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1. Introduction 
Locating files based on their names is an 

essential mechanism for large-scale data sharing 
collaborations. A peer-to-peer (P2P) approach is 
preferable in many cases due to its ability to 
operate robustly in dynamic environments.  

Existing P2P location mechanisms focus on 
specific data sharing environments and, therefore, 
on specific requirements: in Gnutella[1], the 
emphasis is on easy sharing and fast file retrieval, 
with no guarantees that files will always be 
located. In Freenet [8], the emphasis is on 
ensuring anonymity. In contrast, systems such as 
CAN [13] and Chord [14] guarantee that files are 
always located, while accepting increased 
overhead for file insertion and removal. 

Data usage in scientific communities is 
different than in, for example, music sharing 
environments: data usage often leads to creation 
of new files, inserting a new dimension of 
dynamism into an already dynamic system. 
Anonymity is not typically a requirement, being 
generally undesirable for security and monitoring 
reasons.  

Among the scientific domains that have 
expressed interest in building data-sharing 
communities are physics (e.g., GriPhyN 
project[6]), astronomy (Sloan Digital Sky Survey 
project[4]) and genomics[3]. The Large Hadron 
Collider (LHC) experiment at CERN is a proof of 
the physicists’  interest and pressing need for 
large-scale data-sharing solutions. Starting 2005, 
the LHC will produce Petabytes of raw data a year 
that needs to be pre-processed, stored, and 
analyzed by teams comprising 1000s of physicists 
around the world. In this process, even more 
derived data will be produced. 100s of millions of 
files will need to be managed, and storage at 100s 
of institutions will be involved. 

In this paper we advocate the benefits of 
exploiting emergent patterns in self-configuring 
networks specialized for scientific data-sharing 
collaborations. We speculate that a P2P scientific 
collaboration network will exhibit small-world 

topology, as do a large number of social networks 
for which the same pattern has been documented. 

We sustain our intuition by observing the 
characteristics of scientific data-sharing 
collaborations and studying the sharing patterns of 
a high-energy physics community (Section 2). In 
Section 3 we propose a solution for locating data 
in decentralized, scientific, data-sharing 
environments that exploits the small-worlds 
topology. The research challenge we raise is: what 
protocols should be used to allow a self-
configuring P2P network to form small worlds 
similar to the way in which the humans that use 
the network do in their social interactions? While 
we do not have a complete solution, we discuss 
this problem in Section 5. 

2. Small worlds in scientific 
communities  

In many network-based applications, topology 
determines performance. This observation 
captivated researchers who started to study large 
real networks and found fascinating results: 
recurring patterns emerge in real networks [5]. For 
example, social networks, in which nodes are 
people and edges are relationships; the world wide 
web, in which nodes are pages and edges are 
hyperlinks; and neural networks, in which nodes 
are neurons and edges are synapses or gap 
junctions, are all small-world networks [15]. Two 
characteristics distinguish small-world networks: 
first, a small average path length, typical of 
random graphs (here ‘path’  means shortest node-
to-node path); second, a large clustering 
coefficient that is independent of network size. 
The clustering coefficient captures how many of a 
node’s neighbors are connected to each other. One 
can picture a small world as a graph constructed 
by loosely connecting a set of almost complete 
subgraphs.   

The small world example of most interest to us 
is the scientific collaboration graph, where the 
nodes are scientists and two scientists are 
connected if they have written an article together. 
Multiple studies have shown that such graphs 
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have a small-world character, in scientific 
collaborations spanning a variety of different 
domains, including physics, biomedical research, 
neuroscience, mathematics, and computer science.  

Typical uses of shared data in scientific 
collaborations have particular characteristics: 

Group locality. Users tend to work in groups: a 
group of users, although not always located in 
geographical proximity, tends to use the same set 
of resources (files). For example, members of a 
science group access newly produced data to 
perform analyses or simulations. This work may 
result into new data that will be of interest to all 
scientists in the group, e.g., for comparison. File 
location mechanisms such as those proposed in 
CAN, Chord, or Tapestry [16] do not attempt to 
exploit this behavior: each member of the group 
will hence pay the cost of locating a file of 
common interest. 

Time locality. The same user may request the 
same file multiple times within short time 
intervals. This situation is different, for example, 
from Gnutella usage patterns, where a user seldom 
downloads a file again if it downloaded it in the 
past. (We mention that this characteristic is 
influenced by the perceived costs of storing vs. 
downloading, which may change in time.) 

It is the intuition provided by the small-world 
phenomenon in real networks and the typical use 
of scientific data presented above that lead us to 
the following questions. Let us consider the 
following network: a node is formed of data and 
its provider (the scientist who produced the data), 
and two nodes are connected if the humans in 
those nodes are interested in each other’s data. 
The first question is: is this a small-world 
network? Based on the analysis of data sharing 
patterns in a physics collaboration (presented in 
Section 2.1) we speculate that this network will be 
a small world. Second, how can such small-world 
topology be exploited for performance in the data-
sharing environments of interest to us? Finally, 
how do we translate the dynamics of scientific 
collaborations into self-configuring network 
protocols (such as joining the network, finding the 
right group of interests, adapting to changes in 
user’s interests, etc.)? 

We believe this last question is relevant and 
challenging in the context of self-configuring P2P 

networks. We support this idea by answering the 
second question: in Section 3 we sketch a file 
location strategy that exploits the small-world 
topology in the context of scientific data-sharing 
collaborations. Once we show that a small-world 
topology can be effectively exploited, designing 
self-configuring topology protocols to induce 
specific topology patterns becomes more 
interesting. 

2.1. Data sharing in a physics collaboration 
The D0 collaboration [2] involves hundreds of 

physicists from 18 countries that share large 
amounts of data. Data is accessed from remote 
locations through a software layer (SAM [11]) 
that provides file-based data management. We 
analyzed data access traces logged by this system 
during January 2002. 

Figure 1: The file-sharing graph of January 2002. 

We considered the graph whose nodes are 
users and whose links connect users that shared at 
least one file during a specified interval. We 
found that the graphs generated for various 
interval lengths exhibit small-world 
characteristics: short average path lengths and 
large clustering coefficients. Although these 
graphs are relatively small compared to our 
envisioned target (e.g., 155 users accessed files 
through SAM in January), we expect similar 
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usage patterns for larger graphs.  .
 

Time Whole graph Largest Connected component    Random Graph 
Interval # Nodes # Links # Nodes # Links Clustering   Path length Clustering   Path length 

1 day 20 38 12 34 0.827 1.61 0.236 2.39 
2 days 20 77 15 75 0.859 1.29 0.333 1.68 
7 days 63 331 58 327 0.816 2.21 0.097 2.35 

14 days 87 561 81 546 0.777 2.56 0.083 2.30 

30 days 128 1046 126 1045 0.794 2.45 0.067 2.29 
Table 1: File-sharing graph characteristics for intervals from 1 hour to 30 days. 

 
 

Table 1 presents the characteristics of the 
graphs of users who shared data within various 
time intervals ranging from 1 day to 30 days. The 
small-world pattern is evident when comparing 
the clustering coefficient and average path length 
with those of a random graph of the same size 
(same number of nodes and edges): the clustering 
coefficient of a small-world graph is significantly 
larger than that of a similar random graph, while 
the average path length is about the same 

3. Locating files in small-world 
networks 

We consider an environment with potentially 
hundreds of thousands of geographically 
distributed nodes that provide location 
information as <logical filename, physical location> 
pairs.  

Locating files in this environment is 
challenging because of scale and dynamism: the 
number of nodes, logical files, requests, and 
concurrent users (seen as file location requestors) 
may all be large. The system has multiple sources 
of variation over time: files are created and 
removed frequently; nodes join and leave the 
system without a predictable pattern. In such a 
system with a large number of components (nodes 
and files), even a low variation rate at the 
individual level may aggregate into frequent 
group level changes. 

We exploit the two environmental 
characteristics introduced in Section 2—group 
and time locality—to advance our performance 
objective of minimizing file location latency. We 
also build on our assumption that small-world 
structures eventually emerge in P2P scientific 
collaborations.  

Consider a small world of C clusters, each 
comprising, on average, G nodes. A cluster is 
defined as a community with overlapping data 
interests, independent of geographical or 
administrative proximity. Clusters are linked 
together in a connected network. In this structure, 
we combine information dissemination techniques 
with request-forwarding search mechanisms: 
location information is propagated aggressively 
within clusters, while inter-cluster search uses 
request forwarding techniques.  

We chose gossip [10] as the information 
dissemination mechanism: nodes gossip location 
information to other nodes within the cluster. 
Eventually, with high probability, all nodes will 
learn about all other nodes in the cluster. They 
will also know, with high probability, all location 
information provided by all nodes within the 
cluster. Hence, a request addressed to any node in 
the cluster can be satisfied at that node, if the 
answer exists within the cluster.  

A request that cannot be answered by the local 
node is forwarded to other cluster(s), by unicast, 
multicast, or flooding. Ideally, clusters can 
organize themselves dynamically in search-
optimized structures, thus allowing a low cost 
inter-cluster file retrieval. Since any node in a 
cluster has all information provided in that cluster, 
the search space reduces from C*G to C.   

In this context, nodes need to store the total 
amount of information provided by the cluster to 
which they belong. In order to reduce storage 
costs, we use a compact, probabilistic 
representation of information based on Bloom 
Filters (Section 4.2). Nodes can trade off the 
amount of memory used for the accuracy in 
representing information. 
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Each node needs to have sufficient topology 
knowledge to forward requests outside the cluster. 
Not every node needs to be connected to nodes 
from remote clusters, but, probabilistically, every 
node needs to know a local node that has external 
connections. The question of how to form and 
maintain inter-cluster connections pertains to the 
open question we raise in this paper and discuss in 
Section 5: what topology protocols can induce the 
small-world phenomenon? 

4. Gossiping Bloom filters for 
information dissemination 

In this section we briefly explain how we use 
the mechanisms mentioned above: gossip for 
information dissemination and Bloom filters for 
reducing the amount of communication. We also 
provide an intuitive quantitative estimation of the 
system we consider.  

4.1. Gossip mechanism 
Gossip protocols have been employed as 

scalable and reliable information dissemination 
mechanisms for group communication. Each node 
in the group knows a partial, possibly inaccurate 
set of group members. When a node has 
information to share, it sends it to a number of f 
nodes (fanout) in its set. A node that receives new 
information will process it (for example, combine 
it with or update its own information) and gossip 
it further to k nodes chosen from its set.  

We use gossip protocols for two purposes: (1) 
to maintain accurate membership information in a 
potentially dynamic cluster and (2) to disseminate 
file location information to nodes in the local 
cluster. We rely on soft-state mechanisms to 
remove stale information: a node not heard about 
for some time is considered departed; a logical file 
not advertised for some time is considered 
removed.  

4.2. Bloom Filters 
Bloom filters [7] are compact data structures 

used for probabilistic representation of a set in 
order to support membership queries (“ Is element 
x in set X?”). The cost of this compact 
representation is a small rate of false positives: 
the structure sometimes incorrectly recognizes an 
element as member of the set.  

Bloom filters describe membership of a set A 
by using a bit vector of length m and k hash 

functions, h1, h2,,…,hk with hi:X � {1..m}. For a 
fixed size (n) of the set to be represented, the 
tradeoff between accuracy and space (m bits) is 
controlled by the number of hash functions used 
(k). The probability of a false positive is:  

k
m

kn

err ep �
�
��

�
� −≈

−
1 .Here perr is minimized for 

2ln
n

m
k =  hash functions. In practice, however, 

a smaller number of hash functions is used: the 
computational overhead of each additional hash 
function is constant while the incremental benefit 
of adding a new hash function decreases after a 
certain threshold. Experience shows that Bloom 
filters can be successfully used to compress a set 
to 2 bytes per entry with false positive rates of less 
than 0.1% and lookup time of about 100� s. 

A nice feature of Bloom filters is that they can 
be built incrementally: as new elements are added 
to a set, the corresponding positions are computed 
through the hash functions and bits are set in the 
filter. Moreover, the filter expressing the reunion 
of multiple sets is simply computed as the bit-wise 
OR applied over the corresponding filters.  

Bloom filters can be compressed when 
transferred across the network and, in this case, 
filter parameters can be chosen to maximize 
compression rate, as shown in [12]. 

4.3. Advantages of building the system 
around shared data interests  

We model this system built on group and time 
locality assumptions as follows:   

Zipf distribution for request popularity. In Zipf 
distributions, the number of requests for the kth 

most popular item is proportional to α−k , where �  
is a constant. Zipf distributions are widely present 
in the Internet world. For example, the popularity 
of documents requested from an Internet proxy 
cache (with 0.65 < �  < 0.85), Web server 
document popularity (0.75 < �  < 0.85), and 
Gnutella query popularity (0.63 < �  < 1.24) all 
exhibit Zipf distributions. For our problem, we 
assume that file popularity in each cluster (group) 
follows a Zipf distribution.  

 Locality of interests. As discussed above, 
clusters are formed based on shared interest. We 
therefore assume that information on the most 
popular files is available within the cluster and 
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Figure 2: Fraction of requests served locally (by one 
member of a group) assuming various values for �   
 

only requests for not-so-popular files are 
forwarded.  

With these assumptions, we can estimate the 
fraction of file requests served by the group as a 
function of the distribution parameter �  and the 
fraction of files about which the group maintains 
information. For example, as Figure 1 shows, 68% 
of all requests are served by the group when 
information about only top 1% most popular files 
is available at group level, for � =1. Figure 1 
strongly emphasizes the need for efficient, interest 
based, cluster creation. 

We estimate 100s of clusters with 1,000s of 
nodes in a cluster, sharing information on about 
10 million files per cluster. Using Bloom filters, 
for 0.1% false positives rate, each node needs 2 
bytes per file or 20MB of memory to store 
information about all files available in the cluster. 
Assuming a 10-day average lifetime for a file at a 
node, and a self-imposed threshold of 0.1% false 
positives, then the generated traffic needed to 
maintain this accuracy level within the cluster can 
be estimated at about 24 KBps at each node. 

False negatives may have two sources: the 
probabilistic information dissemination 
mechanism and inaccuracy in the inter-cluster 
search algorithm. By appropriately tuning the 
gossip periodicity and fanout, the system can 
control the rate of false negatives by increasing 
communication costs.  

5. Creating a small world 
The question raised and not answered in this 

paper is: what protocols should be used for 
allowing a self-configuring network to reflect the 

small-world properties that exist at the social 
level? There are at least two ways to attempt to 
answer this question. The first approach is to look 
at existing small worlds and to identify the 
characteristics that foster the small-world 
phenomenon. The second approach is to start from 
theoretical models that generate small worlds [15] 
and mirror them into protocol design. 

The Gnutella network is an interesting case 
study as it is a P2P self-configuring technological 
network that exhibits small-world characteristics 
[9]. How are the small-world characteristics 
generated? One possible answer is that the social 
network formed by the Gnutella users reflects its 
small-world patterns onto the technological 
network. While this is not impossible, we observe 
that a user has a very limited contribution to the 
Gnutella network topology. Hence, we believe the 
social influence on the Gnutella topology is 
insignificant.  

More significant for the small-world 
phenomenon may be Gnutella’s network 
exploration protocol based on PING and PONG 
messages: a PING is sent to all neighbors and 
each neighbor forwards it further to its own 
neighbors, and so on. The PONG messages return 
on the same path, allowing a node to learn of its 
neighbor’s neighbors, and hence to improve 
clustering. However, the influence of this 
mechanism is limited by the (comparatively) 
small number of connections per node. This fact 
explains why, despite an aggressive exploration of 
the network, the clustering coefficient in Gnutella 
is not large (e.g., it is an order of magnitude lower 
than the clustering coefficients in coauthorship 
networks).  

A theoretical model for building small-world 
graphs [15] starts from a highly clustered graph 
(e.g., a lattice) and randomly adds or rewires 
edges to connect different clusters. This 
methodology would be relevant to us if we had 
the clusters already formed and connected.  
Allowing clusters to form dynamically based on 
shared interests, allowing them to learn about each 
others, to adapt to users’  changing interests (e.g., 
divide or merge with other clusters) are parts of 
the problem we formulate and continue 
investigating. However, if these problems are 
solved, possible approaches for transforming a 
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loosely connected graph of clusters into a small 
world (hence, with small average path length) are: 
��The hands-off approach: random graphs have 

small average path length. It is thus intuitive 
that “ randomly”  connected clusters will form a 
small world.  

��The centralized approach at the cluster level: in 
each cluster, one or multiple nodes are assigned 
the task of creating external connections.  

��The agent-based approach: allow an agent to 
explore the network and rewire it where 
necessary. This approach is usually rejected due 
to associated security issues.  

6. Summary 
We studied the file location problem in 

decentralized, self-configuring P2P networks 
associated with scientific data sharing 
collaborations. A qualitative analysis of the 
characteristics of these collaborations, quantitative 
analysis of file sharing information from one such 
collaboration, and previous analyses of various 
social networks lead us to speculate that a P2P 
scientific collaboration may benefit from a small-
world topology. We sketch a mechanism for low-
latency file retrieval that benefits from the 
particularities of the scientific collaboration 
environments and a small-world topology. While 
we do not provide a solution for building topology 
protocols flexible enough to resemble the 
dynamics and patterns of social interactions, we 
stress the relevance of this problem and we 
discuss some possible directions for research.  
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