
•Ioannis Fudos

•Image Indexing and Retrieval •1

1P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Replication

2P2p, Spring 05

Types of Replication

Two types of replication

Index (metadata): replicate index entries

Data/Document replication: replicate the actual data (e.g.,
music files)

3P2p, Spring 05

Types of Replication

Caching vs Replication

Cache: Store data retrieved from a previous request (client-initiated)

Replication: More proactive, a copy of a data item may be stored at a
node even if the node has not requested it

4P2p, Spring 05

Reasons for Replication

Reasons for replication

Performance

load balancing

locality: place copies close to the requestor

geographic locality (more choices of next step in search)

reduce number of search

Availability

In case of failures

Peer departures

Besides storage, cost associated with replication: Consistency
Maintenance

Make reads faster in the expense of slower writes

5P2p, Spring 05

Issues

Which items (data/metadata) to replicate

Popularity

In traditional distributed systems, also rate of read/write

Where to replicate

6P2p, Spring 05

“Database-Flavored” Replication Control Protocols

Lets assume the existence of a data item x with copies x1, x2, …, xn

x: logical data item

xi’s: physical data items

A replication control protocol is responsible for mapping each
read/write on a logical data item (R(x)/W(x)) to a set of
read/writes on a (possibly) proper subset of the physical data
item copies of x

•Ioannis Fudos

•Image Indexing and Retrieval •2

7P2p, Spring 05

One Copy Serializability

Correctness
A DBMS for a replicated database should behave like a DBMS
managing a one-copy (i.e., nonreplicated) database insofar as
users can tell

One-copy serializable (1SR)

the schedule of transactions on a replicated database be
equivalent to a serial execution of those transactions on a one-
copy database

8P2p, Spring 05

ROWA

Read One/Write All (ROWA)

A replication control protocol that maps each read to only one
copy of the item and each write to a set of writes on all physical
data item copies.

Even if one of the copies is unavailable an update transaction
cannot terminate

9P2p, Spring 05

Write-All-Available

Write-all-available

A replication control protocol that maps each read to only one
copy of the item and each write to a set of writes on all
available physical data item copies.

10P2p, Spring 05

Quorum-Based Voting

Read quorum Vr and a write quorum Vw to read or write a data
item

If a given data item has a total of V votes, the quorums have
to obey the following rules:

1. Vr + Vw > V

2. Vw > V/2

Rule 1 ensures that a data item is not read or written by two transactions
concurrently (R/W)

Rule 2 ensures that two write operations from two transactions cannot occur
concurrently on the same data item (W/W)

11P2p, Spring 05

Quorum-Based Voting

In the case of network partitioning,

determine which transactions are going to terminate based on the
votes they can acquire

the rules ensure that two transactions that are initiated in two
different partitions and access the same data item cannot terminate
at the same time

12P2p, Spring 05

Distributing Writes

Immediate writes

Deffered writes
Access only one copy of the data item, it delays the distribution of writes to
other sites until the transaction has terminated and is ready to commit.

It maintains an intention list of deferred updates

After the transaction terminates, it send the appropriate portion of the
intention list to each site that contains replicated copies

Optimizations – aborts cost less – may delay commitment – delays the
detection of copies

Primary copy
Use the same copy of a data item

•Ioannis Fudos

•Image Indexing and Retrieval •3

13P2p, Spring 05

Eager vs Lazy Replication

Eager replication: keeps all replicas synchronized by
updating all replicas in a single transaction

Lazy replication: asynchronously propagate replica updates
to other nodes after replicating transaction commits

In p2p, lazy replication is the norm

14P2p, Spring 05

Update Propagation
Who initiates the update:
Push by the server item (copy) that changes

Pull by the client holding the copy

When
Periodic

Immediate

When an inconsistency is detected

Threshold-based: Freshness (e.g., number of updates or actual time)

Value

Time-to-live: Items expire after that time

Stateless or State-full

15P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Replication in Structured P2P

From CHORD and CAN first papers

16P2p, Spring 05

CHORD

Invariant to guarantee correctness of lookups:

Keep successors nodes up-to-date

Method: Maintain a successor list of its “r” nearest successors on the
Chord ring

Why? Availability

How to keep it consistent: Lazy thought a periodic stabilization

Metadata replication or redundancy

17P2p, Spring 05

CHORD

Method: Replicate data associated with a key at the k nodes
succeeding the key

Why? Availability

Data replication

18P2p, Spring 05

CAN

Multiple realities

With r realities each node is assigned r coordinated zones, one on every
reality and holds r independent neighbor sets

Replicate the hash table at each reality

Availability: Fails only if nodes at both r nodes fail

Performance: Better search, choose to forward the query to the
neighbor with coordinates closest to the destination

Metadata replication

•Ioannis Fudos

•Image Indexing and Retrieval •4

19P2p, Spring 05

CAN

Overloading coordinate zones

Multiple nodes may share a zone

The hash table may be replicated among zones

Higher availability

Performance: choices in the number of neighbors, can select nodes
closer in latency

Cost for Consistency

Metadata replication

20P2p, Spring 05

CAN

Multiple Hash Functions

Use k different hash functions to map a single key onto k points in the
coordinate space

Availability: fail only if all k replicas are unavailable

Performance: choose to send it to the node closest in the coordinated
space or send query to all k nodes in parallel (k parallel searches)

Cost for Consistency

Query traffic (if parallel searches)

Metadata replication

21P2p, Spring 05

CAN

Hot-spot Replication

A node that finds it is being overloaded by requests for a particular data
key can replicate this key at each of its neighboring nodes

Them with a certain probability can choose to either satisfy the request
or forward it

Performance: load balancing

Metadata replication

22P2p, Spring 05

CAN

Caching

Each node maintains a a cache of the data keys it recently accessed

Before forwarding a request, it first checks whether the requested key
is in its cache, and if so, it can satisfy the request without forwarding it
any further

Number of cache entries per key grows in direct proportion to its
popularity

Metadata replication

23P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Q. Lv et al, “Search and Replication in Unstructured Peer-to-
Peer Networks”, ICS’02

24P2p, Spring 05

Search and Replication in Unstructured Peer-to-Peer
Networks

Type of replication depends on the search strategy used

(i) A number of blind-search variations of flooding

(ii) A number of (metadata) replication strategies

Evaluation Method: Study how they work for a number of
different topologies and query distributions

•Ioannis Fudos

•Image Indexing and Retrieval •5

25P2p, Spring 05

Methodology

Aspects of P2P

Performance of search depends on

Network topology: graph formed by the p2p overlay network

Query distribution: the distribution of query frequencies for
individual files

Replication: number of nodes that have a particular file

Assumption: fixed network topology and fixed query distribution

Results still hold, if one assumes that the time to complete a search
is short compared to the time of change in network topology an in
query distribution

26P2p, Spring 05

Network Topology
(1) Power-Law Random Graph

A 9239-node random graph

Node degrees follow a power law distribution

when ranked from the most connected to the least, the i-th
ranked has

ω/ia, where ω is a constant

Once the node degrees are chosen, the nodes are connected
randomly

27P2p, Spring 05

Network Topology

(2) Normal Random Graph

A 9836-node random graph

28P2p, Spring 05

Network Topology

(3) Gnutella Graph (Gnutella)

A 4736-node graph obtained in Oct 2000

Node degrees roughly follow a two-segment power law
distribution

29P2p, Spring 05

Network Topology

(4) Two-Dimensional Grid (Grid)

A two dimensional 100x100 grid

30P2p, Spring 05

Network Topology

•Ioannis Fudos

•Image Indexing and Retrieval •6

31P2p, Spring 05

Query Distribution

Let qi be the relative popularity of the i-th object (in terms of
queries issued for it)

Values are normalized Σ i=1, m qi = 1

(1) Uniform: All objects are equally popular

qi = 1/m

(2) Zip-like

qi ∝ 1 / iα

32P2p, Spring 05

Replication

Each object i is replicated on ri nodes and the total number of
objects stored is R, that is

Σ i=1, m ri = R

(1) Uniform: All objects are replicated at the same number of
nodes

ri = R/m

(2) Proportional: The replication of an object is proportional to
the query probability of the object

ri ∝ qi

(3) Square-root: The replication of an object i is proportional to
the square root of its query probability qi

ri ∝ √qi

33P2p, Spring 05

Query Distribution & Replication

When the replication is uniform, the query distribution is
irrelevant (since all objects are replicated by the same amount,
search times are equivalent)

When the query distribution is uniform all three replication
distributions are equivalent

Thus, three relevant combinations:

(1) Uniform/Uniform

(2) Zipf-like/Proportional

(3) Zipf-like/Square-root

34P2p, Spring 05

Metrics

Pr(success): probability of finding the queried object before the
search terminates

#hops: delay in finding an object as measured in number of hops

35P2p, Spring 05

Metrics

#msgs per node: Overhead of an algorithm as measured in
average number of search messages each node in the p2p has to
process

#nodes visited

Percentage of message duplication

Peak #msgs: the number of messages that the busiest node has
to process (to identify hot spots)

36P2p, Spring 05

Simulation Methodology

For each experiment,

First select the topology and the query/replication distributions

For each object i with replication ri, generate numPlace different sets
of random replica placements (each set contains ri random nodes, on
which to place the replicas of object i)

For each replica placement, randomly choose numQuery different nodes
form which to initiate the query for object i

Thus, we get numPlace x numQuery queries

In the paper, numPlace = 10 and numQuery = 100 -> 1000 different
queries per object

•Ioannis Fudos

•Image Indexing and Retrieval •7

37P2p, Spring 05

Limitation of Flooding
Choice of TTL

Too low, the node may not find the object, even if it
exists

Too high, burdens the network unnecessarily

Search for an object
that is replicated at
0.125% of the nodes (~11
nodes if total 9000)

Note that TTL depends
on the topology

Also depends on
replication (which is
however unknown)

38P2p, Spring 05

Limitation of Flooding

Choice of TTL

Overhead

Also depends on
the topology

39P2p, Spring 05

Limitation of Flooding

There are many duplicate messages (due to cycles)
particularly in high connectivity graphs

Multiple copies of a query are sent to a node by multiple
neighbors

Duplicated messages can be detected and not forwarded

BUT, the number of duplicate messages can still be
excessive and worsens as TTL increases

40P2p, Spring 05

Limitation of Flooding

Different nodes

41P2p, Spring 05

Limitation of Flooding: Comparison of the topologies

Power-law and Gnutella-style graphs particularly bad with
flooding

Highly connected nodes means higher duplication
messages, because many nodes’ neighbors overlap

Random graph best,

Because in truly random graph the duplication ratio
(the likelihood that the next node already received
the query) is the same as the fraction of nodes visited
so far, as long as that fraction is small

Random graph better load distribution among nodes

42P2p, Spring 05

Two New Blind Search Strategies

1. Expanding Ring – not a fixed TTL (iterative
deepening)

2. Random Walks (more details) – reduce number of
duplicate messages

•Ioannis Fudos

•Image Indexing and Retrieval •8

43P2p, Spring 05

Expanding Ring or Iterative Deepening

Note that since flooding queries node in parallel, search
may not stop even if the object is located

Use successive floods with increasing TTL

A node starts a flood with a small TTL

If the search is not successful, the node increases the
TTL and starts another flood

The process repeats until the object is found

Works well when hot objects are replicated more widely
than cold objects

44P2p, Spring 05

Expanding Ring or Iterative Deepening (details)

Need to define

A policy: at which depths the iterations are to occur (i.e.
the successive TTLs)

A time period W between successive iterations

after waiting for a time period W, if it has not
received a positive response (i.e. the requested
object), the query initiator resends the query with a
larger TTL

Nodes maintain ID of queries for W + ε

Α node that receives the same message as in the previous
round does not process it, it just forwards it

45P2p, Spring 05

Expanding Ring

Start with TTL = 1 and increase each time by a step of 2

For replication over
10%, search stops at
TTL 1 or 2

46P2p, Spring 05

Expanding Ring

Comparison of message overhead between flooding and
expanding ring

Even for objects that are replicated at 0.125% of the
nodes, even if flooding uses the best TTL for each topology,
expending ring still halves the per-node message overhead

47P2p, Spring 05

Expanding Ring

More pronounced improvement for Random and Gnutella
graphs than for the PLRG partly because the very high
degree nodes in PLGR reduce the opportunity for
incremental retries in the expanding ring

Introduce slight increase in the delays of finding an object:

From 2 to 4 in flooding to 3 to 6 in expanding ring

48P2p, Spring 05

Random Walks

Forward the query to a randomly chosen neighbor at each step

Each message a walker

k-walkers

The requesting node sends k query messages and each query
message takes its own random walk

k walkers after T steps should reach roughly the same number of
nodes as 1 walker after kT steps

So cut delay by a factor of k

16 to 64 walkers give good results

•Ioannis Fudos

•Image Indexing and Retrieval •9

49P2p, Spring 05

Random Walks

When to terminate the walks

TTL-based

Checking: the walker periodically checks with the original
requestor before walking to the next node (again use a large TTL,
just to prevent loops)

Experiments show that

checking once at every 4th step strikes a good balance
between the overhead of the checking message and the
benefits of checking

50P2p, Spring 05

Random Walks

When compared to flooding:

The 32-walker random walk reduces message overhead by roughly
two orders of magnitude for all queries across all network
topologies at the expense of a slight increase in the number of
hops (increasing from 2-6 to 4-15)

When compared to expanding ring,

The 32-walkers random walk outperforms expanding ring as well,
particularly in PLRG and Gnutella graphs

51P2p, Spring 05

Random Walks

Keeping State

Each query has a unique ID and its k-walkers are tagged with
this ID

For each ID, a node remembers the neighbor it has forwarded
the query

When a new query with the same ID arrives, the node forwards
it to a different neighbor (randomly chosen)

Improves Random and Grid by reducing up to 30% the message
overhead and up to 30% the number of hops

Small improvements for Gnutella and PLRG

52P2p, Spring 05

Principles of Search

Adaptive termination is very important
Expanding ring or the checking method

Message duplication should be minimized

Preferably, each query should visit a node just once

Granularity of the coverage should be small
Increase of each additional step should not significantly
increase the number of nodes visited

53P2p, Spring 05

Replication

How many copies?

Theoretically addressed in another paper, three types of
replication:

Uniform

Proportional

Square-Root

54P2p, Spring 05

Replication: Problem Definition

How many copies of each object so that the search
overhead for the object is minimized, assuming that the
total amount of storage for objects in the network is
fixed

•Ioannis Fudos

•Image Indexing and Retrieval •10

55P2p, Spring 05

Replication Theory

Assume m objects and n nodes

Each object i is replicated on ri distinct nodes and the total
number of objects stored is R, that is

Σ i=1, m ri = R

Assume that object i is requested with relative rates qi, we
normalize it by setting

Σ i=1, m qi = 1

For convenience, assume 1 << ri ≤ n

56P2p, Spring 05

Replication Theory

Assume that searches go on until a copy is found

Searches consist of randomly probing sites until the desired object
is found

The probability Pr(k) that the object is found at the k’th probe is
given

Pr(k) =

Pr(not found in the previous k-1 probes) Pr(found in one (the kth) probe) =

(1 – ri/n)k-1 * ri/n

57P2p, Spring 05

Replication Theory

We are interested in the average search size A of all the
objects (average number of nodes probed per object query)

Average search size is the inverse of the fraction of sites that
have replicas of the object

Ai = n/ri

Average search size for all the objects

A = Σi qi Ai = n Σi qi/ri

58P2p, Spring 05

Replication Theory

If we have no limit on ri, replicate everything everywhere

Average search size is the inverse of the fraction of sites that
have replicas of the object

Ai = n/ri = 1

Search becomes trivial

average number of replicas per site ρ = R/n is fixed

How to allocate these R replicas among the m objects, how
many replicas per object

59P2p, Spring 05

Uniform Replication

Create the same number of replicas for each object

ri = R/m

Average search size for uniform replication

Ai = n/ri = m/ρ

Auniform = Σi qi m/ρ = m/ρ

Which is independent of the query distribution

It makes sense to allocate more copies to objects that are
frequently queried, this should reduce the search size for
the more popular objects

60P2p, Spring 05

Proportional Replication

Create a number of replicas for each object proportional to the query
rate

ri = R qi

Average search size for uniform replication

Ai = n/ri = n/R qi

Aproportioanl = Σi qi n/R qi = m/ρ = Auniform

Which is again independent of the query distribution

Why? Objects whose query rate are greater than average (>1/m) do
better with proportional, and the other do better with uniform

The weighted average balances out to be the same

So what is the optimal way to allocate replicas so that A is minimized?

•Ioannis Fudos

•Image Indexing and Retrieval •11

61P2p, Spring 05

Square-Root Replication

Find ri that minimizes A,

A = Σi qi Ai = n Σi qi/ri

This is done for ri = λ √qi where λ = R/Σi √qi

Then the average search size is

Aoptimal = 1/ρ (Σi √qi)2

62P2p, Spring 05

Replication (summary)

Each object i is replicated on ri nodes and the total number of
objects stored is R, that is

Σ i=1, m ri = R

(1) Uniform: All objects are replicated at the same number of
nodes

ri = R/m

(2) Proportional: The replication of an object is proportional to
the query probability of the object

ri ∝ qi

(3) Square-root: The replication of an object i is proportional to
the square root of its query probability qi

ri ∝ √qi

63P2p, Spring 05

Other Metrics: Discussion

Utilization rate, the rate of requests that a replica of an object i
receives

Ui = R qi/ri

For uniform replication, all objects have the same average
search size, but replicas have utilization rates proportional to
their query rates

Proportional replication achieves perfect load balancing with all
replicas having the same utilization rate, but average search
sizes vary with more popular objects having smaller average
search sizes than less popular ones

64P2p, Spring 05

Replication: Summary

65P2p, Spring 05

Pareto Distribution

66P2p, Spring 05

Achieving Square-Root Replication

How can we achieve square-root replication in practices?

Assume that each query keeps track of the search size

Each time a query is finished the object is copied to a number of
sites proportional to the number of probes

On average object i will be replicated on c n/ri times each time a
query is issued (for some constant c)

It can be argued that this gives square root

•Ioannis Fudos

•Image Indexing and Retrieval •12

67P2p, Spring 05

Achieving Square-Root Replication

What about replica deletion?

The lifetime of replicas must be independent of object
identity or query rate

FIFO or random deletions is ok

LRU or LFU no

68P2p, Spring 05

Replication - Conclusion

Square-root replication is needed to minimize the overall search
traffic:

an object should be replicated at a number of nodes that is
proportional to the number of probes that the search required

69P2p, Spring 05

Replication - Implementation

Two strategies are easily implementable

Owner Replication

When a search is successful, the object is stored at the
requestor node only (used in Gnutella)

Path Replication

When a search succeeds, the object is stored at all nodes along
the path from the requestor node to the provider node (used in
Freenet)

70P2p, Spring 05

Replication - Implementation

If a p2p system uses k-walkers, the number of nodes between
the requestor and the provider node is 1/k of the total nodes
visited

Then, path replication should result in square-root replication

Problem: Tends to replicate nodes that are topologically along the
same path

71P2p, Spring 05

Replication - Implementation

Random Replication

When a search succeeds, we count the number of nodes on the
path between the requestor and the provider

Say p

Then, randomly pick p of the nodes that the k walkers visited to
replicate the object

Harder to implement

72P2p, Spring 05

Replication: Evaluation
Study the three replication strategies in the Random graph network
topology

Simulation Details

• Place the m distinct objects randomly into the network

• Query generator generates queries according to a Poisson process at 5
queries/sec

• Zipf-distribution of queries among the m objects (with a = 1.2)

• For each query, the initiator is chosen randomly

• Then a 32-walker random walk with state keeping and checking every 4
steps

• Each sites stores at most objAllow (40) objects

• Random Deletion

• Warm-up period of 10,000 secs

• Snapshots every 2,000 query chunks

•Ioannis Fudos

•Image Indexing and Retrieval •13

73P2p, Spring 05

Replication: Evaluation

For each replication strategy

What kind of replication ratio distribution does the strategy
generate?

What is the average number of messages per node in a system using
the strategy

What is the distribution of number of hops in a system using the
strategy

74P2p, Spring 05

Replication: Evaluation

Both path and random replication generates replication ratios quite
close to square-root of query rates

75P2p, Spring 05

Replication: Evaluation

Path replication and random replication reduces the overall message
traffic by a factor of 3 to 4

76P2p, Spring 05

Replication: Evaluation

Much of the traffic reduction comes from reducing the number of
hops

Path and random, better than owner

For example, queries that finish with 4 hops, 71% owner, 86% path,
91% random

