no change) } \\
& P_{3,6} \text { (no change) } \\
& P_{4,6} \text { (no change) }
\end{aligned}
$$

[^3]
All-Visited Edge

For an all-visited edge, decreasing its weight will NOT change all shortest paths in H, but decrease the length of corresponding shortest paths. *

$$
\begin{aligned}
& P_{1,6} \text { (no change) } \\
& P_{3,6} \text { (no change) } \\
& P_{4,6} \text { (no change) }
\end{aligned}
$$

Partially-Visited Edge

For a partially-visited edge, we want to increase its weight by t. *

$P_{1,6}$ (changed)
$P_{4,6}$ (no change)

[^4]
Partially-Visited Edge

For a partially-visited edge, we want to increase its weight by \boldsymbol{t}.

Constraints: the weight increment \boldsymbol{t} should be smaller than the diff. between $\mathrm{d}_{\mathrm{i}, \mathrm{j}}$ and $\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{-}$.

$$
\begin{aligned}
0<t< & \min \left\{d_{s_{1}, s_{2}}^{-}-d_{s_{1}, s_{2}} \mid\right. \\
& \text { for all } \left.p_{s_{1}, s_{2}} \text { such that } e_{i, j} \in p_{s_{1}, s_{2}}\right\}
\end{aligned}
$$

[^5]
Partially-Visited Edge

For a partially-visited edge, we want to decrease its weight by \boldsymbol{t}. *

$$
\begin{aligned}
& P_{1,6} \text { (no change) } \\
& P_{3,6} \text { (no change) } \\
& P_{4,6} \text { (changed) }
\end{aligned}
$$

[^6]
Partially-Visited Edoe

For a partially-visited edge, we want to decrease its weight by \boldsymbol{t}. *

$P_{1,6}$ (no change)
$P_{3,6}$ (no change)
$P_{4,6}$ (probably change to $\left.P_{4,6}^{+}\right)$
$P_{4,6}^{+}$, the shortest path between V_{4} and V_{6} through edge $\left(\mathrm{V}_{2} \rightarrow\right.$
V_{5})
Constraints: the weight decrement \boldsymbol{t} should be larger than the diff. between $\mathrm{d}^{+}{ }_{\mathrm{i}, \mathrm{j}}$ and $\mathrm{d}_{1, \mathrm{j}}$.

$$
\begin{aligned}
0<t< & \min \left\{d_{s_{1}, i}+w_{i, j}+d_{j, s_{2}}-d_{s_{1}, s_{2}} \mid\right. \\
& \text { for all } \left.p_{s_{1}, s_{2}} \text { such that } e_{i, j} \notin p_{s_{1}, s_{2}}\right\}
\end{aligned}
$$

[^7]
Greedy Algorithm

1. Increase non-visited edges and decrease all-visited edges.
2. Sort all partially-visited edges in descending order to a stack \boldsymbol{S} by the number of shortest paths going through them.
3. For a given partially-visited edge in \boldsymbol{S}
a. either increasing or decreasing its weight depends on the comparison between the real length and the current length.
b. the modified value t is chosen as the boundary value of constraint inequalities.
c. After modification, delete this one from S.
[^8]
Outline

- Privacy-Preserving Social Networks
- Gaussian Perturbation
- Greedy Perturbation
- Experimental Results
- Conclusion

Experiments about Data Privacy and Data Utility

Gaussian Perturbation ($\sigma=0.1$)

Same shortest paths can not be guaranteed.

Greedy Perturbation ($\mathrm{H}=77 \%$)

Same shortest paths can be guaranteed.

Discussion on Experiments

	Data Utility	Data Privacy
Gaussian	Lengths of shortest paths are better preserved, cannot guarantee maintain the exact shortest path.	Low
Greedy	Length of shortest path is not well preserved compared to Gaussian. But the shortest paths are exactly maintained.	High

conclusion

- What do we want to do?
- Keep weight privacy and the shortest path utility.
- Why do we want to do?
- Weights in some social cases are sensitive and confidential.
- How do we do?
- Gaussian perturbation and greedy perturbation are proposed to achieve the balance between data utility and data privacy in different conditions.
- What we do is applicable?
- Based on experiments, it seems that the two strategies do meet the expectation of our purpose.

Q\&A

Thank you very much!

How to achieve data utility and data privacy

- How to change weights as much as possible? Boundary value of constraint inequalities.
- How to guarantee the shortest paths the same as original ones?
If the modified weights satisfy constraints (Proposition 7— 10 in our paper), it can be guaranteed.
- How to make the length of the shortest paths as close to original ones as possible?
Alternating process of weight increasing and decreasing.

Why don’t just hide weights

[^0]: * Formal proposition and mathematic proof are referred to Proposition 1 in our paper.

[^1]: * Formal theorem/corollary and mathematic proofs are referred to Theorem 2 and Corollary 3 in our paper, respectively.

[^2]: * Formal theorem/corollary and mathematic proofs are referred to Theorem 2 and Corollary 3 in our paper, respectively.

[^3]: *Formal definition is referred to Proposition 7.

[^4]: * How do we guarantee it (i.e., impose some constraints over the weight increasing) will be shown as

[^5]: * How do we guarantee it (i.e., impose some constraints over the weight increasing) will be shown as

[^6]: * How do we guarantee it (i.e., impose some constraints over the weight decreasing) will be shown as

[^7]: * How do we guarantee it (i.e., impose some constraints over the weight decreasing) will be shown as

 Proposition 10 in our paper.

[^8]: * For the detailed algorithm, please refer to Algorithm 1 in our paper.

