Evgetnpioon
MEPOZX II

Avéxrnon Thngogogieg 2009-2010

Content

® Processing Boolean Queries
* Faster posting lists with skip pointers
® Phrase and Proximity Queries

Biwords

Positional Indexes
* Dictionary
= Wild-Card Queries

Permutex

k-gram indexes

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Xonon Katohoywv/Evpetnotwv

Tol CUCTAUATO OVAKTNONG OTtavia avalnTtouv tnv mAnpodopla aneubeiag otn cuAloyn
gyypadwv. Tuvnbwg, XpPNOLUOTIOLOUVTAL KATAAOYOL OL OTtoloL eTtiTayUvVouV Tt dtadikacia

avalntnong.

= GLAAOYN
EYYPAO®V

R

/

@ ﬁ ly Kardhoyog -
AV CT’]TT] on / I \ 611 HlO;Pyia
KOTAAOYOL

KATOAOYOL

| IXE6LATOULE TO EVUPETAPLO AVAAOYO LLE TO MOVTEAO AVAKTNONG KOl T YAWOOO EMEPWTNCNG

il

Avéxrnon Thngogogieg 2009-2010

Inverted index construction

Documents to =y Friends, Romans, countrymen

be indexed. B ’ — LYmen.
Tokenizer

Token stream. l Friends || Romans | | Countrymen

Linguistic modules

friend roman countryman

friend o>

l roman [——

Modified tokens.

Inverted-index

1 2
countryman "i———>|13 16

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Fevinn (Aoywn) popyn evog evpetnptov

Indexing Items (6poL eupetnpiouv)

kl k2 L. k. kt ¢t T0 kel TIou avTLoTOLXEL OTO
D 1 gyypado d. kat otov 6po k;, T0
d c c C; c ')
0 1 1,1 2,1 e i,1 e t,] | omolo pnopei va mepLéxeL:
3 d2 CI,Z 02,2 e Ci,2 e Ct,2 * &va w; Tou va
SnAwvel ™mv
r: ‘A / napoucia 1 anoucia
N di Cl,j C2’j @ .. Ct,j touv ki oto d; (A ™
¢ onoubawdtna tou k;
s oto d))
dN CiN CoN s CiN s CiN * TIG BE0ELG OTIC OTOleg
0 6pog k; epdavifeton
oto d; (av mpdypatt
epdavitetal)
Epwtrparta:
= TLTIPEMEL VAL €XEL TO KABE Cj
= [W¢ va UAOTIOLHCOUHE QUTH TN AoyLkr Sor waoTe va XOUHE Ko anodoon;
Avéxrnon Tingogogiag 2009-2010 5

INwooeg Enepwtong yu Avaxtnorn [TAnpopoptwy

m BErepowmoeig Méfewv (Keyword-based Queries)
MoVoAeKTIKEG eMepWTAOELS (Single-word Queries)

Enepwrtnoelg duowkig y\wooag (Natural Language Queries)

Boolean Enepwtrioelg (Boolean Queries)

0O 0o oo

Enepwrtnoetg Zupdpalopévwy (Context Queries)
s Dpaotikég Enepwtroelg (Phrasal Queries)
= Enepwrtioelg Eyyutntag (Proximity Queries)

= Taiptaocpa MNpotumnou (Pattern Matching)
0 AmAo (Simple)
AvekTikeG oe opBoypadikd Aadn (Allowing errors)
= Levenstein distance, LCS longest common subsequence
0 Kavovikég Ekdpaoelg (Regular expressions)
u Aoukég Enepwrtroeis (Structural Queries)
o (Oa kadvedouv o€ emduevo uadnua)
= [pwtdokoAda enepwtnong (Query Protocols)

Avéxrnon Thngogogicg 2009-2010 6

AvakTtnon NMAnpogopiag 2009-2010

Aveotpappéva Agyeta (Inverted Files)

Avéxrnon Thngogogieg 2009-2010

‘ Aveotpappévo Apyeto

Mopodn Aveotpappévou Eupetnpiou
Noyikr) Mopdn Eupetnpiou
G

Index terms
k N s B
dy ¢y 2.1 1 1
asl W T I s
d; Crj Coj Cyj ﬁ
LN

dy ¢ x €N €N

Vocabulary Postings lists

Apa Sev Seopeloupe WO yLa ta « undevikd KeALA» TG Aoyikrig popdrng tou gupetnpiov

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Inverted Files (Aveotpappeva apyetor)

Inverted file = a word-oriented mechanism for indexing a text
collection in order to speed up the searching task.

An inverted file consists of:
— Vocabulary: is the set of all distinct words in the text

— Occurrences: lists containing all information necessary for
each word of the vocabulary (documents where the word
appears, frequency, text position, etc.)

— Tu €iboug mAnpodopia kpataue otig posting lists e§aptdtar andé 1o Aoylkoé povtélo kat to
HOVTEAO EPWTHOEWV

Avéxrnon Thngogogieg 2009-2010 9

AveoTOUUUEVO aQYELO Ytor TOMAG yypapa, ot Bdouvan tf-idf

To df (document frequency, ou pag xpetaletal To Bapog tf (term frequency)

yta o IDF) apkei va amoBnkeutel pia popa

ESw Ba pmopoloape va €XOUUE Kat

Ind df Dj, 1 ug Béoeig epddviong e Agéng
ndex terms computer oto €yypado D;
computer 3———| Dn4 | |
database 5 —t— D.,3 | |

o000
science 4 __'| Dy 4 | | | |
oem | 1457

Vocabulary file Postings lists

Avéxrnon Thngogogicg 2009-2010 10

AvakTtnon NMAnpogopiag 2009-2010

Another example
term df document ids
1 Algorithms 3 3 5 7
2 Bpplication 2 3 17
3 Delay 2 11 12
4 Differsntial 8 4 5 10 11 12 13 14 15
5 EBEguations 10 1 2 4 8 10 11 12 13 14 15
¢ Implementation 2 3 7
7 Integral 2 le 17
8 Introduction 2 5 €
9 Methods 2
10 Nonlinesar 2 = 132
11 o©Ordinary 2 8 10
12 oOscillation 2 11 12
13 partial 2 4 12
14 Prchlem 2 5] 7
15 Systems 3 5] g 9
16 Theory 4 3 11 1z 17
Avéxrnon Tingogogiag 2009-2010 1

‘ Aveotpappeva Apxeia: Artattioslg Xwpou

LKPEC MEYAAES
N
k1]
k2]
N Kt 7

\./ Postings lists

Avéxrnon Thngogogicg 2009-2010 12

AvakTtnon NMAnpogopiag 2009-2010

Boolean Keyword Queries

Aveotpappeva Apyeto (Inverted Files)
AYAAIKO MONTEAO

Avéxrnon Thngogogieg 2009-2010

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

Antony and Cleopatra

1

P R R O R R

1

O O O B R, B

Julius Caesar The Tempest

o]

P P O O O O

Term-document incidence

Hamlet Othello Macbeth
0 0 1
1 0 0
1 1 1
0 0 0
0 0 0
1 1 1
1 1 (0]
1if contains

word, 0 otherwise

Avéxrnon Thngogogicg 2009-2010

Avaktnon lNAnpogopiag 2009-2010

Can’t build the matrix

500K x 1M matrix has half-a-trillion 0’s and 1’s.
But it has no more than one billion 1’s.

0 matrix is extremely sparse.

What’s a better representation?

0 We only record the 1 positions.

Avéxrnon Thngogogieg 2009-2010 15

Inverted index

For each term t, we must store a list of all documents that
contain t.

o ldentify each by a doclD, a document serial number

Can we used fixed-size arrays for this?

Brutus me——>[112 [4 [11] 31] 45173174]
Caesar | "—>=[1] 21 41516 [16]57132]
Calpurnia"——=[2 (31 [5400017 [[T 1]

What happens if the word Caesar is added to document 14?

Avéxrnon Thngogogicg 2009-2010 16

AvakTtnon NMAnpogopiag 2009-2010

Inverted index

We need variable-size postings lists
o On disk, a continuous run of postings is normal and best
o In memory, can use linked lists or variable length arrays
Some tradeoffs in size/ease of insertion

/

Brutus m——>[1 2 [4111 31] 45[173[174]
Caesar m——>[1] 2] 4] 5[6 | 16/ 57132]
Calpurnia | "——[2 [31 [54[101] | | | |

Dictionary Postings
Aviserye Hiagagogias 2009200 Sorted by docID (more later on why). =

Inverted index construction

Documents to Eﬁ'ﬁﬁ.. Friends, Romans, countrymen.
be indexed. l .

Tokenizer
Token stream. H Friends || Romans | | Countrymen

Linguistic modules

—1

Modified tokens. friend roman countryman

Inverted-index. ﬁ roman e ——
13 ~16

Avéoernon TIAngogogiag 2009-2010 coun trym an o :

AvakTtnon NMAnpogopiag 2009-2010

Inverted index construction
oL . Tarm doclD
= Sequence of (Modified token, Document ID) pairs. i 1
did 1
enact 1
Julius 1
caesar 1
| 1
was 1
killed 1
i 1
the 1
capitol 1
brutus 1
Doc 1 Doc 2 — Hiled !
S0 2
let 2
it 2
be 2
with 2
cagsar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
5t
Avésernoy Thngowogiag 2009-2010 19
Inverted index construction
Term doclD Term doclD
= Sort by terms - L e 2
enact 1 brutus 1
julius 1
o And then docIlD e 7 [z
! 1 caesar 1
was 1 caesar 2
killed 1 CaesEr 2
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus. 1 | 1
killed 1 | 1
me 1 * i 1
S0 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 S0 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2
Avésernoy Thngogogiag 2009-2010 20

Avaktnon lNAnpogopiag 2009-2010

10

= Multiple term entries in a

single document are merged.
= Split into Dictionary and
Postings
= Doc. frequency information is
added.

Avéxrnon Thngogogieg 2009-2010

Term
ambitious
be

brutus
brutus
capitol
caasar
caesar
caesar
did
enact
hath

|

|

0

it

julius
killed
killed
let

noble
s0
the
the
told
you
was
was
with

Inverted index construction

term doc. freq. postings lists

—|2]

*
doclD ambitious [1 | + (2]
g be . i
1 brutus | 2 + [1] .-m
? capital | 1] — |1]
1 caesar L 3
2 did [1] 1]
1 enact | 1 11]
1 hath | 1 | — |2]
1 —)p] — 1
1 i [1] — [1]
1 - =
2 it [1 — |2
1 julius [1] + 1
1 killed | 1 | + [
2 let | 1 - 2]
2 - [
2 - |2
1 L=
2 - |2
2 - 1|— |2
2 =]
1 2]
2 — |2
2 1]
2]

term doc. freq.
ambitious [1 |
be

brutus | 2
capital | 1]
caesar

did | 1 |

enact | 1

hath | 1 |

i [1
e
it | 1
julius | 1]
killed | 1 |

let | 1

Avéxrnon Thngogogicg 2009-2010

.
.
.
.

|
==l ===l == e === =] =]]

Where do we pay in storage?

postings lists

35
]

— |2

—|2]

22

Avaktnon lNAnpogopiag 2009-2010

11

How do we process a query?

Avéxrnon Thngogogieg 2009-2010

23

Access Index file Posting file
structure Key, #Docs, Pos Doc#
ki f1 pl Di
k2 f2 pe Dj \\\\
. |- N
N \\

km fm pm

access structure to one entry for
the vocabulary can be each term of
B+-Tree, Hashing the vocabulary
or Sorted Array :
Dk

space requirement space requirement O(#’)

0. 4<p<0. 6))
. occurrences of words are
(Heap's law) stored ordered lexicographically

@ 2007/8, Karl Aberer, EPFL-IC, Laboratnine de systémes d'informations répartis

Physical Organization of Inverted Files

Deocument file

D1 abedefghijkl
D2 abedefghijkl
D3 abedefghijkl

Di abedefghijK

Dj abedefghijk! .

Dn abedefghijkl

documents stored
in a contiguous file

! . .
- " ~ space requirement Of1) space requirement Ofn)
, S L -~
main memory ~
secondary =

%I"_\umatr_\n Retrieval - 6
orage

24

AvakTtnon NMAnpogopiag 2009-2010

12

Algorithms

Delay
Differential

[S T O R S

Avéxrnon Thngogogieg 2009-2010

1 i :u‘

S

B1 A Course on Integral Equations

B2 Aftractors for Semigroups and Evolution
Equations

B3 Automatic Differentiation of Algorithms:
Theory, Implementation, and Application

B4 Geometrical Aspects of Partial Differential
Equations

BE Tdeals, Varieties, and Algorithms: An

Introduction to Computfational Algebraic
Geometry and Commutative Algebra

B& Introduction to Hamiltenian Dynamical Systems
and the N-Body Problem

B7 Knapsack Problems: Algorithms and Computer
Implementations

B8 Methods of Solving $ingulctr‘ Systems of
Ordinary Differential Equations

BO Monlinear Systems

B10 Ordinary Differential Equations

B11 Oscillation Theory for Neutral Differential
Equations with Delay

25

General Steps:

Avéxrnon Thngogogicg 2009-2010

1. Vocabulary search:
the words present in the query are searched in the vocabulary

2. Retrieval occurrences:
the lists of the occurrences of all words found are retrieved

3. Manipulation of occurrences:

The occurrences are processed to solve the query

Searching an inverted index

AvakTtnon NMAnpogopiag 2009-2010

13

Query processing: AND

Consider processing the query: Brutus AND Caesar
0 Locate Brutus in the Dictionary;
Retrieve its postings.
0 Locate Caesar in the Dictionary;
Retrieve its postings.

o “Merge” the two postings:

32 |64 | 128 | Brutus
- . 3] . E 13 |+ 21 [+ 34 | Caesar

Avéxrnon Thngogogieg 2009-2010 27

Query processing: AND

The merge

m Walk through the two postings simultaneously, in time linear in
the total number of postings entries

2|+ 4|~8]+141 [-48 /64| {128] Brutus
2/8] -lji~11 =17 2131 |Caesar

If the list lengths are m and n, the merge takes O(m+n) operations.

Crucial: postings sorted by doclID.

Avéxrnon Thngogogicg 2009-2010 28

AvakTtnon NMAnpogopiag 2009-2010

14

Query processing: merge

INTERSECT(p1, p2)
answer «— ()
while p; # NIL and p, # NIL
do if doc/D(p1) = doclD(p2)
then ADD(answer, doclD(p1))

p1 < next(p1)

p2 < next(pz)
else if doc/D(p1) < doclD(p2)

then p; — next(p1)
else p> < next(p2)
return answer

© 0O ~NO U WN

[y
o

Avéxrnon Thngogogieg 2009-2010

29

29

Boolean queries: More general merges

Exercise: Adapt the merge for:
Brutus AND NOT Caesar

Can we still run through the merge in time O(x+y)?
What can we achieve?

Exercise: Adapt the merge for:
Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?
What can we achieve?

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

15

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

Can we always merge in “linear” time?

o Linear in what?

Can we do better?

Avéxrnon Thngogogieg 2009-2010 31

Query optimization

What is the best order for query processing?
Consider a query that is an AND of n terms.

For each of the n terms, get its postings, then AND them
together.

Query: Brutus AND Calpurnia AND Caesar

Brutus me——>[214] 8]16] 32] 64128] |
Caesar m——>[1T 2] 3758 [16] 21] 34
Calpurnia | "————[13 [16] | | | |]

Avéxrnon Thngogogicg 2009-2010 32

AvakTtnon NMAnpogopiag 2009-2010

16

Query optimization example

Process in order of increasing freq:

Brutus

Caesar

Calpurnia

Avéxrnon Thngogogieg 2009-2010

o start with smallest set, then keep cutting further.

-

This is why we kept
document freq. in dictionary

me——>[2 14 [8[16] 32] 64128] |
me——>[1 [2] 3] 5[8 [16] 21] 34
w——>[13 716 | | | | | | |

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Get doc.

Avéxrnon Thngogogicg 2009-2010

More general optimization

e.g., (madding OR crowd) AND (ignoble OR strife)

freq.’s for all terms.

Estimate the size of each OR by the sum of its doc.
freq.’s (conservative).

Process in increasing order of OR sizes.

AvakTtnon NMAnpogopiag 2009-2010

17

Exercise

Recommend a query
processing order for

Term
eyes
kaleidoscope
marmalade
skies
tangerine
trees

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

Avéxrnon Thngogogieg 2009-2010

Freq
213312
87009
107913
271658
46653
316812

postings size?

each query term appears only once in the query.

Avéxrnon Thngogogicg 2009-2010

Query processing exercises

Exercise: If the query is friends AND romans AND (NOT
countrymen), how could we use the freq of countrymen?

Exercise: Extend the merge to an arbitrary Boolean query. Can
we always guarantee execution in time linear in the total

Hint: Begin with the case of a Boolean formula query: in this,

AvakTtnon NMAnpogopiag 2009-2010

18

E16ieg Mopyeg 100 AveaTQuppeVOD
Evgetnpiov

Avéxrnon Thngogogieg 2009-2010

Recap

Key step in construction: Sorting

[Brutus | — [1] 2] 4] 11]31[45[173] 174

| Cawsar | — [1] 2] 4] 5] 6]16] 57[132]...]

[CaLpurnia | — [2[31][54 [101 |

Boolean query processing
Intersection by linear time “merging”
Simple optimizations

Avéxrnon Thngogogicg 2009-2010

Avaktnon lNAnpogopiag 2009-2010

19

Amotipnon Boolean enepwtoewy e Y0101 AVEGTOUUUEV®Y
QY ELWY

ATOTINON UE XPON QVECTPAUMEVWY APXELWV

— Single keyword: Retrieve containing documents using the inverted
index.

— OR: Recursively (by merge) retrieve e, and e, and take union of
results.

— AND: Recursively retrieve e, and e, and take intersection of results.
— BUT: Recursively retrieve e; and e, and take set difference of results.

Avéxrnon Thngogogieg 2009-2010

FASTER POSTINGS MERGES:
SKIP POINTERS/SKIP LISTS

Avéxrnon Thngogogicg 2009-2010

40

AvakTtnon NMAnpogopiag 2009-2010

20

Recall basic merge

Walk through the two postings simultaneously, in time linear in
the total number of postings entries

2|+ 4|~8]+141 [-48 /64| {128] Brutus
2/8] -lji~11 17 421 31 |Caesar

If the list lengths are m and n, the merge takes O(m+n) operations.

Can we do better?
Yes (if index isn’t changing too fast).

Avéxrnon Thngogogieg 2009-2010 41

Augment postings with (at indexing time)

128

41
21448141 |48 641128

31

H

Why?
To skip postings that will not figure in the search results.

How?
Where do we place skip pointers?

Avioernon TTngogogixg 2009-2010 42

AvakTtnon NMAnpogopiag 2009-2010

21

How? Query processing with

4] 128
8 |41 |4148 [+64 128

H 31
1 BHI11 17 H21 431

Suppose we’ve stepped through the lists until we process 8 on each list. We match it
and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so we can skip ahead past the
intervening postings.

Avéxrnon Thngogogieg 2009-2010

43

Where do we place skips?

Tradeoff:

0 More skips — shorter skip spans = more likely to skip.
But lots of comparisons to skip pointers.

o Fewer skips — few pointer comparison, but then long
skip spans = few successful skips.

S i s € W s R
o I s W W W W P

Avéxrnon Thngogogicg 2009-2010

44

AvakTtnon NMAnpogopiag 2009-2010

22

Placing skips

Simple heuristic: for postings of length L, use VL evenly-spaced skip
pointers.

= This ignores the distribution of query terms.
= Easyif the index is relatively static; harder if L keeps changing because of updates.

= This definitely used to help; with modern hardware it may not (Bahle et al. 2002) unless
you’re memory-based
o The I/O cost of loading a bigger postings list can outweigh the gains from quicker in memory
merging!

Avéxrnon Thngogogieg 2009-2010 45

PHRASE QUERIES AND POSITIONAL
INDEXES

Avéxrnon Thngogogicg 2009-2010 46

AvakTtnon NMAnpogopiag 2009-2010

23

Phrase queries

Want to be able to answer queries such as “stanford university” —
as a phrase

Thus the sentence “I went to university at Stanford” is
not a match.

0 The concept of phrase queries has proven easily
understood by users; one of the few “advanced search”
ideas that works -- 10% explicit phrase queries (“”)

o Many more queries are implicit phrase queries (such as
person names)

Avioernon TTingogogixg 2009-2010 47

Phrase queries

For this, it no longer suffices to store only
<term : docs> entries

Eidape oto mponyolUevo HABNUO OTL UMOPOUUE VO KPATAUE TN
B£on kKABe 6pou OTO KElPEVO 1 va Xwplooupe To Kelipevo oe blocks

(Ba to doUpE TTOLO AVOAUTIKA CHUEPQ)

Avioernon TTngogogixg 2009-2010 48

AvakTtnon NMAnpogopiag 2009-2010

24

‘ A first attempt: Biword indexes

Index every consecutive pair of terms in the text as a
phrase

= For example the text “Friends, Romans, Countrymen” would generate the biwords
o friends romans
a romans countrymen

= Each of these biwords is now a dictionary term
= Two-word phrase query-processing is now immediate.

Avéxrnon Thngogogieg 2009-2010 49

Longer phrase queries

stanford university palo alto
can be broken into the Boolean query on biwords:
stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs matching the
above Boolean query do contain the phrase.

Avéxrnon Thngogogicg 2009-2010 50

AvakTtnon NMAnpogopiag 2009-2010

25

Extended biwords

1. Parse the indexed text and perform part-of-speech-tagging
(POST).

2. Bucket the terms into (say) Nouns (N) and articles/prepositions
(X).
3. Call any string of terms of the form NX*N an extended biword

Each such extended biword is now made a term in the
dictionary.

Example: catcher in the rye
N X X N
Query processing: parse it into N’s and X's

a Segment query into enhanced biwords
o Look up in index: catcher rye

Avéxrnon Thngogogieg 2009-2010

Issues for biword indexes

False positives, as noted before

Index blowup due to bigger dictionary
0 Infeasible for more than biwords, big even for them

Biword indexes are not the standard solution (for all
biwords) but can be part of a compound strategy

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

26

Solution 2: Positional indexes

In the postings, store, for each term the position(s) in which
tokens of it appear:

<term, number of docs containing term;
docl: positionl, position2 ...;

doc2: positionl, position2 ... ;

etc.>

Ac Bewprjooupe Ot position eivat 7 0o Tov token

Avéxrnon Thngogogieg 2009-2010 53

Positional index example

<be: 993427;

1:7,18, 33, 72, 86, 231;
2:3,149;

4:17,191, 291, 430, 434;
5:363, 367, ..>

m For phrase queries, we use a merge algorithm recursively at the
document level

= But we now need to deal with more than just equality

Avéxrnon Thngogogicg 2009-2010 54

Avaktnon lNAnpogopiag 2009-2010

27

Processing a phrase query

Extract inverted index entries for each distinct term: to, be, or, not.

Merge their doc:position lists to enumerate all positions with “to be
or not to be”.

o to:
2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
o be:

1:17,19; 4:17,191,291,430,434,; 5:14,19,101, ...

Avéxrnon Thngogogieg 2009-2010

Proximity queries

LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
o Again, here, /k means “within k words of”.

Clearly, positional indexes can be used for such
gueries; biword indexes cannot.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

28

Proximity queries

Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it
work for any value of k?

0 This is a little tricky to do correctly and efficiently
0 See Figure 2.12 of IIR

o There’s likely to be a problem on it!

Avéxrnon Thngogogieg 2009-2010

Positional index size

You can compress position values/offsets

Nevertheless, a positional index expands postings storage substantially

Nevertheless, a positional index is now standardly used
because of the power and usefulness of phrase and
proximity queries ... whether used explicitly or implicitly
in a ranking retrieval system.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

29

Positional index size

Need an entry for each occurrence, not just once per document

Index size depends on average document size
o Average web page has <1000 terms

o SECfilings, books, even some epic poems ... easily 100,000 terms

Consider a term with frequency 0.1%

Document size Postings Positional postings
1000 1 1
100,000 1 100

Avéxrnon Thngogogieg 2009-2010

Rules of thumb

A positional index is 2—4 as large as a non-
positional index

(compressed) Positional index size 35-50% of
volume of original text

Caveat: all of this holds for “English-like” languages

The number of items to check ®(N) -> O(T), where
N:number of documents, T: number of tokens

Avéxrnon Thngogogicg 2009-2010

60

AvakTtnon NMAnpogopiag 2009-2010

30

Combination schemes

These two approaches can be profitably combined

”n o«

o For particular phrases (“Michael Jackson”, “Britney Spears”) it is
inefficient to keep on merging positional postings lists

Even more so for phrases like “The Who”

In general:

Good queries to include: common (based on recent query
behavior) and expensive

Avéxrnon Thngogogieg 2009-2010

Combination schemes

Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme (+ a partial
next word index)

0 A typical web query mixture was executed in % of the
time of using just a positional index

0 It required 26% more space than having a positional
index alone

Avéxrnon Thngogogicg 2009-2010

62

AvakTtnon NMAnpogopiag 2009-2010

31

Evaluating Phrasal Queries with Inverted Indices

Phrasal Queries (summary)

o Must have an inverted index that also stores positions of each keyword in a
document.

o Retrieve documents and positions for each individual word,
intersect documents, and

then finally check for ordered contiguity of keyword positions.

Best to start contiguity check with the least common word in the phrase.

Avéxrnon Thngogogieg 2009-2010

Evaluating Proximity Queries with Inverted Indices

Proximity Queries (summary)

o Use approach similar to phrasal search to find documents in which all keywords are
found in a context that satisfies the proximity constraints -- a list (in increasing
positional order) is generated for each one

o The lists of all elements are traversed in synchronization to find places where all the
words appear close enough (for proximity).

a During binary search for positions of remaining keywords, find closest position of k; to
p and check that it is within maximum allowed distance.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

32

Inverted Index: Katoxheldo

= |s probably the most adequate indexing technique

= Appropriate when the text collection is large and semi-static

= If the text collection is volatile online searching is the only option
= Some techniques combine online and indexed searching

Avéxrnon Thngogogieg 2009-2010 65

Resources for today’s lecture

Skip Lists theory: Pugh (1990)
o Multilevel skip lists give same O(log n) efficiency as trees

H.E. Williams, J. Zobel, and D. Bahle. 2004. “Fast Phrase Querying
with Combined Indexes”, ACM Transactions on Information
Systems.

http://www.seg.rmit.edu.au/research/research.php?author=4

D. Bahle, H. Williams, and J. Zobel. Efficient phrase querying with
an auxiliary index. SIGIR 2002, pp. 215-221.

Avéxrnon Thngogogicg 2009-2010 66

AvakTtnon NMAnpogopiag 2009-2010

Vocabulary search

Avéxrnon Thngogogieg 2009-2010 67

Dictionary data structures for inverted indexes

= The dictionary data structure stores the term vocabulary,
document frequency, pointers to each postings list ... in what
data structure?

| Brutus | — [1] 2| 4| 11|31 |45[173[174]

| CaesarR | — (1] 2| 4| 5| 6[16] 57[132]... |

| CALPURNIA | — | 2 1 31 J 54 l 101 |

e h Y g
dictionary postings

Avéxrnon Thngogogicg 2009-2010 68

AvakTtnon NMAnpogopiag 2009-2010

34

A naive dictionary

= An array of struct:

char[20] int Postings *

20 bytes 4/8 bytes 4/8 bytes
= How do we store a dictionary in memory efficiently?
= How do we quickly look up elements at query time?

term document pointer to
frequency postings list

a 656,265 —

aachen 65 —

zulu 221 —

Avéxrnon Thngogogieg 2009-2010 69

| Dictionary data structures

» Two main choices:
o Hash table
o Tree

= Some IR systems use hashes, some trees

Avéxrnon Thngogogicg 2009-2010 70

AvakTtnon NMAnpogopiag 2009-2010

35

Vocabulary search

As each searching task on an inverted file always starts in the
vocabulary, it is better to store the vocabulary in a separate file

— this file is not so big so it is possible to keep it at main memory at search

time

Suppose we want to search for a word of length m.

The structures most used to store the vocabulary are hashing, tries or B-trees.
Options:
= Cost of searching a sequential file: O(V)
= Cost of searching assuming hashing: O(m)
= Cost of searching assuming tries: O(m)
= Cost of searching assuming the file is ordered (lexicographically): O(log V)
— this option is cheaper in space and very competitive

Avéxrnon Thngogogieg 2009-2010

Hashes

Each vocabulary term is hashed to an integer

Pros:
0 Lookup is faster than for a tree: O(1)

Cons:

o No easy way to find minor variants:
judgment/judgement

0 No prefix search [tolerant retrieval]

o If vocabulary keeps growing, need to occasionally do the
expensive operation of rehashing everything

Avéxrnon Thngogogicg 2009-2010

72

AvakTtnon NMAnpogopiag 2009-2010

36

Tree: binary tree

log(M) - balanced

a-hu - : si-z

Avéxrnon Thngogogieg 2009-2010

op

Tree: B-tree

o Definition: Every internal nodel has a number of children
in the interval [a,b] where a, b are appropriate natural
numbers, e.g., [2,4].

Disk resident data
structures

Avéxrnon Thngogogicg 2009-2010

74

AvakTtnon NMAnpogopiag 2009-2010

37

Trees

Simplest: binary tree
More usual: B-trees

Trees require a standard ordering of characters and hence
strings ... but we standardly have one

Pros:
0 Solves the prefix problem (terms starting with hyp)
Cons:
o Slower: O(log M) [and this requires balanced tree]

0 Rebalancing binary trees is expensive
But B-trees mitigate the rebalancing problem

Avéxrnon Thngogogieg 2009-2010

75

WILD-CARD QUERIES

Avéxrnon Thngogogicg 2009-2010

76

AvakTtnon NMAnpogopiag 2009-2010

38

Wild-card queries: *

Wildcard queries are used in any of the following situations:

(1) the user is uncertain of the spelling of a query term

(e.g., Sydney vs. Sidney, which leads to the wildcard query S*dney);

(2) the user is aware of multiple variants of spelling a term and (consciously)
seeks documents containing any of the variants

(e.g., color vs. colour);

(3) the user seeks documents containing variants of a term that would be caught
by stemming, but is unsure whether the search engine performs stemming

(e.g., judicial vs. judiciary, leading to the wildcard query judicia*);

(4) the user is uncertain of the correct rendition of a foreign word or phrase
(e.g., the query Universit* Stuttgart).

Avioernon TTingogogixg 2009-2010 7

Wild-card queries: *

mon*: find all docs containing any word beginning

o n

mon-.

Easy with binary tree (or B-tree) lexicon: retrieve all
words in range: mon <w < moo

*mon: find words ending in “mon”: harder

Trialing wildcards

Avioernon TTngogogixg 2009-2010 78

AvakTtnon NMAnpogopiag 2009-2010

Wild-card queries: *

= *mon: find words ending in “mon”: harder
o Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom < w < non.

Reverse B-tree (suffix B-tree)

(in general, any query with a single wildcard)

Avéxrnon Thngogogieg 2009-2010

79

Query processing

= At this point, we have an enumeration of all terms in
the dictionary that match the wild-card query.

= We still have to look up the postings for each
enumerated term.

» E.g., consider the query:
se*ate AND fil*er
This may result in the execution of many Boolean AND queries.

Avéxrnon Thngogogicg 2009-2010

80

Avaktnon lNAnpogopiag 2009-2010

40

B-trees handle *’s at the end of a query term

How can we handle *’s in the middle of query
term?

0 co*tion

We could look up co* AND *tion in a B-tree and
intersect the two term sets

0 Expensive

Avéxrnon Thngogogieg 2009-2010 81

B-trees handle *’s at the end of a query term

The solution: transform wild-card queries so that
the *’s occur at the end

This gives rise to the Permuterm Index.

Kataokevaloupe emumpocBetn doun (mAéov tou dictionary +
inverted index)

Avéxrnon Thngogogicg 2009-2010 82

AvakTtnon NMAnpogopiag 2009-2010

41

Permuterm index

= A special symbol $ to indicate the end of a word
= hello -> helloS
= Construct a permuterm index, in which the various rotations of

each term (augmented with S) all link to the original vocabulary
term.

o helloS, elloSh, lloShe, loShel, oShell

Permuterm vocabulary (the vocabulary consists of all such permutations)

Ovotaotind, Beweodpe ol o mOavd suffix

Avéxrnon Thngogogieg 2009-2010 83

Permuterm index

A query with one wildcard
Rotate so that the wildcard (*) appears at the end of the query

Lookup the resulting string in the permuterm index (prefix query —
trailing wildcard) and get all words in the dictionary

Avéxrnon Thngogogicg 2009-2010 84

Avaktnon lNAnpogopiag 2009-2010

42

Example

Query m¥*ic

matching documents

Permuterm index

Permuterm vocabulary for magic and music

m*n matches man and moron

We lookup these terms in the standard inverted index to retrieve

Avéxrnon Thngogogieg 2009-2010

85

m Queries:
o X lookup on

Permuterm index

XS X* lookup on SX*

0 *X lookup on X$* *X* lookup on X*
o X*Y lookup on YSX* X*Y*Z ??? Exercise!

Avéxrnon Thngogogicg 2009-2010

86

Avaktnon lNAnpogopiag 2009-2010

43

Permuterm index

Example
fi*mo*er
fi*mo*er

1. Enumerate all terms in the dictionary that are in the permuted
index of erSfi*

2. Then, filter out (exhaustive search) those that do not have mo
in the middle

3. Run surviving terms through the standard inverted index

Avéxrnon Thngogogieg 2009-2010 87

Permuterm query processing (summary)

m Rotate query wild-card to the right
= Now use B-tree lookup as before.
m Permuterm problem: = quadruples lexicon size (tenfold increase of

the dictionary)

Elval mapopolo pe to va elodyoupe 0Aoug ta suffix oe éva B-
tree (SUFFIX TREES)

Avéxrnon Thngogogicg 2009-2010 88

Avaktnon lNAnpogopiag 2009-2010

44

 Bigram (&-gram) indexes

= A k-gram is a sequence of k characters

= Use as special character $ to denote the beginning or
the end of a term

= In a k-gram index, the dictionary contains all k-grams
that occur in any term in the vocabulary

Example 3-grams for music

Avéxrnon Thngogogieg 2009-2010 89

 Bigram (&-gram) indexes

= Enumerate all k-grams (sequence of k chars) occurring in any term

= e.g., from text “April is the cruelest month” we get the 2-grams
(bigrams)

u Sis a special word boundary symbol

= Maintain a second inverted index from bigrams to dictionary terms
that match each bigram.

Avéxrnon Thngogogicg 2009-2010 90

Avaktnon lNAnpogopiag 2009-2010

45

grams (here k=2).

$m [——
mo | m——— >
on | w—— >

Avéxrnon Thngogogieg 2009-2010

Bigram index example

The k-gram index finds terms based on a query consisting of k-

mace —

madden

among

—

amortize - >

among

—

around

Similar to the postings in the inverted index (ordered)

91

query.

Avéxrnon Thngogogicg 2009-2010

a Sm AND mo AND on

Example re*ve and 3-grams

Processing wild-cards

Query mon* can now be run as (assume 2-grams)

Gets terms that match AND version of our wildcard

AvakTtnon NMAnpogopiag 2009-2010

46

Processing wild-cards

Query mon* can now be run as (assume 2-grams)
a SmAND mo AND on
Gets terms that match AND version of our wildcard query.
But we’d enumerate moon.

query

inverted index.

Fast, space efficient (compared to permuterm).

Avéxrnon Thngogogieg 2009-2010

1. Must post-filter these terms against query. (the terms enumerated by the
Boolean query on the k-gram are checked individually against the original

2. Surviving enumerated terms are then looked up in the term-document

Processing wild-card queries
term.

o pyth* AND prog*
If you encourage “laziness” people will respond!

Which web search engines allow wildcard queries?

As before, we must execute a Boolean query for each enumerated, filtered

Wild-cards can result in expensive query execution (very large disjunctions...)

| | Search

Type your search terms, use * if you need to.
E.g., Alex* will match Alexander.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

47

