A Survey of Peer-to-Peer Content Management

Thodoris Tsotsos

Computer Science Department, University of Ioannina, Greece

thodoris@cs.uoi.gr
Abstract

In the past few years, peer-to-peer systems (p2p) have become a major research topic as an efficient means for sharing data among autonomous nodes. The reason that made them one of the fastest growing Internet applications is that they offer the potential of low cost sharing of information, autonomy and privacy. In this paper, we present an overview of the several kinds of p2p systems that have been introduced. We focus on issues related to clustering, search methods and replication techniques that have been adopted in the most popular of them.

1. Introduction

Peer-to-peer systems have become one of the fastest growing applications in recent years since they offer a lot of potentials at the domain of sharing resources among dynamic sets of users while providing autonomy, robustness in failures, self-organization, load balancing, privacy, etc. In p2p computing, distributed nodes (peers) across the Internet form an overlay network and exchange information directly with each other.

The first widely used system of this kind of distributed computing was Napster. Napster relied on a centralized architecture, where a central server (e.g. Napster’s web site) stored the index of all the files available from the nodes that formed the overlay network. In order to find and download a file, a node had to issue a query to the central Napster site and find which other nodes stored the requested file. The file was then downloaded directly from one of these nodes. The main disadvantage of Napster was that the file location method used was “centralized”, thus the system was not scalable. In addition, due to the centralized nature of Napster, legal issues forced it to shut down. To avoid this kind of problems, the research community turned to unstructured architectures for peer-to-peer systems. Gnutella is one of the most representative systems that uses unstructured content location and relies on flooding to answer nodes queries.

In general, peer-to-peer systems can be classified based on their architecture. The centralized p2p systems, like Napster, rely on indexing all the shared data of all nodes in a central directory. Queries are issued to this central directory to find the nodes that have the desired files. In decentralized p2p systems, the information is shared among the nodes of the network without having any centralized structure, such as a central directory. We can further distinguish the decentralized p2p systems in structured and unstructured ones. In structured p2p systems, data items are not placed at random nodes but at specific nodes determined by using distributed hashing (DHT). In more details, each data item is assigned a key, by using DHT, and each node is assigned a range of keys. Thus a data item with an associative key will be placed at the node that includes this key in its range. In this kind of systems search is very efficient, requiring a small number of hops to answer a query. CHORD [1] and CAN [2] are the most popular structured p2p systems. In unstructured p2p systems, there is no assumption about how the data items are placed at the nodes. The location of each data item is unknown. Thus, in order to find a file, the most common method is flooding which induces a lot of communication overhead in the p2p network. The most popular unstructured p2p system is Gnutella that uses flooding as a search method. In addition, p2p systems can be classified based on the degree of decentralization. Thus, p2p systems can be categorized either as pure, where all nodes have equal roles, e.g. playing both the role of a client and a server, or as hybrid where some nodes, denoted as super-peers, have different roles from the rest of the nodes, denoted as leaf-nodes. Each super-peer acts like a proxy for its neighboring leaf-nodes by indexing their data-items and servicing their requests. Figure 1 demonstrates the p2p classification described above.

Paper Outline
In this paper, we survey recent work on several issues that have risen with the arrival of p2p systems. In Section 2, we describe several methods that have been adopted by p2p systems to cluster nodes or data items in the overlay network and Section 3 refers to the most important search techniques. In Section 4 we describe several p2p systems that support range queries from the perspective of clustering and routing.

[image: image1.png]Fp

Hybeid P2p Puse P2
— Unstictused Stosctueed | | Unstctused

Figure 1: Classification of p2p systems

The most popular and efficient replication methods are represented in Section 5. Finally, in Sections 6 and 7 we discuss about how a distributed data management can be achieved by using p2p systems and we summarize our conclusions respectively.

2. Clustering

In peer-to-peer systems there are two categories on how clustering can be achieved [10]. Both of them have the intention to place together data that have similar properties. The first category clusters similar data or indexes of similar data. Thus, similar data (or indexes of similar data) are placed at the same or neighboring nodes. In contrast, the second category groups nodes that have similar data. By clustering nodes with relevant data, when a query is routed and finds a node with the desired data, then with high probability this node must be at the appropriate cluster, thus, all the other nodes that have similar data can be found within a short distance. In centralized p2p systems, no clustering is applied. Hence, a node joins the p2p network in a random fashion. In the following two sections, we describe several clustering methods for structured and unstructured p2p systems respectively.

2.1 Clustering in structured p2p systems
Structured p2p systems use the first category to achieve clustering. As mentioned before, at this kind of p2p systems, a key derived from a hash function is assigned to each data item.

CHORD [1] assigns (using a hash function) to each node of the overlay network an identifier so as each node to maintain a small fraction of (key, data) pairs. In more details, the nodes identifier space is represented as a ring and each data item’s associative key k is assigned to the node, denoted as successor of key k, whose identifier is equal or follows in the identifier space the key value k. Figure 2 shows an example with four nodes and in which node each key will be stored. When a new node n enters the system then the appropriate keys stored at n’s successor must be reassigned to n. To implement this procedure and for better routing performance, each node maintains information about a small fraction, O(logN), of the other N system’s nodes in a structure called finger table. The i-th entry of node k’s finger table includes the identity of the first node that succeeds node k a distance at least 2i-1, i=1,…,m on the circle. Hence it has the information about the exact node location of the data keys that intuitively must be placed at nodes with distance 2i-1, i=1,…,m far from node k. In Figure 2 we represent the finger table of node 0 that points to nodes 1, 2 and 4 respectively. Since nodes 2 and 4 are not in the system, node 0 points to nodes 3 and 6 that immediately follow nodes 2 and 4 respectively. Thus, when a new node n joins the system the three steps that must be followed are: firstly, n must connect with an existing node n’ in the system and initialize its finger table using n’’s support, secondly the finger tables of the existing nodes in the system must be updated to include node n and finally the appropriate keys that is responsible for, must be transferred to node n from its successor, e.g. the first node clockwise in the ring from n.

In CAN [2] the hash table represented as a d-dimensional Cartesian coordinate space that is partitioned among all the CAN nodes of the system. The associative keys of data items are mapped onto points of the coordinate space. Hence, in each node an individual chunk (zone) of the coordinate space is assigned. Figure 3 illustrates a 2-dimensional coordinate space with 6 nodes. The (key, data) pairs stored in a node are those whose key values are contained in the zone of that node. Thus, similar keys are laid in the same node. Furthermore, two nodes in the overlay network are immediate neighbors if their zones are adjacent. This means that relevant keys, hence relevant data, are either in the same node or at adjacent nodes. The clustering of the data items is more clear when a new node ni joins the CAN network. This
[image: image2.png]Finger Table.

T T
2 3
a6

Suscwsor (10—

Sucessor 4)26

2

Suwcessor (=1

Sucessor 2)3

[image: image3]
Figure 2: An identifier circle consisting of

Figure 3: Example 2-d space with 6 nodes

the four nodes 0, 1, 3 and 6. Finger table for

node 0 and key locations for keys 1, 2 and 7.

In this example, key 1 is located at node 1,
key 2 at node 3, and key 7 at node 0.

node must allocate its own chunk in the coordinate space. That can be achieved by first connecting randomly the new node with a CAN node currently in the system. Then the new node randomly selects a point P from the coordinate space and sends a message in the overlay CAN network to find the node nj whose zone contains the point P. The occupant node nj splits its own zone in two equal chunks and assigns one of them to the new node. Finally, the node ni connects immediately with node nj and with a subset of nj’s neighbors, whose zones are adjacent with ni’s zone, while node nj updates its neighbor set in order to delete the immediate connections it had with the neighbor nodes that are no longer its neighbors after the join of the new node ni in the CAN network. From the join procedure it is obvious that when a new node enters the CAN network and “selects” a chunk of the coordinate space, the data items whose keys are included in this chunk, which are similar data, will be stored in the new node. Furthermore this node will have neighbors with adjacent zones with its zone, thus the data stored to its neighbor nodes will be similar to its stored data.

In [9], the notion of semantic overlay networks is introduced where indices of documents are distributed across the network based on their semantics. Thus, documents with similar semantics are clustered either at the same node or at nodes with small distance between them, creating a semantic overlay network. In particular, each document is represented by semantic vector in a Cartesian space, based on its content. These vectors are derived using either the vector space model (VSM) or latent semantic indexing (LSI). Hence, the similarity of two documents is proportional to the similarity of their semantic vectors. The Cartesian space is used along with CAN, so as the location (e.g. point) of a document in the CAN’s coordinate space is derived from its semantic vector. So, similar documents are placed in a short distance at the Cartesian space. Furthermore, as mentioned in CAN, for each node of the overlay network is assigned a zone of the space. Thus, each node will store the indices of semantically similar documents.

2.2 Clustering in unstructured p2p systems

Gnutella does not provide any kind of clustering, e.g. when a new node joins the network connects with a small set of random nodes of the network. In [6], some kind of clustering for Gnutella are proposed based on grouping nodes that share the same interests. More specifically, this mechanism organizes the Gnutella nodes into a clustered network on top of the Gnutella network. Thus the basic Gnutella topology is retained and in addition a new network of nodes is created on top of Gnutella consisting of shortcut links. Figure 4 illustrates a Gnutella overlay network with three shortcut links for the bottom-right node. The criterion for creating a shortcut link between two nodes based on interest-based-locality, e.g. if a node ni has a data that another node nj requested, then node ni is very likely to have other data items that node nj is interested in. Hence these two nodes share the same interests. Each node maintains a shortcut list with the
[image: image4.png]

[image: image5.png]

Figure 4: A Gnutella overlay network Figure 5: Overlay network with two overlapping

with three shortcut-links for the bottom guide rules.

right node.
nodes to which it is connected through shortcuts. Initially, a node joins the system in a Gnutella-like fashion since it has no information about the other nodes interests. Then, when it looks up for a data item, a set of nodes is returned that stores the desired data. The newly joined node will create shortcuts with these nodes updating its shortcut list. Hence the node is connected, clustered, with nodes that share similar interests.

In Semantic Overlay Networks (SONs) [7], nodes that have similar documents are clustered at the same group, denoted as SON. In particular, a classification hierarchy is used to classify the nodes documents, which is defined a priori. Thus two nodes belong to the same overlay network (SON) if some of their documents are relevant, e.g. they are classified under the same concept. This way, a set of overlay networks are formed; the number of these networks is predefined. All nodes that belong to the same overlay network have documents that belong to the same concept. In addition, nodes can belong to more than one SON. Thus when a node wishes to join the p2p network, it initially floods the network to obtain the classification hierarchy. It then decides which SONs to join. This can be done by classifying its documents to their associative concepts. The next step is to find nodes for each SON that it belongs to. This can be done again by flooding the network.

Another unstructured p2p system, which provides clustering of nodes with similar data, is the Associative Overlays [8]. The overlay network is constituted by guide rules. Each guide rule is a set of nodes that satisfy some predicate. Thus all the nodes that belong to the same guide rule contain similar data. The connectivity of nodes inside a guide rule is similar to the connectivity of unstructured network. Figure 5 illustrates a set of nodes with two overlapping guide rules. Several kinds of guide rules can be proposed. Possession rules is the guide rule applied in [8], where each possession rule has an associative data item. The predicate a node must satisfy to be included in a possession rule is the presence of the possession’s rule associative data item to its local index. Note that a node can participate in more than one guide rules.

3. Search

Several search techniques have been proposed in the literature in order to accomplish discovery in a small number of hops and getting as much query results as possible. In centralized systems, such as Napster, a centralized index is storing information about the contents of all nodes in the network. Queries are issued to this central index to find the nodes that have the desired files. The files are then downloaded directly from these nodes. The drawback of this approach is that the central index server becomes a bottleneck and a single point of failure. In decentralized systems, the search methods can be categorized in two main domains. The first domain refers to those methods applied to structured p2p systems and the second domain to methods applied to unstructured p2p systems. The categorization is done due to the morphology of these two kinds of p2p systems. More specifically, at the first one data items are placed at specific nodes in contrast with the other kind where there is no assumption about the location, e.g. the nodes, the data items will be placed at.

3.1 Searching in structured p2p systems

In general, searching in structured p2p systems is very efficient because specific data items are placed at specific nodes, thus all lookups are resolved successfully.

In Chord [1], an efficient method for routing can be implemented using the nodes finger tables. When a requesting node asks for a key k, it must check its finger table to see whether one of the nodes for which has information about is the successor of the key. If so, it can contact immediately the successor node of the key, as it knows its identity, hence the lookup is resolved in one hop. Otherwise, when the requesting node does not know about the successor of key k it must find another node j in its finger table, whose identifier is closer and precedes the key. Node j repeats this procedure. Hence, at each step the query is forwarded to nodes that are closer and closer to the key. Finally, the query message finds the immediate predecessor node of the node whose identifier is associated with key k. The successor of that node holds the key k, thus the lookup procedure is resolved correctly. It has been shown that a query request is resolved in an N-node network in O(logN) hops.

In CAN [2], each node maintains the IP address and the coordinate zones of its neighbors. When a query, generated in a CAN node i, requires a data item then the node i can learn data item’s associative key, using the hash function, and the point P of the coordinate space corresponding to the key. If the point P isn’t within the requesting node’s zone routing is deployed. The routing works by following the straight line of the coordinate space that connects the requesting node’s coordinates with the associative coordinates of the data item (point P). In more details, a CAN node forwards the query to one of its neighbors whose coordinates are closest to the destination coordinates. It has shown that for a d-dimensional space, the average path length is (d/4)(n1/d) hops which means that increasing the number of dimensions of the coordinate space the average path length grows by O(n1/d).

Finally, pSearch procedure was introduced in [9] in order to achieve routing in semantic overlay networks. When a query q is created at a node, initially its semantic vector is generated, e.g. a point of the Cartesian space, and the query message is forwarded to the overlay network, as described in CAN, in order to find the destination, e.g. the node that contains this point in its zone. Upon reaching the destination, the query is flooded to all nodes within a certain radius. Finally, all nodes that get the query message execute a search to their local index so as to find query matches.

3.2 Searching in unstructured p2p systems

In [4] the search methods in unstructured systems are classified in two categories, blind and informed search. In blind methods, there is no information about the location of a document. In contrast, in informed methods a distributed directory service contributes in discovering the requested data location.

Blind search methods are very popular due to their simplicity. The most simple blind search mechanism is flooding, used by Gnutella. When a node initiates a query, in order to find results, it sends the query message to its neighbors that forward the query message to their neighbors and so on. Thus the whole network or a subset of it, if we use the TTL (time-to-live) parameter, is flooded in order to find as many matches as possible matches for the query. The TTL parameter represents the maximum number of hops the query message can travel before it gets discarded. The main disadvantages of this method are the large network overhead and the TTL selection problem. In order to eliminate this huge cost, several search methods, variations of flooding have been proposed. The first one is Modified-BFS [4] where each node instead of forwarding the query message to all of its neighbors, it chooses randomly a fraction of its neighbors. This algorithm reduces the network overhead of flooding but not as much as we wanted. In order to eliminate further the network overhead and resolve the TTL selection problem, the expanding ring [5] search method was proposed. This technique uses iterative flooding searches with increasing TTLs. The requesting node begins the search by flooding the network with a small TTL and if the search is not successful then the requesting node repeats the same procedure using an increased value for TTL and so on. The advantage of this method is that it is possible to find relative to the query data using a small TTL, hence incurring a small network overhead. More specifically, “popular” data that spread across a large fraction of the network nodes can be found with little network overhead. Instead, rare data can bring larger network overhead than flooding. Furthermore, expanding ring does not solve the problem of message duplication where a node receives the same query message from different neighbors. Random walks [5] try to solve this issue. The requesting node forwards the query message to a fraction k of its neighbors set. Then each of the intermediate nodes forwards the query message to a randomly selected node. Hence, the query message follows k different paths, denoted as walks, in order to find the query results. To terminate a walk either a specified TTL or “checking” where the walker asks first the requesting node before deciding to visit a new node can be used.

For hybrid p2p systems, two blind search techniques have been proposed. In hybrid p2p systems each super-peer is “responsible” for a number of other peers, denoted as “leaf-nodes”. In GUESS [4], the super-peers are fully connected and each super-peer is connected with a fraction of other nodes of the network. The search is done by repeatedly forwarding the query message to a different super-peer and furthermore forwarding the query to the super-peer’s leaf nodes. The search is terminated when a specified number of results has been found. In Gnutella2 [4], when a super-peer gets a query message from a leaf-node, it forwards the message to the other relevant leaf-nodes and also to its neighboring super-peers.

Also, several informed search techniques have been proposed. The most important are described below. In order to eliminate the weakness of Gnutella flooding, that is scalability, [6] proposed an informed search mechanism that uses the shortcut links mentioned in previous section. In particular, when a node requests for a data item, firstly it uses its shortcut list to select the nodes to which will forward the query message. If the data item cannot be located through shortcuts then the node uses the underlying Gnutella network and performs flooding, otherwise its shortcut list must be updated with the nodes storing the returned data item.

Another informed search technique is Intelligent-BFS [4] where each node stores for each of its neighbors the number of results returned from recently answered queries. Thus, when a node receives a query message, identifies all the previous queries that are similar with this query and forwards the query message to the set of neighbors that returned the most results for the similar previously answered queries.

An alternative informed search method uses local-indices [4] where each node has information about the files stored at nodes within a specific distance from it. Thus a node returns query results on behalf of a set of other nodes. The query message can be forwarded only at the nodes that are within a specified distance from the requesting node. A very promising informed search technique, based on distributed indexing, proposed in [3]. Each node of the network maintains routing indices (RI), one for each of its links. Each node’s routing index summarizes the contents of other nodes of the network that can be reached through the selected node’s link. When a node receives a query, it firstly evaluates it using its local data and secondly if not enough results have been found it must forward this query to other nodes of the network. Thus, instead of routing the query message to all of the node’s neighbors, as flooding does, with routing indices a node can select some of its neighbors, which by following the path through them the more relevant to the query data items can be found, to forward the query. Several routing indices have been proposed. Compound Routing Indices (CRI) of node n for a specified link l summarize information about the contents of other nodes that are reachable from node n through link l. The main drawback of this CRI’s is that they don’t take into account the cost of the number of “hops” required to find the desired data. The hop-count RI’s overcome this problem by storing for link l a routing index for each number of hops up to a maximum number of hops, denoted as horizon. The drawback of this index is that it requires higher storage than CRI’s and does not have any information for nodes beyond the horizon. The exponential RI is a combination of both CRI’s and hop-count RI’s, eliminating their drawbacks and generally outperforming the other two kinds of RI’s.

A search method that cannot be categorized neither as blind nor as informed, is the one used in Overlay Semantic Networks [7]. When a node creates the query, first it classifies it and then forwards the query message to the appropriate SON. Then, the query message is propagated at the nodes of the SON, in order to find matching documents, using flooding. As mentioned before, this method cannot be categorized neither as blind nor as informed, due to the reason that in [7], it is not determined how the query is forwarded to the appropriate SON.

 The Guided search method [8] can be viewed as a combination between blind search and routed search used in structured p2p systems. In more details, when a node originates a query, decides in which possession rules the query message is forwarded. Thus the queries are directed to nodes that are likely to have the most results. Two possible search algorithms have been proposed about deciding in which possession rule the query must be forwarded. In Rapier (Random Possession Rule) algorithm a node selects randomly a possession rule from a set of possession rules that have been selected to answer previous node’s queries. In contrast in GAS (Greedy Guide Rule) algorithm each node creates its own strategy consisting by possession rules that have been more effective in previous node’s queries. It has been shown that GAS performance is better than Rapier’s but with higher overhead. After the selection of the possession rule, a blind search is performed inside this possession rule.

4. P2P systems supporting range queries

In the previous sections we discussed about p2p systems that support only simple lookup queries over a single attribute. However, many new p2p applications, such as p2p photo-sharing applications and multi-player online games, require support for range queries. In the following sections we describe several p2p systems that support mult-attribute range queries from the perspective of how these systems achieve clustering and the search techniques they use to resolve range queries.

4.1 Systems Overview

Mercury [13] is a structured p2p system that supports multi-attribute range queries, e.g. each query is a conjunction of ranges in one or more attributes. Its basic architecture relies on creating a structure, denoted as routing hub, for each attribute in the application schema consisting of a subset of system nodes. Note that a node can be part of multiple hubs. In addition, each routing hub is organized into a circular overlay of nodes and each node within a routing hub takes charge of a contiguous range of values for the equivalent attribute. Thus, two data items that have contiguous values for a specific attribute will be placed at the same node or at neighboring nodes in the routing hub that “represents” this attribute. This kind of structure is similar with CHORD’s but the main difference is that Mercury doesn’t use randomized hash functions for placing data due to the choice of supporting range queries.

In [15], a method for efficiently evaluating multi-attribute range queries is proposed. This kind of method uses a 2d-dimensional coordinate space in a way similar to CAN system. In more details, considering a relation with d attributes the system creates a 2d coordinate space, e.g. 2 dimensions of the space correspond to a single attribute. The coordinate space is constructed as follows: Assuming that the domain of a single attribute is [a, b], the boundaries of the two-dimensional coordinate space are (a, a), (b, a), (b, b) and (a, b). In addition, the space is partitioned into multiple rectangular sub-regions, denoted as zones, where each zone is assigned to a system node. Note that the zones are assigned to only some of the system nodes, denoted as active nodes, whereas the remaining nodes that don’t own a zone are called passive nodes. Furthermore, each active node keeps a list of passive nodes and links to its neighbors, e.g. the nodes that are owners of adjacent zones. The partitioning of the coordinate space is done dynamically by splitting existing zones and new zones are assigned to passive nodes that become active. The decision of splitting a zone is taken by the owner of the zone. For splitting a zone one of the following two conditions must hold. The first condition is met when the owner of the zone answers too many queries, hence it splits its corresponding zone into two chunks of even distribution of stored answers. The second condition is satisfied when a node is overloaded because of too many query routing messages. Then this node splits its owned zone into two equal chunks. Each range query corresponds to a single point, denoted as target point, in the coordinate space therefore each node is responsible for a number of range queries that their points are included to its owned zone. The zone in which a target point lays and the corresponding node are called target zone and target node, respectively. Thus, each target node stores the data items that are associated with the range queries for which the target node is responsible. When a node generates a range query and wishes to publish the query results to the network, it caches the query results and the target node creates a pointer to it. The target node also caches the results of the range query.

Space-Filling curves with range Partitioning (SCRAP) [14] and Multi-Dimensional Rectangulation with KD-Trees (MURK) [14] are two alternative approaches for supporting multi-dimensional range queries. In SCRAP, the multi-dimensional data items, e.g. the data items having more than one attribute, are mapped into a single dimension by using a space-filling curve. These one-dimensional data items are then partitioned among the system’s nodes where each node is responsible for a contiguous range of values for the single dimension. In MURK, the multi-dimensional data space, e.g. the space where each multi-attribute data item is represented as a point, is partitioned into sub-regions, denoted as “rectangles”, and each rectangle is assigned to one of the system nodes. To achieve this partitioning, MURK uses Kd-trees, in which each leaf corresponds to a rectangle. This kind of partitioning is similar with the partitioning of the CAN’s coordinate space. The main difference is that CAN tries to partition the coordinate space into equal sub-regions since the data items are expected to be uniformly distributed. In contrast, MURK splits its data space considering that each rectangle must have the same load. Another difference between CAN and MURK is that in CAN the number of dimensions for the coordinate space is determined by the routing efficiency, rather than the dimensionality of the data items, as MURK does.

4.2 Query Routing

In Mercury [13], the first step for routing a query is to select one of the hubs, let’s say Ha, which corresponds to the queried attributes. Hence, to guarantee that the query will find all the relevant data items, each data item is placed at all hubs that are associated with the attributes for which the data item has value. After the selection of the hub Ha, the next step is routing the query within this hub, which is done by forwarding the query to the node that is responsible for the first value of the query range for attribute a.

[image: image6]
Figure 6: Example of data item insertion and query routing
Then using the property of contiguity that Mercury has, the query is spread along the nodes of the ring to find all relevant data items.
Example 1: Consider that we have two hubs Ha and Hb that correspond to attributes a and b respectively. The value range of both attributes is [0, 250]. When a new data item, with values 80 and 210 for the attributes a and b, is inserted into the system it is sent to both hubs Ha and Hb and it is stored at nodes b and h. In addition, a query is initiated at a system node and wants to find all the data items with
[image: image7.wmf]120

70

£

£

a

 and
[image: image8.wmf]160

80

£

£

b

 . It selects the hub Ha to execute the routing and enters at node e. Then the query is routed within Ha and finds the associated results at nodes a and b. The whole process is illustrated in Figure 6.
The implementation of routing requires each node that participates in a routing hub to maintain a link to each of the other routing hubs, denoted as cross-hub links, so as to route the query to another hub, and to have links to its predecessor and successor nodes within its own hub for routing the query within the chosen hub. Using only predecessor and successor links query routing is not efficient since in the worst case a query can get flooded to all nodes within a hub. Thus, Mercury adopts a routing optimization, denoted as k long-distance links. In particular, besides the predecessor and successor links, each node maintains k links to other nodes of the same hub. It has been shown that with k long-distance links the number of hops required for routing is logarithmic.

In [15], when a node generates a range query, the query is routed to its target zone. In particular, when a query is initiated at a zone, the requesting node forwards the query message to the one of its neighbors, e.g. to a node that is responsible for an adjacent zone, that its corresponding zone coordinates are the closest to the target zone. All the nodes, which get the query message, follow this procedure until the target node is reached. The routing of the query message is done by using each node its neighbor lists and the target point of the query. Note that a passive node can generate a range query. Hence, the passive node must forward the query message to any of the active nodes. The query is then routed to the target zone by following the above procedure. It has been shown that the routing path is
[image: image9.wmf])

(

n

O

, where n is the number of zones in the system. When the query message reaches the target zone, the target node checks if it has stored results from previous range queries that contain the query range. If so, then these results are forwarded directly to the requesting node. Furthermore, if the target node has a pointer to another node, let’s say nj, that contains results from a superset range, then the IP address of nj is returned as an answer to the requesting node, which can contact immediately with nj. If query results cannot be found locally to the target node, the query is forwarded to the top and left neighbors, which potentially contain results for the query. These neighbors’ checks for local results and can also forward the query to their top-left neighbors recursively.

Example 2: Consider that we have data items with one attribute and the value domain of the attribute is [0, 250], as in Example 1. Then the boundaries of the coordinate space are (0, 0), (250, 0), (0, 250) and (250, 250). In addition, we

[image: image10]
Figure 7: Partitioning of the coordinate space and

routing of the range query <70, 120>

assume that we have five active nodes. The five zones of the coordinate space are: zone-1 <(0, 125), (125, 250)>, zone-2 <(125, 125), (188, 250)>, zone-3 <(125, 0), (250, 125)>, zone-4 <(0, 0), (125, 125)>, zone-5 <(188, 125), (250,
250)>. Assuming that the range query <70, 120> is initiated at zone-5 then the query is routed through zone-3 to its target zone, which is zone-4. Figure 7 illustrates the query routing of the range query <70, 120>.
In SCRAP [14], multi-dimensional query routing is executed by following two steps. At the first step, the multi-dimensional range query is divided into a set of one-dimensional range queries and at the next step each of the unidimensional queries are routed to the nodes whose range of values intersects with the query range. The second step is efficiently performed by using a circular list of nodes, denoted as skip graph. Recall, that each node in the skip graph is responsible for a range of contiguous values for the single dimension that the multi-dimensional data items are mapped to. Instead of using only links to its neighbors, that will result in O(n) messages (n is the number of nodes) to locate the node having the query results, each node keeps additional O(logn) skip pointers to other nodes of the skip graph. It has been shown that with skip pointers query routing is achieved in O(logn) hops.

In MURK [14] each node ni creates grid pointers to other nodes of the system that store adjacent rectangles of the multi-dimensional data space with the one that node ni stores. The query routing is executed in a very similar way with CAN. Consider a query generated at node n which requires data items that their corresponding data points are laid within a rectangle Q. If the rectangle Q doesn’t belong to the requesting node, then the routing protocol forwards the query message from the node n to one of its neighbor nodes whose corresponding rectangle reduces the distance to Q by the largest amount. When the query message reaches a node m with relevant to the query data items, node m forwards the query to its neighbors that also contain relevant data items. That requires that each node has information about the corresponding rectangles boundaries of its neighboring nodes. This procedure is done recursively until the query message reaches all relevant to the query nodes. Furthermore, every MURK node uses additionally skip pointers to a few other nodes to improve query routing, especially when dimensionality is low. Thus in the routing protocol, when a node forwards the query message to one of its neighbors that is closest to the destination, e.g. the node that is responsible for rectangle Q, this neighbor might be either a “grid” neighbor or a neighbor through a skip pointer.

4.3 Clustering – Node Join

In Mercury [13], clustering is achieved in each routing hub by placing data items at the node whose range of values includes the data item’s value for the hub’s attribute. Thus, data items with equal or contiguous attribute values will be placed in the same or contiguous nodes at the corresponding to the attribute hub. In particular, when a new node ni joins the system, it initially communicates with a node that is already part of the system and gets information about the system’s hubs and a list of representative nodes for each hub. Then, it selects randomly one of the hubs and contacts a node nj that is already part of the chosen hub. The new node becomes a predecessor of node nj, takes over half of nj’s values range and finally becomes a part of the hub. Furthermore, the new node must create its own cross-hub links and k-long distance links. To achieve this, it firstly copies these kind of links from its successor nj and then starts
	Replication Methods
	Spreading Updates Methods

	Structured
	Unstructured
	Direct Mail

	CHORD
	CAN
	Owner replication
	

	Replicate data to the k succeeding nodes
	Multiple Realities
	
	Anti-entropy

	
	Overloading coordinate zones
	Path replication
	Rumor Mongering

	
	“hot-spot” replication
	Random replication
	Hybrid push-pull rumor spreading algorithm

	
	Multiple hash functions
	
	

Table 1: Classification of replication and spreading updates methods
the process of setting up its new k-long distance links and obtaining new cross-hub neighbors, by starting random-walks to each of the other hubs, distinct from those stored by its successor.
MURK [14] achieves clustering by placing similar data items, e.g. data items that their corresponding data points are very close in the data space, to the same or neighboring system nodes. When a node joins the system, the rectangle that is managed by a participant node is split into two parts of equal load and one of them is assigned to the new node.

5. Replication

Several replication methods have been proposed for p2p systems in order to improve system performance and data availability. In addition, various techniques have been introduced to deal with the issue of maintaining consistency among the nodes due to the problem of updates. In the following three sections we discuss about the replication methods that have been applied in structured and unstructured p2p systems and the strategies have been proposed to face the problem of updates, respectively.

5.1 Replication in structured p2p systems

The replication strategy that CHORD [1] follows is to replicate the data associated with a key at the k nodes succeeding the node in which the key is stored. Thus, if the successor node of the key failed then the data associated with this key can be found in one of the k nodes immediately succeeding the failed node in the circle.

In CAN [2] several replication methods have been proposed to improve data availability. One of them is using multiple coordinate spaces, called “realities”. Instead of assigning one zone to each node, each CAN node is assigned one zone from each coordinate space. Thus, each CAN node stores the (key, data) pairs that contained in each one of the zones assigned to it. So, if the number of realities is r then data items are replicated in r different nodes of the CAN network resulting in increasing availability considering that a data item is unavailable only if all the nodes, in which it is stored, fail. Another replication method proposed in CAN is the “overloading coordinate zones”. Instead of assigning a zone to each CAN node, with overloading coordinates zones, we allow more than one nodes to share the same zone. Hence, the (key, data) pairs laid in a zone are replicated to all the nodes that share this zone. An alternative replication method is using multiple hash functions. More specifically, instead of using only one hash function to assign the key of a data item to a point of the coordinate space, we can use multiple hash functions to map it to multiple points of the coordinate space. Thus, the (key, value) pair can be replicated to all the nodes containing at least one of these points in their associative zones. Finally, the last replication method proposed in CAN is using “hot-spot” replication, where when a node finds out that is overloaded with requests for a specific key, then it can replicate this key and the data associated with it to its neighboring nodes.

5.2 Replication in unstructured p2p systems
Gnutella follows a simple replication technique, denoted as owner, where data items are replicated only to nodes that requested these items. Path replication [5] is an alternative replication technique, used by Freenet, where after a successful search the associated data is replicated at all the nodes along the path from the requesting node to the node where the data was stored. In addition, in [5] it has been shown that the overall network overhead produced by searching is minimized when using square-root distribution, where the replication of a data item is proportional to the square root of the probability of requesting the specified item. To achieve this, the number of nodes a data item is replicated at must be proportional to the number of nodes the search visited in order to answer the query. When the random walks search technique with k-walkers is used along with path replication, then the resulting method approximates the square-root distribution. Finally, in random replication after a successful search, the associated data item is replicated at randomly selected nodes from the set of nodes that the search visited. The number of these selected nodes is equal to the number of nodes along the path from the requesting node to the node that provided the data item.

5.3 Replicas maintenance

When a replication method is applied in a p2p system, the problem of maintaining consistency among the nodes that have replicas of a data item arises. In more details, consider a data item replicated to a set of nodes and an update of this data item occurred in one of these nodes, denoted as the originator node of the update. The information the other nodes have about this data item is out of date, thus the update must be propagated to all of them to maintain consistency. In [11], several strategies have been proposed to spread updates. Although these strategies are proposed for replicated database maintenance, they can directly applied in a p2p system. Direct mail is one of these strategies where when an update of a data item is occurred at a node, this node notifies all other nodes that have replicas of this data item by forwarding immediately this update to them. This kind of strategy is timely efficient but its main disadvantage is that each node must have knowledge about all the other nodes that keep replicas of the data item. Anti-entropy and rumor mongering are two alternative spreading updates methods and both of them are examples of epidemic processes. In anti-entropy method every node randomly selects another system’s node and resolve their differences by exchanging contents. The procedure of resolving their differences can be done in three ways, denoted as push, pull and push-pull. In push method, when a node p receives an update for a data item, it pushes the new update to another node that also holds a replica of the data item. In contrast, in pull method each node periodically communicates with another node of the system so as to get the most up-to-date copy of a data item. Finally, push-pull method is a combination of push and pull. Although the anti-entropy method efficiently “infects” the whole network with the new update in time proportional to the log of the number of nodes in the system, the main drawback is that the examination of the contents between two nodes may take a lot of time. In the rumor mongering technique, when a node p receives an update, denoted as “hot rumor”, then it periodically selects another node in random fashion to propagate the update. The node p stops treating the update as a hot rumor without further propagating the update to other nodes when a large fraction of the receiving nodes have already got this update.

In [12], a method based on a hybrid push-pull rumor-spreading algorithm is introduced that resolves the problem of spreading updates with low latency and low communication overhead. The assumption made in this algorithm is that each node, which has a replica of a data item, knows a small fraction of the other nodes in the system that also hold a replica of the same data item. We denote as responsible nodes the complete set of nodes that have a replica of the original version of a data item. The hybrid push-pull rumor-spreading method relies on a push and a pull phase. In the push phase when an update is originated at node p, this node pushes the new update to a subset of responsible nodes, which in turn propagate the update to their well-known responsible nodes and so on. Furthermore, the pull phase is initiated at nodes that were offline and get online again, thus they inquire for updates that they had missed, at nodes that they didn’t receive updates for a long period and finally by nodes that receive a pull request but they don’t know if they had the newer version of the data item that they were asked for. When the pull phase is initiated at a node p, this node communicates with multiple nodes and selects the most up-to-date node among them.

Table 1 summarizes the replication methods are used by structured and unstructured p2p systems and the spreading update methods that are proposed for maintaining consistency.

6. Distributed Query Processing in P2p Systems

The main drawback of current p2p systems is that they offer very low potentials in query processing since the main function they support is the selection of data items that satisfy a condition. In [16], the adaptation of a p2p system to a distributed data management system is introduced. In more details, at this
[image: image11.png]MQP

Parser |

XML
-]

URN

LR\JO\O

Mutated QP

To next server

-
URN

URL g

H

Subplans to evaluate

Optimizer

Sub—plans

Cost estimates

- g =

Query Engine

[

Policy Mana

v

\
XML frdgments

Figure 8: Mutant Query Processing
kind of p2p system, nodes act either as content publishers that provide a description of their serving data items, using XML, or as users that execute query look-ups using a full-featured query language.

Consider a number of users having a collection of data items that they want to publish. In addition, in the system there is a number of servers whose job is to publish their stored data items. In order for a user to publish his own data items, he can run his own server or deliver them to a participant system server. Note that each item includes various information, like item name, publisher location, price etc, thus the server that will publish this item exports its associated information using XML.
To support complex distributed query execution, the system uses Mutant Query Plans (MQPs). Each MQP is an XML query plan graph constituted by verbatim XML-encoded data, references to resource locations (URLs) and references to abstract resource name (URNs). In particular, when a query is initiated at a node, a plan associated to the query is created and is forwarded from server to server gathering partial results from each of them. Finally, after the total evaluation of the query plan, the result is send back to the requesting node. When an MQP arrives at a server, the mutant query processing is done as follows: Initially, the server parses the query plan and finds out which URNs and URLs it can resolve. Note that a server can resolve a URN to one or more URLs and a URL to its associated items. Furthermore, the server reduces the query plan by finding, via server’s optimizer, the sub-plans of the MQP that can be evaluated by the server and then estimates the cost of each sub-plan’s evaluation. Afterwards, the policy manager decides which of the candidate sub-plans will be evaluated. If a sub-plan is decided to be evaluated, it is forwarded to the query engine. The server then replaces the sub-graph with the corresponding results. Finally, if the plan is completely evaluated, the server sends the results to the requesting node, otherwise it forwards the plan to another server that will continue the execution of the processing of the plan. Figure 7 illustrates the mutant query processing within a server as mentioned before. A characteristic mutant query is the look up of CDs that cost $10 or less in Portland area.

The main problem with mutant query plans is that the servers must have information about the available resources of other servers to efficiently route queries to nodes having relevant to the query items. This problem is resolved by using multi-hierarchic namespaces from each server to describe their serving data items and from each user that forms queries.

7. Conclusions

In this paper, we presented several issues about p2p content management. P2p systems can be classified either as centralized or decentralized. In addition, decentralized systems can be further distinguished to structured or unstructured. In structured p2p systems, similar data clustered using hash functions, thus each node of the system contains similar data. In contrast, in unstructured p2p systems clustering can be achieved by grouping nodes that have similar data. Furthermore, several search techniques have been proposed both for structured and unstructured p2p systems. The search in structured systems is more efficient compared to the methods adopted in unstructured systems, since the location that the data are stored is known. In unstructured systems, there is no assumption of the location, e.g. the nodes, the data items will be placed, and thus several methods have been introduced so as to improve performance. These methods can be classified as blind, informed or a combination of both. In addition, we examined several p2p systems that support range queries and investigate how clustering and query routing is achieved to them. Note that the majority of this kind of systems is structured. Furthermore, to improve data availability many replication techniques have been introduced. Finally, we examined how a p2p system can be used for distributed data management.
8. References

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of ACM SIGCOMM ’01, Aug. 2001

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Proceedings of ACM SIGCOMM ’01, Aug. 2001

[3] A. Crespo and H. Garcia Molina. Routing Indices For Peer-to-Peer Systems. In Proceedings of the 22nd IEEE International Conference on Distributed Computing Systems (ICDCS), July 2002

[4] D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search Methods. International Workshop on the Web and Databases (WebDB), June 2003

[5] Q. Lv, P Cao, E. Cohen, K Li, and S. Shenker. Search and Replication in Unstructured Peer-to-Peer Networks. . In Proceedings of ACM ICS ’02, June. 2002

[6] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems.

[7] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. In Proceedings of the 29th VLDB Conference, 2003

[8] E. Cohen, A Fiat and H. Kaplan. Associative Search in Peer-to-Peer Networks: Harnessing Latent Semantics. IEEE INFOCOM, March 2003

[9] C. Tang, Z. Xu and S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-Organizing Semantic Overlay Networks. In Proceedings of ACM SIGCOMM ’03, Aug 2003

[10] G. Koloniari and E. Pitoura. Peer-to-Peer Management of XML Data: Issues and Research Challenges. SIGMOD Records, June 2005

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, Howard Sturgis, D. Swinehart and D. Terry. Epidemic Algorithms for Replicated Database Maintenance. In Proceedings of the 6th annual ACM Symposium on Principles of distributed computing, 1987
[12] A. Datta, M. Hauswirth and K. Aberer. Updates in Highly Unreliable, Replicated Peer-to-Peer Systems. In Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS ‘03)

[13] A. Bharambe, M. Agrawal and S. Seshan. Mercury: Supporting Multi-Attribute Range Queries. In Proceedings of ACM SIGCOMM ’04, Aug. 2004
[14] P. Ganesan, B. Yang and H. Garcia-Molina. One Torus to Rule them All: Multi-dimensional Queries in P2P Systems. In Proceedings of the 7th International Workshop on the Web and Databases (WebDB ’04)

[15] O. D. Sahin, A. Gupta, D. Agrawal and A. Abbadi. A Peer-to-Peer Framework for Caching Range Queries. In Proceedings of the 20th International Conference on Data Engineering (ICDE ’04)

[16] V. Papadimos, D. Maier and K. Tufte. Distributed Query Processing and Catalogs for Peer-to-Peer Systems. In Proceedings of the CIDR Conference, 2003

(0-0.25, 0-0.5)

(0.25-0.5, 0-0.5)

Node B’s virtual coordinate space

F

A

E

D

C

(0-0.5, 0.5-1.0)

1.0

0.0

0.0

1.0

B

(0.5-1.0, 0.0-0.5)

(0.5-0.75, 0.5-1.0)

(0.75-0.1, 0.5-1.0)

i

Hb

int a<=120�int a>=70�int b<=160�int b>=80

Ha

int a 80�int b 210�

c

b

a

d

[0, 50)

[50,100)

[100,150)

(data – item)

h

fe

ge

[189, 250)

[126, 189)

[0, 63)

(query)

e

[150,200)

[200,250)

[63, 126)

5

2

3

4

1

(0, 250)

(250, 250)

(250, 0)

(0, 0)

_1180506012.unknown

_1180506074.unknown

_1178868484

_1180414045.unknown

