
A Scalable and Ontology-Based P2P Infrastructure for Semantic Web Services

Mario Schlosser Michael Sintek1 Stefan Decker Wolfgang Nejdl2
Stanford University

{schloss, sintek, stefan, nejdl@db.stanford.edu}

1 On leave from DFKI, Germany.
2 On leave from University of Hannover, Germany.

Abstract

Semantic Web Services are a promising combination of
Semantic Web and Web service technology, aiming at
providing means of automatically executing, discovering
and composing semantically marked-up Web services. We
envision peer-to-peer networks which allow for carrying
out searches in real-time on permanently reconfiguring
networks to be an ideal infrastructure for deploying a
network of Semantic Web Service providers. However,
P2P networks evolving in an unorganized manner suffer
from serious scalability problems, limiting the number of
nodes in the network, creating network overload and
pushing search times to unacceptable limits. We address
these problems by imposing a deterministic shape on P2P
networks: We propose a graph topology which allows for
very efficient broadcast and search, and we provide an
efficient topology construction and maintenance
algorithm which, crucial to symmetric peer-to-peer
networks, does neither require a central server nor super
nodes in the network. We show how our scheme can be
made even more efficient by using a globally known
ontology to determine the organization of peers in the
graph topology, allowing for efficient concept-based
search.

1 Introduction

Semantic Web Services combine Semantic Web
research efforts with the Web services world. Web
service technology makes Semantic Web Services
machine-accessible, whereas Semantic Web technology
makes service descriptions machine-understandable:
Tools such as ontologies are used to describe the
semantics of Web services [5] in order to allow for
automated discovery and composition of services.
However, current proposals for Web services
infrastructures focus on centralized approaches such as
UDDI [14]: Service descriptions are stored in a central
repository that has to be queried in order to discover or, in
a later stage, compose services. Centralized systems
introduce single points of failure, hotspots in the network
and expose vulnerability to malicious attacks – making

full use of Semantic Web Services capabilities using a
centralized system does not scale gracefully to large
number of services. This difficulty is severed by the
evolving trend to ubiquitous computing in which more
and more devices and entities become services and
service networks become extremely dynamic due to
constantly arriving and departing service providers.

In this paper, we present an approach to enhance the
capabilities of Semantic Web Services with the dynamics
and real-time search capabilities of peer-to-peer networks.
We address a major problem currently faced in deploying
P2P infrastructures: Gnutella-style [3] P2P networks do
not scale to large numbers of peers. Search times and
network load increase, while no guarantees nor even
meaningful estimates can be given on the completeness or
success rate of searches on the network since current P2P
networks use inefficient broadcast mechanisms as search
techniques.

We arrive at an efficient P2P infrastructure by
organizing peers in a P2P network into a graph structure
based on hypercubes in our HyperCuP (Hypercube P2P)
topology which we describe in this paper. Furthermore,
we show how to use global ontologies to partition the
network topology into concept clusters that can be
queried specifically, enabling the network to answer
queries consisting of logical combinations of ontology
concepts. Semantic Web Services use ontologies to
describe their capabilities, therefore our infrastructure
proves to be a best fit for deployment in large and
dynamic service networks.

Section 2 describes the graph topology and its
suitability for efficient broadcast and search. Section 3
presents a distributed algorithm which is capable of
maintaining the graph structure efficiently, and elaborates
the algorithm on a detailed example. In Section 4, we
further extend this infrastructure by describing the use of
ontologies for partitioning the network. We deal with
related work in Section 5 and conclude in Section 6.

2 A Hypercube P2P Topology

Scaling a P2P network to a large number of peers while
maintaining certain properties such as low network

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

diameter requires controlling the evolution of the network
topology upon peer joins and departures. We organize
peers in a P2P network into a hypercube (or, more
general, a Cayley graph) topology.

2.3 Organizing Peers into a Hypercube Graph

Figure 1a depicts a hypercube for a base b = 2, a topology
that has been studied before in the area of multiprocessor
machines [4], but under different assumptions. A
complete hypercube graph consists of N = bLmax+1 nodes
and is defined by the fact that all nodes have (b –
1) ⋅ (Lmax + 1) neighbors, (b – 1) in each ‘dimension’ –
where Lmax + 1 is essentially the number of dimensions
spanned by the cube (in Figure 1, the cube has three
dimensions, and Lmax is 2). The network diameter, defined
as the shortest path between most distant nodes in terms
of node hops, is ∆ = logbN. As visible, this structure is
symmetric, i.e. no node incorporates a more prominent
position than others. This is crucial for load balancing in
the network: Every node can become the source of a
broadcast (the root of a spanning tree of the network), yet
the load will always be shared equally. The topology
provides redundancy – its connectivity (the minimum
number of nodes to be removed in order to partition the
graph) is optimal, i.e. equal to node degree – 1. Power-
law networks such as Gnutella can easily be partitioned
by bringing down highly connected nodes in the network
through denial of service attacks, the hypercube topology
is far less vulnerable to such attacks.

The hypercube base b can be chosen to adjust the
network diameter and node degree.

0 1 2 3 4 5 6 7

0

1
2

1
2 2

2

0 4

6

0

11

2 0

1 5

7

0

11

3 0

2 2

22

a b
Figure 1. Hypercube topology

Note at this point that the construction algorithm that
will be described in Section 3.1 works well with node
numbers that are not equal to those in complete
hypercubes, allowing for any number of peers in the
network.

To describe the topology of a graph G = (V,E), we
state some definitions. In the following, we will deal with
hypercubes with a binary base for brevity. (Refer to [10]
for an extension to bases b > 2.) Edges in the graph are
labeled: Node Y is dubbed i-neighbor of node X or
Y = iN(X) if node Y is X’s neighbor in dimension i. For
example, in Figure 1, node 5 is the 2-neighbor of node 4.
Node 5 is also dubbed 4’s neighbor in dimension 2.

Edges in the graph are undirected, i.e. node 4 is also 5’s
2-neighbor. A node can have extended neighbors Y =
N(X) = {x0, x1, ...}(X), where N is termed neighbor link
set, and it denotes the sequence of i-neighbors one would
have to follow in the complete hypercube graph to reach
node Y from node X and vice versa. In our example, the
neighbor link set {0,1} leads from node 1 to node 7 and
back, i.e. 1 = {0,1}(7) and 7 = {0,1}(1). Since all links in
the graph are undirected, the order in which the steps on
the path that is described by a link set are carried out is
not important, i.e. 1 = {0,1}7 and 1 = {0,1}7.

Edge labels start at i = 0. The maximum neighbor
dimension of a node is termed Lmax. Any node X in the
network maintains two sets which determine its location
in the graph topology: A set of neighbor link sets

{ }nNNN ,...,,{}, 21=Ω and an associated set of node
addresses { }naddraddraddrlocalhostA ,...,,, 21= . A
neighbor is identified by a link set N and can be reached
by sending a message to its address addr.

2.4 Broadcast and Search Algorithm

Based on this terminology, we can define a broadcast
scheme which guarantees that the set of nodes traversed
strictly increases during a forwarding process, i.e. nodes
receive a message exactly once. It is guaranteed that
exactly N – 1 messages are required to reach all nodes in
a topology. Furthermore, the last nodes are reached after
logbN forwarding steps. Any node can be the origin of a
broadcast in the network, satisfying a crucial requirement.

The algorithm works as follows: A node invoking a
broadcast sends the broadcast message to all its
neighbors, tagging it with the dimension into which the
message was sent. Nodes receiving the message restrict
the forwarding of the message to those links on higher
dimensions.

As an example, refer to the serialized notation of the
network graph in Figure 1b (for clarity, only the links
used in the example are depicted – however, one can just
copy all links in Figure 1a into this notation to arrive at
the full picture): Node 0 sends a broadcast – at first to all
its own neighbors, viz. nodes 4, 2 and 1. Node 4 receives
the message on a link tagged as a dimension 0 link, i.e. it
forwards the message only to its 1- and 2-neighbors,
namely 6 and 5. At the same time, node 2 which has
received the message on a dimension 1 link forwards it to
its 2-neighbor, node 3. In the third forwarding step, node
6 relays the message to node 7, again its 2-neighbor.

The characteristic path length [10] in this scheme can
be calculated as

()
() ()∑ ∏

=

−

=

+−

+⋅
−

−
⋅

−
=

N

i

iN

jb

iNb bb

ji
iN

b
N

L
log

1

log

0

1log

!log
1

1
1

which is about 0.5 ⋅  logbN.

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

Broadcasts can be restricted to sub-hypercubes: In this
case, broadcast messages are forwarded only into some
dimensions of the hypercube, not into all dimensions.

3 Building and Maintaining Hypercube
Graphs

In the following, we outline a distributed algorithm which
allows nodes to build a hypercube topology. Here, the
major challenges in P2P networks are as follows: Crucial
for P2P networks, any node in the network should be
allowed to accept and integrate new nodes into the
network. Furthermore, joining and leaving the network
are to consume a reasonable amount of message
transmission to limit the traffic imposed on the transport
network. Clearly, a joining node should not have to
register with all nodes in the network, i.e. we would like
the protocol to beat a message number of O(n) for node
joins and removals.

3.1 Topology Construction and Maintenance
Algorithm

The formal description of the algorithm and a proof of its
completeness can be found in [10]. We will walk through
an example by having 9 peers joining a network, and one
peer leaving during the process, to elaborate the basic
idea of the construction and maintenance algorithm.

The construction and maintenance algorithm is based
on the notion that nodes in an evolving hypercube graph
take over responsibility for more than one position in the
hypercube. The idea is to have the hypercube topology of
the next biggest complete hypercube graph already
implicitly present in the current topology state, i.e. in the
sets of all participating nodes. Upon arrival of new nodes,
the complete hypercube topology unfolds as needed.
Upon removal of nodes, other nodes jump in to cover the
positions previously covered by the node that left the
topology, prepared to give these positions up again as
new nodes join. Since the complete hypercube topology
is implicitly preserved, the broadcast and search
algorithms do not have to change either – still, every peer
receives a broadcast message exactly once.

0 1

0 1

2

0

0 11,0

0 1

2

0

11

0 0

0 1

2

0

11

3 0

a b c d
Figure 2. Network topology construction I

Start. At the beginning, only peer 0 is active.
Step a. Peer 0 is contacted by node 1 which wants to

join the P2P network. Peer 0 integrates peer 1 as 0-

neighbor since it does not currently have any other
neighbor: The peers establish a link between each other
which is tagged with the neighbor set {0}. Generally, a
peer integrates a joining peer on its first vacant neighbor
dimension, the neighbor dimensions are ordered such that
lower neighbor dimensions always come first.

Step b. Peer 2 contacts one of the two peers (here, we
assume that it contacts peer 1) to join the network. The
first vacant neighbor dimension of peer 1 is 1 since it
already maintains a 0-neighbor, peer 0. Essentially, peer 1
opens up a new dimension for the hypercube, as depicted
in Figure 2b. Peer 1 becomes the so-called integration
control node for the complete integration of peer 2 into
the network: It is responsible for providing peer 2 with all
necessary links – at the end of the integration process,
peer 2 has to have neighbor links connecting it to all
currently existing neighbor dimensions, in order to be
able to carry out complete broadcasts. Since peer 1
currently has two neighbors, a 0- and a 1-neighbor, it
knows that it has to provide peer 2 with a 0- and a 1-
neighbor, too. Peer 1 itself has become peer 2’s 1-
neighbor. Since there is currently no alternative, peer 1
selects peer 0 as the new 0-neighbor for peer 2.

However, peer 0 can only become a temporary 0-
neighbor for peer 2 because it already has another 0-
neighbor, namely peer 1 – and we said before that a peer
can only have one neighbor per neighbor dimension.
Essentially, peer 0 now covers a vacant position in the
hypercube, i.e., it acts as if it occupies two positions in
the hypercube, as depicted by the thin copy of peer 0 in
Figure 2c. To mark the link between peers 2 and 0 as
temporary relationship, it is tagged with the link set {0,1}
(instead of {0}): This link set denotes the path from peer
2 via the position at which the link set is originally aiming
to peer 0, the peer which currently covers this position.
(This path is also well visible in Figure 2c.) Temporary
link sets are always constructed by this rule.

Step c. Peer 3 wants to join the network. We compare
three cases, viz. peer 3 contacting peer 0, 1 or 2 to join
the network.

In case peer 3 contacts peer 0 to join, peer 0 follows
the general rule to integrate the peer on its first vacant
neighbor dimension – which is 1, since peer 0 has a 0-
neighbor, but no 1-neighbor. As its new 1-neighbor, peer
3 will now cover the temporary position that peer 0 used
to maintain in the hypercube: Hence peer 0 can pass on
links that are associated with this position to peer 3. Due
to the construction rule of edge labels for temporary link
sets, peer 0 is able to determine that link {0,1} to peer 2 is
a link that is to be passed on to peer 3. Peer 3 then
establishes a link tagged by link set {0} to peer 3, as
depicted in Figure 2d.

In case peer 3 contacts peer 2 to join, peer 2 decides to
integrate peer 3 as its new (and non-temporary) 0-
neighbor. However, it does not carry out the integration

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

itself: Since peer 0 currently covers the position that will
soon be occupied by peer 3, the integration control
responsibility has to be forwarded to peer 0. Peer 2 can do
so via peer 0. Note that it is always possible for peers in
the network to reach the node to which they have to
forward the control integration, if necessary, in one hop.
We prove this in [10]. Peer 0 carries out the integration
just as described above, arriving at Figure 2d.

In case peer 3 contacts peer 1, peer 1 will integrate
peer 3 on neighbor dimension 2, i.e., it opens up a new
dimension for the hypercube. This leads to a momentary
misbalance in the hypercube with some peers maintaining
more links than others. However, the hypercube will only
become misbalanced in the long run if there are ‘joining
hotspots’ in the network. Burst joins of peers are no
problem, the structure will balance itself again in the long
run. Moreover, the information on vacant position in the
structure is always spread in the network, i.e., it is likely
that a joining peer will contact a network peer that has a
vacant position to fill, inherently balancing the graph. To
initially balance the hypercube, a peer that is integrating a
new peer selects a random position in the hypercube to
which shortest-path routing (see Section 4) is performed.
A vacant position encountered during this walk is used as
integration position. Having compared these three joining
scenarios in this step, we will explore a specific joining
scheme for brevity in the next steps.

0 1

2

0

11

3 0

4 1

2

0

11

3 0

2 2

22

0 1

2

0

1
1,2,21

3

4

2

1,2

0
0,2,2

0,2

0 1

2

0

11

3 0

4 5

2

0

11

3 0

2 2

22

0 1

2

0

11

3

4

2

1,2

0
0,2,2

50

2

1,2

a b c d
Figure 3. Network topology construction II

Step d. Peer 4 arrives and contacts peer 0. Now, the
network crosses a threshold – a hypercube with 2
dimensions cannot accommodate 5 peers, hence a third
dimension is opened up. Peer 0 integrates peer 4 on its
first vacant neighbor dimension as its new 2-neighbor.
Peer 4 needs 3 neighbors, one on each neighbor
dimension – but neither peer 0’s 1-neighbor, peer 3, nor
peer 0’s 0-neighbor, peer 1, are linked to their own 2-
neighbor which they could provide as a new neighbor to
peer 4. Thus, peer 3 acts as temporary 1-neighbor for peer
4, whereas peer 1 acts as temporary 0-neighbor for peer 4,
indicated once again by the link sets {0,2} and {1,2}
among these peers (see Figure 3b). Figure 3a shows the
existing peers in the network in bold style and the
positions that are additionally covered by them in thin
style. Once again, note that the positions that are
additionally covered by peers determine the temporary
connections the peers have to maintain, plus their edge
labels. Figure 3a also demonstrates another basic rule:
Peers that are ‘closest’ to a vacant position in the

hypercube structure are always chosen to cover it. Here,
‘closest’ means that the peer on the highest neighbor
dimension to a vacant position covers it. (In the more
complicated case when a peer has to cover several
positions, a peer covers the power set of its vacant
neighbor dimensions – however, refer to [10] to find a
detailed discussion.)

Among the other peers in the network, adding another
dimension to the graph means the multiplication of
existing links, too: For example, peers 1 and 2 could now
both integrate 2-neighbors, which would then be linked
on neighbor dimension 1. Thus, they tag their already
existing {1} link additionally as {1,2,2} link. So do peers
2 and 3 with their already existing {0} link.

Step e. Peer 1 is contacted to integrate the newly
arriving peer 5. Peer 1 is still lacking a 2-neighbor, thus
peer 5 will be integrated on this position (Figure 3d).
Now, peer 1 can get rid of its {1,2,2} link to peer 2: It is
moved to peer 5. However, since 2 is not peer 5’s final 1-
neighbor either, the link stays temporary: Peers 2 and 5
now maintain a {1,2} link among them. Peer 5 takes over
peer 1’s temporary {0,2} link to peer 4, which still lacks
its final 0-neighbor. It has found one now, namely peer 5.

4 1

2

0

11

3 0

4 5

2

0

11

3 0

2 2

22

1

2

1

3

4
1,2
1,2

0

0,2

50

2

1,2

4 1

2

0

11

3 0

4 5

2

0

11

6 0

2 2

22

1

2

1

3

4
1,2

0

0,2

50

2

1,2

1

6

2 0,2

a b c d
Figure 4. Network topology construction III

Step f. Let us assume that peer 0 suddenly leaves the
network. In the maintenance protocol, it is obliged to
carry out a peer removal process: Basically, it decides
which existing peers that it knows will be chosen to take
over responsibility for the positions it gives up. In our
example, peer 0 leaves only one position vacant, its
original position in the graph – however, a node which
covers multiple positions will have to find successors for
each of its positions in the graph. Peer 4 takes over peer
0’s position, establishing temporary links to the former
neighbors of peer 0, peers 1 and 3. Figure 4a shows the
new distribution of covering responsibilities, Figure 4b
depicts the link structure that arises from this network
state.

Step g. Peer 4 is contacted by peer 6 and decides to
integrate it as its new 1-neighbor. This position is
currently covered by peer 3, hence peer 4 forwards the
integration control to peer 3, just as described in step c. In
the example, all temporary links that are currently owned
by peer 3, but originally belong to the new position of
peer 6, are restored and passed on to peer 6. Additionally,
peer 3 integrates peer 6 as its new 2-neighbor, arriving at
Figure 4d. Note that both in step f and g a joining peer
could have contacted any peer in the network without

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

misbalancing the graph structure since all peers maintain
temporary links.

Step h. Peer 6 is contacted by peer 7, leading to peer
7’s integration as peer 6’s new 0-neighbor. Figure 5a and
b depict the state of the network: Almost all positions of a
complete hypercube graph with 3 dimensions are held by
active peers, only peer 4 still covers two positions in the
hypercube.

4 1

2

0

11

3 0

4 5

7

0

11

6 0

2 2

22

1

2

1

3

4
1,2

0

0,2

50

2

1

6

2

7

1

0

2

8 1

2

0

11

3 0

4 5

7

0

11

6 0

2 2

22

a b c
Figure 5. Network topology construction IV

What if several peers want to join the network
simultaneously? We are currently working on turning our
protocol into a real-time protocol, dealing with
simultaneous node joins and departures. We are also
implementing the protocol on a JXTA-based P2P
infrastructure [7] [13].

Step i. On integrating peer 8, peer 4 pushes its links
{1,2} and {0,2} to its new 2-neighbor, arriving at a
complete hypercube topology again.

Link failures. A link failure in the network leads to a
node’s immediate departure from the P2P topology, not
being able to send any departing messages. If that
happens, the topology must be able to recover and head
back to a normal state. In the hypercube graph, we can
always recover from a sudden node loss. The procedure is
based on the axiom iN(jN(X)) = jN(iN(X)) (and can be
found in detail in [10]): The node that is closest to the
vanished node (in terms of a metric we call graph hop
distance which uses the dimension order to compute a
distance value between positions in the hypercube)
contacts the vanishing node’s neighbors by asking its own
neighbors for them. The node then carries out the node
departure routine on behalf of the vanished node. This
procedure does not change the message complexity as
described in Section 3.2.

3.2 Complexity

Assuming a relatively balanced graph structure, the
algorithm as described above yields an O(logbN)
complexity in terms of messages that have to be sent in
order to join or leave the network. More precisely, this
holds when there are only nodes in the graph that have
  1log −Nb or  Nblog non-missing neighbor
dimensions. Note that this allows for any number of
nodes in the graph. To arrive at this complexity order, the
algorithm uses optimizations not explained in detail in the
walk-through in Section 3.1. For example, the exact edge

labels of temporary links do not have to be stored as a
whole, they can be reconstructed from the missing
neighbor dimensions of a peer when necessary (i.e. when
this peer leaves the networks or integrates another peer).
If a new hypercube dimension is opened up by integrating
an additional peer (as has happened above in step d), this
information is not broadcasted to all peers in the network
– instead, it is propagated only when necessary, i.e. once
again when nodes communicate on the issue of removing
or integrating a peer. Networks that reach a large number
of nodes can scale down again to a small number of nodes
(as long as this takes place relatively balanced, see
Section 3): Higher neighbor dimensions that are added
during the construction process are removed again if no
peer in the network has any neighbor on a dimension any
more. Once again, this information is not broadcasted in
the network but locally inferred by every peer by
observing its set of neighbor link sets it maintains.

3.3 Alternative Topologies

The recursive construction algorithm as described in
Section 3.1 is capable of building all graphs belonging to
a special class of graphs, so-called Cayley graphs [1]
(details of constructing these topologies as opposed to
constructing a hypercube can be found in [10]).
Hypercubes belong to this class of graphs, as well as the
so-called star graph. The star graph exhibits properties
that are asymptotically superior to those of the hypercube
as it scales to a larger number of peers: Its node degree
and network diameter are sub-logarithmic. We can use
the star graph instead of a hypercube in networks which
scale to e.g. one million nodes. Broadcast can still be
carried out in an optimal manner.

1

0

10

1

0 1

0

10

1

0

1

0

10

1

0 1

0

10

1

0

2 2
2

2

2

2

2 2

2

22

2

a b

cd

2 2

dc

2 2
ab

1234

2134

3124

1324

2314

3214

4231

2431

3421

4321

2341

3241

3412

1432

4132

3142

1342

4312

2413

1423

4123

2143

1243

4213

Figure 6. Star graph

4 Ontology-based Routing

A HyperCuP empowered P2P network features good
scalability and search times. However, in the case of

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

Semantic Web applications such as Semantic Web
Services, additional knowledge is available that can be
used to further improve the P2P network performance:
Oftentimes, information or services that peers are able to
provide can be categorized as belonging to general
concepts. Concepts can in turn be organized in a (global)
ontology which defines the relationships between existing
concepts. In the following, we describe which role
ontologies play in the domain of Semantic Web Services
and how they can be used to improve the search
properties of a P2P network. Building on a hypercube
and, more general, Cayley graph topology, we show how
to organize the network to allow querying for logical
combinations of ontology concepts such that searching is
restricted to peers supporting these combinations.

4.1 Ontologies and Semantic Web Services

An ontology [15] is a shared formalization of a
conceptualization of a domain, to state a popular
definition. In the Semantic Web, ontologies are used to
assign commonly agreed upon semantics or interpretation
to particular concepts. Semantic Web Services can be
described by using various ontologies in parallel,
augmenting a service ontology by domain ontologies. A
service ontology contains concepts that stand for basic
types of services, such as retailers or delivery services
(see Figure 7a). A domain ontology comprises concepts
from a specific domain that a Web Service of a particular
type can be located in. The domain of cars can be
described by classifying brands and types of cars (see
Figure 7b). A car retailer Web Service would describe
itself by combining a concept from the service ontology
with concepts from the car domain ontology, for example
C ∧ G ∧ I. Here, a closed-world assumption applies: The
service description is regarded as being exhaustive within
the vocabulary provided by the ontologies. The Semantic
Web research effort has spawned many results on the
design of and distributed negotiation on such ontologies
which can well be reused to create service and domain
ontologies, also in the domain of Semantic Web Services
[9].

4.2 Ontology-based Network Organization

Ideally, the P2P service network should allow for issuing
a query to be sent to exactly those peers that can
potentially answer the query. For example, a query B ∧ I
∧ ¬G is to be broadcasted among those peers that buy
vans, but are not interested in trucks. To allow for such
broadcast containment, we introduce concept clusters into
the hypercube network topology as described in Section
2: Peers with identical or similar interests or services are
grouped in concept clusters which are in turn assigned to

a specific logical combination of ontology concepts that
describes best the peers belonging to the cluster.

Web
Service

Delivery
A

Sell
C

Retail
D

Wholesale
E

is_a is_a

is_a is_a

Motor Vehicle
F

Passenger Vehicle
H

Truck
G

is_ais_a

Van
I

is_a

a b

Buy
B

is_a

Figure 7. Service ontology and domain ontology

These concept clusters are organized into a hypercube
topology to enable routing to specific concept clusters in
the topology. Concept clusters themselves, too, are
hypercubes or star graphs. More specifically, a peer in an
ontology-based hypercube topology carries an address
which concatenates a set of concept coordinates and a set
of storage coordinates.

Concept coordinates. These coordinates address a
concept cluster on the ‘outer’ hypercube. A set of
structuring concepts is chosen to build this hypercube
(see Section 4.3). A structuring concept is contained in
one of the ontologies that are available to describe Web
services participating in the network, i.e. in the service or
domain ontologies. Each selected structuring concept is
represented by a single ontology coordinate whose binary
value in a concept cluster address reflects the support of
peers in the addressed concept cluster for the respective
structuring concept. For example, in a network that is
organized by concepts A, B and C, the concept cluster
comprising peers which only offer delivery services is
addressed by the ontology coordinate vector (1,0,0).

Storage coordinates. A concept cluster will contain
more than one peer. Hence an additional address space is
needed to accommodate multiple peers within a concept
clusters. Storage coordinates denote the location of a peer
within a specific concept cluster on the selected storage
topology. Concept clusters form sub-graphs of the ‘outer’
ontology-based hypercube – however, their internal
topology can be based on hypercubes, star graphs or any
other Cayley graph topology. Star graphs can be used if
concept clusters are expected to scale to large number of
nodes (see Section 3.3). The concatenation of concept and
storage coordinates forms the logical address of a peer.

4.2 Routing and Broadcast

Querying the network works in two routing steps: First,
the query is propagated to those concept clusters that
contain peers which the query is aiming at. Second, a
broadcast is carried out within each of these concept
clusters, optimally forwarding the query to all peers
within the clusters. This involves shortest-path routing in

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

the concept coordinate system as well as restricted
broadcast in the concept and storage coordinate systems.
More precisely, queries are answered as follows.

Query minimization. A query that is issued by a peer
undergoes logic minimization (e.g. Karnaugh
minimization) to identify its logical minterms
(conjunctions of structuring concepts). Minterms that
contain all structuring concepts point at exactly one
concept cluster, whereas minterms which do not comprise
all structuring concepts denote a group of concept clusters
(since the minterm essentially does not care about the
support of some structuring concepts, i.e. these
structuring concepts could either be supported or not,
forcing the query to be forwarded to the respective
concept clusters). However, all concept clusters pointed at
by a single minterm are direct neighbors of each other in
the network topology. Figure 9 depicts the ‘outer’
concept hypercube of a network that is organized by
structuring concepts A, D, E and F from the ontologies in
Figure 7. The query E ∨ A ∧ D consists of minterms E as
well as A ∧ D and asks for some peer that is a wholesale
service or a combined retail and delivery service.

Minterm analysis. Distinct minterms resemble
distinct groups of concept clusters in the network. To
each of these groups, one copy of the query message has
to be delivered to enable them to carry out broadcasts
within the group (see below). However, if their associated
minterms have a Hamming distance of less than 1, these
groups may overlap or are adjacent. Figure 8 depicts the
4-dimensional concept hypercube that is created by using
concepts A, D, E and F as structuring concepts. Each
node in the network represents a concept cluster (for
example, node 0101 represents the concept cluster
containing peers which are motor vehicle retailers). The
two minterms in our query are associated with two
(overlapping) groups of concept clusters, both are
highlighted in Figure 8.

0000 0100

01100010

0001 0101

01110011

1000 1100

11101010

1001 1101

11111011

Figure 8. Concept hypercube topology

Routing to concept clusters. Each concept cluster
spanned by a query has to be informed that it is to carry

out an internal broadcast among all its peers. So a copy of
the broadcast message is delivered to each concept cluster
addressed in the query. If queries span groups of concept
clusters, this can be accomplished by carrying out
restricted broadcasts in the concept coordinate system.
Figure 9 depicts the broadcast steps that are executed in
order to inform all concept clusters addressed by the
query E ∨ A ∧ D.

The broadcast algorithm modifies the algorithm
described in Section 2.4: A concept cluster group
associated with a minterm is described by the set of
dimensions in which it exists (directly associated with the
concepts it supports). Broadcast is carried out only in
those dimensions and branches out into additional
dimensions at peers which belong to more than one
minterm or are adjacent to peers belonging to another
minterm. In order to start the broadcast, the broadcast
message has to reach any peer within the concept cluster
group – this is achieved by shortest-path routing from the
querying peer to the closest peer in the group.

Shortest-path routing on a hypercube from a binary
address a to a binary address b is carried out by correcting
one address bit in each routing step. This guarantees
forwarding on the shortest possible path between two
nodes.

4.

0000 0100

01100010

0001 0101

01110011

1000 1100

11101010

1001 1101

1111

2.

1011 1.

3. 3.

3.

4.

4.

4.

Figure 9. Routing example on concept coordinates

Broadcast in concept clusters. All informed concept
clusters broadcast the query message among all their
member peers. Broadcasting is carried out in the storage
coordinate system, restricting it to the peers that belong to
the broadcasting concept cluster. An optimal broadcast
scheme as the one described in Section 2.4 exists for the
star graph, too, permitting its use as a storage topology
within concept clusters.

Peer feedback. Once the query message has arrived at
a peer, the peer is able to react to the message – for
example, by contacting the issuer of the query in order to
establish a business relationship etc.

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

4.3 Topology Construction

Peers can join the ontology-based topology by

contacting any peer already in the network. The peer
reveals its capabilities in terms of concepts contained in
any of the available global ontologies, and it is to be
integrated in the concept cluster matching its description.
If the peer describes itself with concepts that are not used
as structuring concepts in the network, it is integrated in
the most specific concept cluster. For example, a peer
supporting concepts A, B and E would be integrated in
concept cluster 1010 (which consists of peers supporting
concepts A and E), since B is not available as structuring
concept in Figure 8. Upon determining the concept cluster
in which a peer is to be integrated, a join message is
routed to any peer in this cluster, using shortest-path
routing. The contacted peer then integrates the new peer
into the concept cluster using precisely the algorithm
described in Section 3.1. Although it is possible to select
all concepts contained in available service and domain
ontologies as structuring concepts, the address space
would get very big, and the ‘outer’ concept hypercube
will become imbalanced since some concept
combinations will be more common than others. To
address this problem, structuring concepts can be chosen
upfront which are empirically expected to partition the
network into concept clusters in a reasonably balanced
manner. It would be desirable to define an algorithm
which is capable of dynamically constructing the ‘outer’
concept hypercube, i.e. an algorithm which dynamically
chooses good structuring concepts based on the current
concept distribution in the network. We are currently
investigating this problem.

5 Related Work

Making P2P networks scalable has recently received
much attention. Distributed hash table approaches [11]
such as CAN [8] and Chord [12] aim at enforcing a
deterministic content distribution instead which can be
used for routing point queries. While similar in terms of
message complexity for joining and departing nodes, our
approach specifically performs well at optimizing the
network load in broadcast and multipoint search, without
requiring hash functions, and allows for more detailed
queries, viz. logical combinations of ontology concepts.
[6] constructs an efficient P2P topology, yet does not
provide means of clustering peers with similar
capabilities. Building a Semantic Service Web on a P2P
infrastructure is opposed to centralized approaches such
as UDDI [14]. Automated composition and verification of
Semantic Web Services is addressed in [9], building on
the service description framework DAML-S [5]. Our
approach facilitates service discovery as a major building
block of automated service composition.

6 Conclusion

We have presented a topology to efficiently cluster
peers in a P2P network which features efficient broadcast
and search algorithms without any message overhead
during broadcast, logarithmic network diameter, and
resiliency towards node failure. Super peers or central
servers are not required. A set of globally known
ontologies is used to categorize peers as providers of
particular services to efficiently route and broadcast
queries. Organizing peers in this manner allows for
enhancing Semantic Web Services technology with the
flexibility and dynamics of P2P networks while ensuring
scalability to a large number of nodes.

7 References

[1] S. B. Akers and B. Krishnamurty. A Group-Theoretic

Model for Symmetric Interconnection Networks. In IEEE
Transactions on Computers, Vol. 38, No. 4, April 1989.

[2] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. In Proc. of the 28th Conference on
Distributed Computing Systems, July 2002.

[3] Gnutella website. www.gnutella.com
[4] S. L. Johnsson and C.-T. Ho. Optimum Broadcasting and

Personalized Communication in Hypercubes. In IEEE
Transactions on Computers, Vol. 38, No. 9, Sept. 1989.

[5] D. Martin et al. DAML-S: Semantic Markup for Web
Services. White paper, 2001,
www.daml.org/services/daml-s.

[6] G. Pandurangan, P. Raghavan, E. Upfal. Building low
diameter P2P networks. In Proc. of the 42nd Annual IEEE
Sympos. on the Foundations of Computer Science, 2001.

[7] W. Nejdl et al. EDUTELLA: A P2P Networking
Infrastructure based on RDF. In Proceedings of WWW11,
May 2002, Hawaii.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Shenker. A scalable content-addressable network. In Proc.
ACM SIGCOMM, August 2001.

[9] McIlraith, S., Son, T.C. and Zeng, H. Semantic Web
Services. In IEEE Intelligent Systems. Special Issue on the
Semantic Web. 16(2):46--53, March/April, 2001.

[10] M. Schlosser, M. Sintek, S. Decker, W. Nejdl.
HyperCuP/O – Shaping up peer-to-peer networks.
Technical Report, Stanford University, June 2002.

[11] S. Ratnasamy, S. Shenker, I. Stoica. Routing Algorithms
for DHTs: Some Open Questions. In Proc. of 1st
International Workshop on P2P Systems, March 2002.

[12] I. Stoica et al. Chord: A scalable P2P lookup service for
internet applications. In Proc. of ACM SIGCOMM, August
2001.

[13] Project JXTA: An open, innovative collaboration. White
paper, available at www.jxta.org.

[14] UDDI Technical White Paper. Available at www.uddi.org.
[15] M. Uschold and M. Grüninger. Ontologies: Principles,

Methods and Applications. In Knowledge Engineering
Review, 11(2), 1996

Proceedings of the Second International Conference on Peer-to-Peer Computing (P2P’02)
0-7695-1810-9/02 $17.00 © 2002 IEEE

