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Abstract 
 
Semantic Web Services are a promising combination of 
Semantic Web and Web service technology, aiming at 
providing means of automatically executing, discovering 
and composing semantically marked-up Web services. We 
envision peer-to-peer networks which allow for carrying 
out searches in real-time on permanently reconfiguring 
networks to be an ideal infrastructure for deploying a 
network of Semantic Web Service providers. However, 
P2P networks evolving in an unorganized manner suffer 
from serious scalability problems, limiting the number of 
nodes in the network, creating network overload and 
pushing search times to unacceptable limits. We address 
these problems by imposing a deterministic shape on P2P 
networks: We propose a graph topology which allows for 
very efficient broadcast and search, and we provide an 
efficient topology construction and maintenance 
algorithm which, crucial to symmetric peer-to-peer 
networks, does neither require a central server nor super 
nodes in the network. We show how our scheme can be 
made even more efficient by using a globally known 
ontology to determine the organization of peers in the 
graph topology, allowing for efficient concept-based 
search. 
 
1 Introduction 
 

Semantic Web Services combine Semantic Web 
research efforts with the Web services world. Web 
service technology makes Semantic Web Services 
machine-accessible, whereas Semantic Web technology 
makes service descriptions machine-understandable: 
Tools such as ontologies are used to describe the 
semantics of Web services [5] in order to allow for 
automated discovery and composition of services. 
However, current proposals for Web services 
infrastructures focus on centralized approaches such as 
UDDI [14]: Service descriptions are stored in a central 
repository that has to be queried in order to discover or, in 
a later stage, compose services. Centralized systems 
introduce single points of failure, hotspots in the network 
and expose vulnerability to malicious attacks – making 

full use of Semantic Web Services capabilities using a 
centralized system does not scale gracefully to large 
number of services. This difficulty is severed by the 
evolving trend to ubiquitous computing in which more 
and more devices and entities become services and 
service networks become extremely dynamic due to 
constantly arriving and departing service providers. 

In this paper, we present an approach to enhance the 
capabilities of Semantic Web Services with the dynamics 
and real-time search capabilities of peer-to-peer networks. 
We address a major problem currently faced in deploying 
P2P infrastructures: Gnutella-style [3] P2P networks do 
not scale to large numbers of peers. Search times and 
network load increase, while no guarantees nor even 
meaningful estimates can be given on the completeness or 
success rate of searches on the network since current P2P 
networks use inefficient broadcast mechanisms as search 
techniques. 

We arrive at an efficient P2P infrastructure by 
organizing peers in a P2P network into a graph structure 
based on hypercubes in our HyperCuP (Hypercube P2P) 
topology which we describe in this paper. Furthermore, 
we show how to use global ontologies to partition the 
network topology into concept clusters that can be 
queried specifically, enabling the network to answer 
queries consisting of logical combinations of ontology 
concepts. Semantic Web Services use ontologies to 
describe their capabilities, therefore our infrastructure 
proves to be a best fit for deployment in large and 
dynamic service networks. 

Section 2 describes the graph topology and its 
suitability for efficient broadcast and search. Section 3 
presents a distributed algorithm which is capable of 
maintaining the graph structure efficiently, and elaborates 
the algorithm on a detailed example. In Section 4, we 
further extend this infrastructure by describing the use of 
ontologies for partitioning the network. We deal with 
related work in Section 5 and conclude in Section 6. 

 
2 A Hypercube P2P Topology 
 
Scaling a P2P network to a large number of peers while 
maintaining certain properties such as low network 
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diameter requires controlling the evolution of the network 
topology upon peer joins and departures. We organize 
peers in a P2P network into a hypercube (or, more 
general, a Cayley graph) topology. 

 
2.3 Organizing Peers into a Hypercube Graph 

 
Figure 1a depicts a hypercube for a base b = 2, a topology 
that has been studied before in the area of multiprocessor 
machines [4], but under different assumptions. A 
complete hypercube graph consists of N = bLmax+1 nodes 
and is defined by the fact that all nodes have (b – 
1) ⋅ (Lmax + 1) neighbors, (b – 1) in each ‘dimension’ – 
where Lmax + 1 is essentially the number of dimensions 
spanned by the cube (in Figure 1, the cube has three 
dimensions, and Lmax is 2). The network diameter, defined 
as the shortest path between most distant nodes in terms 
of node hops, is ∆ = logbN. As visible, this structure is 
symmetric, i.e. no node incorporates a more prominent 
position than others. This is crucial for load balancing in 
the network: Every node can become the source of a 
broadcast (the root of a spanning tree of the network), yet 
the load will always be shared equally. The topology 
provides redundancy – its connectivity (the minimum 
number of nodes to be removed in order to partition the 
graph) is optimal, i.e. equal to node degree – 1. Power-
law networks such as Gnutella can easily be partitioned 
by bringing down highly connected nodes in the network 
through denial of service attacks, the hypercube topology 
is far less vulnerable to such attacks. 

The hypercube base b can be chosen to adjust the 
network diameter and node degree. 
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Figure 1. Hypercube topology 

Note at this point that the construction algorithm that 
will be described in Section 3.1 works well with node 
numbers that are not equal to those in complete 
hypercubes, allowing for any number of peers in the 
network. 

To describe the topology of a graph G = (V,E), we 
state some definitions. In the following, we will deal with 
hypercubes with a binary base for brevity. (Refer to [10] 
for an extension to bases b > 2.) Edges in the graph are 
labeled: Node Y is dubbed i-neighbor of node X or 
Y = iN(X) if node Y is X’s neighbor in dimension i. For 
example, in Figure 1, node 5 is the 2-neighbor of node 4. 
Node 5 is also dubbed 4’s neighbor in dimension 2. 

Edges in the graph are undirected, i.e. node 4 is also 5’s 
2-neighbor. A node can have extended neighbors Y = 
N(X) = {x0, x1, ...}(X), where N is termed neighbor link 
set, and it denotes the sequence of i-neighbors one would 
have to follow in the complete hypercube graph to reach 
node Y from node X and vice versa. In our example, the 
neighbor link set {0,1} leads from node 1 to node 7 and 
back, i.e. 1 = {0,1}(7) and 7 = {0,1}(1). Since all links in 
the graph are undirected, the order in which the steps on 
the path that is described by a link set are carried out is 
not important, i.e. 1 = {0,1}7 and 1 = {0,1}7. 

Edge labels start at i = 0. The maximum neighbor 
dimension of a node is termed Lmax. Any node X in the 
network maintains two sets which determine its location 
in the graph topology: A set of neighbor link sets 

{ }nNNN ,...,,{}, 21=Ω  and an associated set of node 
addresses { }naddraddraddrlocalhostA ,...,,, 21= . A 
neighbor is identified by a link set N and can be reached 
by sending a message to its address addr. 

 
2.4 Broadcast and Search Algorithm 

 
Based on this terminology, we can define a broadcast 
scheme which guarantees that the set of nodes traversed 
strictly increases during a forwarding process, i.e. nodes 
receive a message exactly once. It is guaranteed that 
exactly N – 1 messages are required to reach all nodes in 
a topology. Furthermore, the last nodes are reached after 
logbN forwarding steps. Any node can be the origin of a 
broadcast in the network, satisfying a crucial requirement. 

The algorithm works as follows: A node invoking a 
broadcast sends the broadcast message to all its 
neighbors, tagging it with the dimension into which the 
message was sent. Nodes receiving the message restrict 
the forwarding of the message to those links on higher 
dimensions. 

As an example, refer to the serialized notation of the 
network graph in Figure 1b (for clarity, only the links 
used in the example are depicted – however, one can just 
copy all links in Figure 1a into this notation to arrive at 
the full picture): Node 0 sends a broadcast – at first to all 
its own neighbors, viz. nodes 4, 2 and 1. Node 4 receives 
the message on a link tagged as a dimension 0 link, i.e. it 
forwards the message only to its 1- and 2-neighbors, 
namely 6 and 5. At the same time, node 2 which has 
received the message on a dimension 1 link forwards it to 
its 2-neighbor, node 3. In the third forwarding step, node 
6 relays the message to node 7, again its 2-neighbor. 

The characteristic path length [10] in this scheme can 
be calculated as 
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which is about 0.5 ⋅  logbN. 
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Broadcasts can be restricted to sub-hypercubes: In this 
case, broadcast messages are forwarded only into some 
dimensions of the hypercube, not into all dimensions. 

 
3 Building and Maintaining Hypercube 
Graphs 
 
In the following, we outline a distributed algorithm which 
allows nodes to build a hypercube topology. Here, the 
major challenges in P2P networks are as follows: Crucial 
for P2P networks, any node in the network should be 
allowed to accept and integrate new nodes into the 
network. Furthermore, joining and leaving the network 
are to consume a reasonable amount of message 
transmission to limit the traffic imposed on the transport 
network. Clearly, a joining node should not have to 
register with all nodes in the network, i.e. we would like 
the protocol to beat a message number of O(n) for node 
joins and removals. 
 
3.1 Topology Construction and Maintenance 
Algorithm 
 
The formal description of the algorithm and a proof of its 
completeness can be found in [10]. We will walk through 
an example by having 9 peers joining a network, and one 
peer leaving during the process, to elaborate the basic 
idea of the construction and maintenance algorithm. 

The construction and maintenance algorithm is based 
on the notion that nodes in an evolving hypercube graph 
take over responsibility for more than one position in the 
hypercube. The idea is to have the hypercube topology of 
the next biggest complete hypercube graph already 
implicitly present in the current topology state, i.e. in the 
sets of all participating nodes. Upon arrival of new nodes, 
the complete hypercube topology unfolds as needed. 
Upon removal of nodes, other nodes jump in to cover the 
positions previously covered by the node that left the 
topology, prepared to give these positions up again as 
new nodes join.  Since the complete hypercube topology 
is implicitly preserved, the broadcast and search 
algorithms do not have to change either – still, every peer 
receives a broadcast message exactly once. 
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Figure 2. Network topology construction I 

Start. At the beginning, only peer 0 is active. 
Step a. Peer 0 is contacted by node 1 which wants to 

join the P2P network. Peer 0 integrates peer 1 as 0-

neighbor since it does not currently have any other 
neighbor: The peers establish a link between each other 
which is tagged with the neighbor set {0}. Generally, a 
peer integrates a joining peer on its first vacant neighbor 
dimension, the neighbor dimensions are ordered such that 
lower neighbor dimensions always come first. 

Step b. Peer 2 contacts one of the two peers (here, we 
assume that it contacts peer 1) to join the network. The 
first vacant neighbor dimension of peer 1 is 1 since it 
already maintains a 0-neighbor, peer 0. Essentially, peer 1 
opens up a new dimension for the hypercube, as depicted 
in Figure 2b. Peer 1 becomes the so-called integration 
control node for the complete integration of peer 2 into 
the network: It is responsible for providing peer 2 with all 
necessary links – at the end of the integration process, 
peer 2 has to have neighbor links connecting it to all 
currently existing neighbor dimensions, in order to be 
able to carry out complete broadcasts. Since peer 1 
currently has two neighbors, a 0- and a 1-neighbor, it 
knows that it has to provide peer 2 with a 0- and a 1-
neighbor, too. Peer 1 itself has become peer 2’s 1-
neighbor. Since there is currently no alternative, peer 1 
selects peer 0 as the new 0-neighbor for peer 2. 

However, peer 0 can only become a temporary 0-
neighbor for peer 2 because it already has another 0-
neighbor, namely peer 1 – and we said before that a peer 
can only have one neighbor per neighbor dimension. 
Essentially, peer 0 now covers a vacant position in the 
hypercube, i.e., it acts as if it occupies two positions in 
the hypercube, as depicted by the thin copy of peer 0 in 
Figure 2c. To mark the link between peers 2 and 0 as 
temporary relationship, it is tagged with the link set {0,1} 
(instead of {0}): This link set denotes the path from peer 
2 via the position at which the link set is originally aiming 
to peer 0, the peer which currently covers this position. 
(This path is also well visible in Figure 2c.) Temporary 
link sets are always constructed by this rule. 

Step c. Peer 3 wants to join the network. We compare 
three cases, viz. peer 3 contacting peer 0, 1 or 2 to join 
the network. 

In case peer 3 contacts peer 0 to join, peer 0 follows 
the general rule to integrate the peer on its first vacant 
neighbor dimension – which is 1, since peer 0 has a 0-
neighbor, but no 1-neighbor. As its new 1-neighbor, peer 
3 will now cover the temporary position that peer 0 used 
to maintain in the hypercube: Hence peer 0 can pass on 
links that are associated with this position to peer 3. Due 
to the construction rule of edge labels for temporary link 
sets, peer 0 is able to determine that link {0,1} to peer 2 is 
a link that is to be passed on to peer 3. Peer 3 then 
establishes a link tagged by link set {0} to peer 3, as 
depicted in Figure 2d. 

In case peer 3 contacts peer 2 to join, peer 2 decides to 
integrate peer 3 as its new (and non-temporary) 0-
neighbor. However, it does not carry out the integration 
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itself: Since peer 0 currently covers the position that will 
soon be occupied by peer 3, the integration control 
responsibility has to be forwarded to peer 0. Peer 2 can do 
so via peer 0. Note that it is always possible for peers in 
the network to reach the node to which they have to 
forward the control integration, if necessary, in one hop. 
We prove this in [10]. Peer 0 carries out the integration 
just as described above, arriving at Figure 2d. 

In case peer 3 contacts peer 1, peer 1 will integrate 
peer 3 on neighbor dimension 2, i.e., it opens up a new 
dimension for the hypercube. This leads to a momentary 
misbalance in the hypercube with some peers maintaining 
more links than others. However, the hypercube will only 
become misbalanced in the long run if there are ‘joining 
hotspots’ in the network. Burst joins of peers are no 
problem, the structure will balance itself again in the long 
run. Moreover, the information on vacant position in the 
structure is always spread in the network, i.e., it is likely 
that a joining peer will contact a network peer that has a 
vacant position to fill, inherently balancing the graph. To 
initially balance the hypercube, a peer that is integrating a 
new peer selects a random position in the hypercube to 
which shortest-path routing (see Section 4) is performed. 
A vacant position encountered during this walk is used as 
integration position. Having compared these three joining 
scenarios in this step, we will explore a specific joining 
scheme for brevity in the next steps. 
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Figure 3. Network topology construction II 

Step d. Peer 4 arrives and contacts peer 0. Now, the 
network crosses a threshold – a hypercube with 2 
dimensions cannot accommodate 5 peers, hence a third 
dimension is opened up. Peer 0 integrates peer 4 on its 
first vacant neighbor dimension as its new 2-neighbor. 
Peer 4 needs 3 neighbors, one on each neighbor 
dimension – but neither peer 0’s 1-neighbor, peer 3, nor 
peer 0’s 0-neighbor, peer 1, are linked to their own 2-
neighbor which they could provide as a new neighbor to 
peer 4. Thus, peer 3 acts as temporary 1-neighbor for peer 
4, whereas peer 1 acts as temporary 0-neighbor for peer 4, 
indicated once again by the link sets {0,2} and {1,2} 
among these peers (see Figure 3b). Figure 3a shows the 
existing peers in the network in bold style and the 
positions that are additionally covered by them in thin 
style. Once again, note that the positions that are 
additionally covered by peers determine the temporary 
connections the peers have to maintain, plus their edge 
labels. Figure 3a also demonstrates another basic rule: 
Peers that are ‘closest’ to a vacant position in the 

hypercube structure are always chosen to cover it. Here, 
‘closest’ means that the peer on the highest neighbor 
dimension to a vacant position covers it. (In the more 
complicated case when a peer has to cover several 
positions, a peer covers the power set of its vacant 
neighbor dimensions – however, refer to [10] to find a 
detailed discussion.) 

Among the other peers in the network, adding another 
dimension to the graph means the multiplication of 
existing links, too: For example, peers 1 and 2 could now 
both integrate 2-neighbors, which would then be linked 
on neighbor dimension 1. Thus, they tag their already 
existing {1} link additionally as {1,2,2} link. So do peers 
2 and 3 with their already existing {0} link. 

Step e. Peer 1 is contacted to integrate the newly 
arriving peer 5. Peer 1 is still lacking a 2-neighbor, thus 
peer 5 will be integrated on this position (Figure 3d). 
Now, peer 1 can get rid of its {1,2,2} link to peer 2: It is 
moved to peer 5. However, since 2 is not peer 5’s final 1-
neighbor either, the link stays temporary: Peers 2 and 5 
now maintain a {1,2} link among them. Peer 5 takes over 
peer 1’s temporary {0,2} link to peer 4, which still lacks 
its final 0-neighbor. It has found one now, namely peer 5. 
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Figure 4. Network topology construction III 

Step f. Let us assume that peer 0 suddenly leaves the 
network. In the maintenance protocol, it is obliged to 
carry out a peer removal process: Basically, it decides 
which existing peers that it knows will be chosen to take 
over responsibility for the positions it gives up. In our 
example, peer 0 leaves only one position vacant, its 
original position in the graph – however, a node which 
covers multiple positions will have to find successors for 
each of its positions in the graph. Peer 4 takes over peer 
0’s position, establishing temporary links to the former 
neighbors of peer 0, peers 1 and 3. Figure 4a shows the 
new distribution of covering responsibilities, Figure 4b 
depicts the link structure that arises from this network 
state. 

Step g. Peer 4 is contacted by peer 6 and decides to 
integrate it as its new 1-neighbor. This position is 
currently covered by peer 3, hence peer 4 forwards the 
integration control to peer 3, just as described in step c. In 
the example, all temporary links that are currently owned 
by peer 3, but originally belong to the new position of 
peer 6, are restored and passed on to peer 6. Additionally, 
peer 3 integrates peer 6 as its new 2-neighbor, arriving at 
Figure 4d. Note that both in step f and g a joining peer 
could have contacted any peer in the network without 
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misbalancing the graph structure since all peers maintain 
temporary links. 

Step h. Peer 6 is contacted by peer 7, leading to peer 
7’s integration as peer 6’s new 0-neighbor. Figure 5a and 
b depict the state of the network: Almost all positions of a 
complete hypercube graph with 3 dimensions are held by 
active peers, only peer 4 still covers two positions in the 
hypercube. 
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Figure 5. Network topology construction IV 

What if several peers want to join the network 
simultaneously? We are currently working on turning our 
protocol into a real-time protocol, dealing with 
simultaneous node joins and departures. We are also 
implementing the protocol on a JXTA-based P2P 
infrastructure [7] [13]. 

Step i. On integrating peer 8, peer 4 pushes its links 
{1,2} and {0,2} to its new 2-neighbor, arriving at a 
complete hypercube topology again. 

Link failures. A link failure in the network leads to a 
node’s immediate departure from the P2P topology, not 
being able to send any departing messages. If that 
happens, the topology must be able to recover and head 
back to a normal state. In the hypercube graph, we can 
always recover from a sudden node loss. The procedure is 
based on the axiom iN(jN(X)) = jN(iN(X)) (and can be 
found in detail in [10]): The node that is closest to the 
vanished node (in terms of a metric we call graph hop 
distance which uses the dimension order to compute a 
distance value between positions in the hypercube) 
contacts the vanishing node’s neighbors by asking its own 
neighbors for them. The node then carries out the node 
departure routine on behalf of the vanished node. This 
procedure does not change the message complexity as 
described in Section 3.2. 
 
3.2 Complexity 
 
Assuming a relatively balanced graph structure, the 
algorithm as described above yields an O(logbN) 
complexity in terms of messages that have to be sent in 
order to join or leave the network. More precisely, this 
holds when there are only nodes in the graph that have 
  1log −Nb  or  Nblog  non-missing neighbor 
dimensions. Note that this allows for any number of 
nodes in the graph. To arrive at this complexity order, the 
algorithm uses optimizations not explained in detail in the 
walk-through in Section 3.1. For example, the exact edge 

labels of temporary links do not have to be stored as a 
whole, they can be reconstructed from the missing 
neighbor dimensions of a peer when necessary (i.e. when 
this peer leaves the networks or integrates another peer). 
If a new hypercube dimension is opened up by integrating 
an additional peer (as has happened above in step d), this 
information is not broadcasted to all peers in the network 
– instead, it is propagated only when necessary, i.e. once 
again when nodes communicate on the issue of removing 
or integrating a peer. Networks that reach a large number 
of nodes can scale down again to a small number of nodes 
(as long as this takes place relatively balanced, see 
Section 3): Higher neighbor dimensions that are added 
during the construction process are removed again if no 
peer in the network has any neighbor on a dimension any 
more. Once again, this information is not broadcasted in 
the network but locally inferred by every peer by 
observing its set of neighbor link sets it maintains. 
 
3.3 Alternative Topologies 
 
The recursive construction algorithm as described in 
Section 3.1 is capable of building all graphs belonging to 
a special class of graphs, so-called Cayley graphs [1] 
(details of constructing these topologies as opposed to 
constructing a hypercube can be found in [10]). 
Hypercubes belong to this class of graphs, as well as the 
so-called star graph. The star graph exhibits properties 
that are asymptotically superior to those of the hypercube 
as it scales to a larger number of peers: Its node degree 
and network diameter are sub-logarithmic. We can use 
the star graph instead of a hypercube in networks which 
scale to e.g. one million nodes. Broadcast can still be 
carried out in an optimal manner. 
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Figure 6. Star graph 

4 Ontology-based Routing 
 
A HyperCuP empowered P2P network features good 
scalability and search times. However, in the case of 
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Semantic Web applications such as Semantic Web 
Services, additional knowledge is available that can be 
used to further improve the P2P network performance: 
Oftentimes, information or services that peers are able to 
provide can be categorized as belonging to general 
concepts. Concepts can in turn be organized in a (global) 
ontology which defines the relationships between existing 
concepts. In the following, we describe which role 
ontologies play in the domain of Semantic Web Services 
and how they can be used to improve the search 
properties of a P2P network. Building on a hypercube 
and, more general, Cayley graph topology, we show how 
to organize the network to allow querying for logical 
combinations of ontology concepts such that searching is 
restricted to peers supporting these combinations. 

 
4.1 Ontologies and Semantic Web Services 

 
An ontology [15] is a shared formalization of a 
conceptualization of a domain, to state a popular 
definition. In the Semantic Web, ontologies are used to 
assign commonly agreed upon semantics or interpretation 
to particular concepts. Semantic Web Services can be 
described by using various ontologies in parallel, 
augmenting a service ontology by domain ontologies. A 
service ontology contains concepts that stand for basic 
types of services, such as retailers or delivery services 
(see Figure 7a). A domain ontology comprises concepts 
from a specific domain that a Web Service of a particular 
type can be located in. The domain of cars can be 
described by classifying brands and types of cars (see 
Figure 7b). A car retailer Web Service would describe 
itself by combining a concept from the service ontology 
with concepts from the car domain ontology, for example 
C ∧ G ∧ I. Here, a closed-world assumption applies: The 
service description is regarded as being exhaustive within 
the vocabulary provided by the ontologies. The Semantic 
Web research effort has spawned many results on the 
design of and distributed negotiation on such ontologies  
which can well be reused to create service and domain 
ontologies, also in the domain of Semantic Web Services 
[9]. 
 
4.2 Ontology-based Network Organization 
 
Ideally, the P2P service network should allow for issuing 
a query to be sent to exactly those peers that can 
potentially answer the query. For example, a query B ∧ I 
∧ ¬G is to be broadcasted among those peers that buy 
vans, but are not interested in trucks. To allow for such 
broadcast containment, we introduce concept clusters into 
the hypercube network topology as described in Section 
2: Peers with identical or similar interests or services are 
grouped in concept clusters which are in turn assigned to 

a specific logical combination of ontology concepts that 
describes best the peers belonging to the cluster. 
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Figure 7. Service ontology and domain ontology 

These concept clusters are organized into a hypercube 
topology to enable routing to specific concept clusters in 
the topology. Concept clusters themselves, too, are 
hypercubes or star graphs. More specifically, a peer in an 
ontology-based hypercube topology carries an address 
which concatenates a set of concept coordinates and a set 
of storage coordinates. 

Concept coordinates. These coordinates address a 
concept cluster on the ‘outer’ hypercube. A set of 
structuring concepts is chosen to build this hypercube 
(see Section 4.3). A structuring concept is contained in 
one of the ontologies that are available to describe Web 
services participating in the network, i.e. in the service or 
domain ontologies. Each selected structuring concept is 
represented by a single ontology coordinate whose binary 
value in a concept cluster address reflects the support of 
peers in the addressed concept cluster for the respective 
structuring concept. For example, in a network that is 
organized by concepts A, B and C, the concept cluster 
comprising peers which only offer delivery services is 
addressed by the ontology coordinate vector (1,0,0). 

Storage coordinates. A concept cluster will contain 
more than one peer. Hence an additional address space is 
needed to accommodate multiple peers within a concept 
clusters. Storage coordinates denote the location of a peer 
within a specific concept cluster on the selected storage 
topology. Concept clusters form sub-graphs of the ‘outer’ 
ontology-based hypercube – however, their internal 
topology can be based on hypercubes, star graphs or any 
other Cayley graph topology. Star graphs can be used if 
concept clusters are expected to scale to large number of 
nodes (see Section 3.3). The concatenation of concept and 
storage coordinates forms the logical address of a peer. 

 
4.2 Routing and Broadcast 

 
Querying the network works in two routing steps: First, 
the query is propagated to those concept clusters that 
contain peers which the query is aiming at. Second, a 
broadcast is carried out within each of these concept 
clusters, optimally forwarding the query to all peers 
within the clusters. This involves shortest-path routing in 
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the concept coordinate system as well as restricted 
broadcast in the concept and storage coordinate systems. 
More precisely, queries are answered as follows. 

Query minimization. A query that is issued by a peer 
undergoes logic minimization (e.g. Karnaugh 
minimization) to identify its logical minterms 
(conjunctions of structuring concepts). Minterms that 
contain all structuring concepts point at exactly one 
concept cluster, whereas minterms which do not comprise 
all structuring concepts denote a group of concept clusters 
(since the minterm essentially does not care about the 
support of some structuring concepts, i.e. these 
structuring concepts could either be supported or not, 
forcing the query to be forwarded to the respective 
concept clusters). However, all concept clusters pointed at 
by a single minterm are direct neighbors of each other in 
the network topology. Figure 9 depicts the ‘outer’ 
concept hypercube of a network that is organized by 
structuring concepts A, D, E and F from the ontologies in 
Figure 7. The query E ∨ A ∧ D consists of minterms E as 
well as A ∧ D and asks for some peer that is a wholesale 
service or a combined retail and delivery service. 

Minterm analysis. Distinct minterms resemble 
distinct groups of concept clusters in the network. To 
each of these groups, one copy of the query message has 
to be delivered to enable them to carry out broadcasts 
within the group (see below). However, if their associated 
minterms have a Hamming distance of less than 1, these 
groups may overlap or are adjacent. Figure 8 depicts the 
4-dimensional concept hypercube that is created by using 
concepts A, D, E and F as structuring concepts. Each 
node in the network represents a concept cluster (for 
example, node 0101 represents the concept cluster 
containing peers which are motor vehicle retailers). The 
two minterms in our query are associated with two 
(overlapping) groups of concept clusters, both are 
highlighted in Figure 8. 
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Figure 8. Concept hypercube topology 

Routing to concept clusters. Each concept cluster 
spanned by a query has to be informed that it is to carry 

out an internal broadcast among all its peers. So a copy of 
the broadcast message is delivered to each concept cluster 
addressed in the query. If queries span groups of concept 
clusters, this can be accomplished by carrying out 
restricted broadcasts in the concept coordinate system. 
Figure 9 depicts the broadcast steps that are executed in 
order to inform all concept clusters addressed by the 
query E ∨ A ∧ D. 

The broadcast algorithm modifies the algorithm 
described in Section 2.4: A concept cluster group 
associated with a minterm is described by the set of 
dimensions in which it exists (directly associated with the 
concepts it supports). Broadcast is carried out only in 
those dimensions and branches out into additional 
dimensions at peers which belong to more than one 
minterm or are adjacent to peers belonging to another 
minterm. In order to start the broadcast, the broadcast 
message has to reach any peer within the concept cluster 
group – this is achieved by shortest-path routing from the 
querying peer to the closest peer in the group. 

Shortest-path routing on a hypercube from a binary 
address a to a binary address b is carried out by correcting 
one address bit in each routing step. This guarantees 
forwarding on the shortest possible path between two 
nodes. 
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Figure 9. Routing example on concept coordinates 

Broadcast in concept clusters. All informed concept 
clusters broadcast the query message among all their 
member peers. Broadcasting is carried out in the storage 
coordinate system, restricting it to the peers that belong to 
the broadcasting concept cluster. An optimal broadcast 
scheme as the one described in Section 2.4 exists for the 
star graph, too, permitting its use as a storage topology 
within concept clusters. 

Peer feedback. Once the query message has arrived at 
a peer, the peer is able to react to the message – for 
example, by contacting the issuer of the query in order to 
establish a business relationship etc. 
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4.3 Topology Construction 
 
Peers can join the ontology-based topology by 

contacting any peer already in the network. The peer 
reveals its capabilities in terms of concepts contained in 
any of the available global ontologies, and it is to be 
integrated in the concept cluster matching its description. 
If the peer describes itself with concepts that are not used 
as structuring concepts in the network, it is integrated in 
the most specific concept cluster. For example, a peer 
supporting concepts A, B and E would be integrated in 
concept cluster 1010 (which consists of peers supporting 
concepts A and E), since B is not available as structuring 
concept in Figure 8. Upon determining the concept cluster 
in which a peer is to be integrated, a join message is 
routed to any peer in this cluster, using shortest-path 
routing. The contacted peer then integrates the new peer 
into the concept cluster using precisely the algorithm 
described in Section 3.1. Although it is possible to select 
all concepts contained in available service and domain 
ontologies as structuring concepts, the address space 
would get very big, and the ‘outer’ concept hypercube 
will become imbalanced since some concept 
combinations will be more common than others. To 
address this problem, structuring concepts can be chosen 
upfront which are empirically expected to partition the 
network into concept clusters in a reasonably balanced 
manner. It would be desirable to define an algorithm 
which is capable of dynamically constructing the ‘outer’ 
concept hypercube, i.e. an algorithm which dynamically 
chooses good structuring concepts based on the current 
concept distribution in the network. We are currently 
investigating this problem. 
 
5 Related Work 
 

Making P2P networks scalable has recently received 
much attention. Distributed hash table approaches [11] 
such as CAN [8] and Chord [12] aim at enforcing a 
deterministic content distribution instead which can be 
used for routing point queries. While similar in terms of 
message complexity for joining and departing nodes, our 
approach specifically performs well at optimizing the 
network load in broadcast and multipoint search, without 
requiring hash functions, and allows for more detailed 
queries, viz. logical combinations of ontology concepts. 
[6] constructs an efficient P2P topology, yet does not 
provide means of clustering peers with similar 
capabilities. Building a Semantic Service Web on a P2P 
infrastructure is opposed to centralized approaches such 
as UDDI [14]. Automated composition and verification of 
Semantic Web Services is addressed in [9], building on 
the service description framework DAML-S [5]. Our 
approach facilitates service discovery as a major building 
block of automated service composition. 

6 Conclusion 
 

We have presented a topology to efficiently cluster 
peers in a P2P network which features efficient broadcast 
and search algorithms without any message overhead 
during broadcast, logarithmic network diameter, and 
resiliency towards node failure. Super peers or central 
servers are not required. A set of globally known 
ontologies is used to categorize peers as providers of 
particular services to efficiently route and broadcast 
queries. Organizing peers in this manner allows for 
enhancing Semantic Web Services technology with the 
flexibility and dynamics of P2P networks while ensuring 
scalability to a large number of nodes. 
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