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Abstract

Peer-to-peer search networks are a popular and widely
deployed means of searching massively distributed digital
object repositories. Unfortunately, as such networks grow,
they place an increasingly overwhelming load on some or
all of the participating nodes. We examine how to reduce
the load on nodes by allowing them to self-organize into
a relatively efficient network, and then self-tune to make
the network even more efficient. Unlike previously stud-
ied architectures, our “ad hoc, self-supervising” networks
avoid restrictions on who a node can connect to or what
information can be exchanged. This makes the network
topology quite flexible and tuneable. Our results indicate
that our ad hoc networks are more efficient than popular
supernode topologies for several important scenarios.

1 Introduction

Peer-to-peer search networks are an effective mechanism
for sharing information between large numbers of users.
On a typical day, existing networks such as Kazaa support
several million simultaneous users and allow those users
to search and retrieve data from a distributed repository
containing hundreds of millions of objects and multiple
petabytes of data. The power of the system comes from
the fact that even though none of the network peers have
to be more powerful than a desktop computer, the aggre-
gate resources of millions of desktop computers can be
harnessed to provide a very powerful search service.

Despite the popularity of peer-to-peer search services,
they are still quite inefficient. The search service can place
a large load on both the peers and the network connecting
them, using up resources that users may prefer to spend
on other tasks. The flooding nature of queries in many
systems means that many peers are impacted whenever
new peers join. The heavy load imposed by the network
limits the scalability of the system, and may persuade users
or ISPs to limit the resources they contribute (for example

by throttling bandwidth) or may even convince users not
to join networks at all.

In the past few years, a great deal of research effort
has been focused on improving the efficiency and scala-
bility of search networks, so that they can be used for a
variety of tasks beyond the traditional role of multimedia
file-sharing. Most of the proposed solutions have fixed
rules about who nodes can connect to. For example, in a
supernode network, peers are designated as “super-peers”
or “normal peers”, and normal peers are only allowed to
connect to super-peers. In distributed hash tables such
as Chord [16] or CAN [13], a node’s neighbors are a
fixed function of the node’s id. Also, in many proposed
solutions the types of connections between nodes are pre-
scribed. For example, in supernode networks, super-peers
index the content of normal nodes but do not send indexing
information to other superpeers.

While each of these solutions have distinct advantages,
we wanted to explore the possibility of a completely de-
centralized network of autonomous nodes, where networks
are built in a more flexible and ad hoc way. In such ad
hoc networks, nodes are not restricted to certain neigh-
bors. Moreover, nodes can decide whether to send to their
neighbors queries, index entries, or both, and similarly
whether to accept queries, index entries or both from their
neighbors. Such a network is likely to be inefficient unless
it can become self-supervising; that is, the network must
self-organize into a relatively efficient and effective topol-
ogy, and must self-tune to improve efficiency and reduce
load.

The goal of this paper is to examine such ad-hoc, self-
supervising networks to see how they compare to more
rigidly structured search networks. To do this, we have
experimented in the context of a content discovery network
like Gnutella [1, 14] or Kazaa [2] to see how nodes can
make local decisions that are both beneficial to themselves
and good for the network as a whole. Other investigators
have also examined search in relatively unstructured net-
works, and our work differs from previous studies (such
as [10]) in three key ways. First, in our ad hoc networks,
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nodes connect to each other using either “search links” or
“index links.” Index links replicate only an index over a
node’s data and not the data itself, allowing one node to
search another’s repositorywithout having to actually send
a query to the other node or store a copy of the other node’s
data. Our index links are similar to those in a supernode
network, where supernodes store indexes of normal nodes,
but without the fixed connection rules and rigid separa-
tion between “super-peers” and “normal peers.” Second,
the networks we study become self-supervising through
the use of two very simple operations: connect(), where
nodes form ad hoc connections to other nodes, and break(),
where nodes that are overloaded simply break links to shed
load. This allows a network to tune itself for efficiency in
a simpler way than previous solutions such as [11], since
we do not require overloaded nodes to track their neigh-
bors’ capacity or find other nodes to explicitly take on
load. Third, ad hoc networks do not dictate which nodes
are responsible for which content, as in distributed hash
tables (where content is assigned to nodes based on a hash
function [16]) or random walk networks (where proactive
replication requires some nodes to store data even if they
are not interested in it [10]).

Our results indicate that in several situations, such ad
hoc local decision making results in networks that are
very efficient, more efficient than popular existing solu-
tions such as supernode networks. We have studied the
actions available to nodes in the network, such as how one
node connects to another. There are several interesting
connection methods, some of which result in a “messy”
but efficient network, and some of which converge to an
orderly topology even though connections are made ran-
domly and independantly. Moreover, we have been able
to optimize ad hoc networks both for a heterogenous net-
work that contains nodes of differing capabilities as well
as for a more homogenous network where all nodes have
roughly similar capabilities. Thus, ad hoc networks that
are maintainted using connect() and break() can self-tune
for the network’s capabilities and load profile.

In this paper, we examine how an ad hoc, self-
supervising peer-to-peer search network is built and main-
tained, and evaluate such networks in terms of efficiency.
Specifically, we make the following contributions:

� We discuss how to build ad hoc networks from search
links and index links. Such networks leverage the same
basic search and indexing primitives of existing net-
works to achieve efficiency but do not restrict a node’s
neighbors or what information can be exchanged.

� We introduce the operations of connect() and break(),
which are simple, local operations performed by peers.
These operations are the key to introducing self-

supervising properties into the network.

� We present simulation experiments that show how to
best construct an ad hoc self-supervising network, and
that compare such networks to supernode networks, a
popular existing architecture. Our results show that in
many cases an ad hoc network is more efficient than a
supernode network.

This paper is organized is follows. In Section 2, we present
our model of peer-to-peer search networks. Section 3
presents the basic techniques for dynamically constructing
search networks in a self-supervising manner. In Section 4
we present evaluation results for our techniques. In Sec-
tion 5 we review related work and in Section 6 we present
our conclusions.

2 Peer-to-peer search networks

In a P2P search network, all of the nodes collaborate to
provide search and retrieval of digital documents. When
a user wishes to find an object, he submits a query to a
node, which attempts to answer the query as best it can.
The node then forwards the query to other nodes, who also
attempt to answer the query. Whenever a node finds an
object matching the query, a result is returned to the user
indicating the location of the object. The user can then
directly contact the node holding the object and retrieve it.

Nodes in a search network connect to each other to
form a partially-connected overlay over a fully connected
network infrastructure such as the Internet. There are two
types of connections in this overlay network:

� Search links, which are used to forward queries be-
tween nodes

� Index links, which are used to send copies of content
indexes between nodes.

Index links reduce the need to flood the entire network
with queries, since one node A can perform searching
operations over another node B’s repository without B
needing to process the query. Note thatA does not have to
have a copy ofB’s content;A instead has index entries that
support searches over B’s content. For example, in order
to aid in processing searches, each node might construct
an inverted list of words in the content of its digital objects,
a list of the object titles, or some other indexing structure.
The node B sends its index to node A via an index link.
Now, when node A receives a query, it can process that
query over its own content, and, usingB’s index, overB’s
content.

We have developed a simple and useful model, the
Search/Index Link (SIL) model, for studying and visual-
izing search networks. The SIL model represents a search
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Figure 1: A supernode network represented as a SIL graph.

network as a directed graph, with vertices representing P2P
nodes and different types of edges for the different types
of connections between nodes in the overlay network. In
the full SIL model, there are four types of edges:

� A forwarding search link (FSL) from vertex X to ver-
tex Y (X Y ) represents an overlay network link
that carries search messages from peer X to peer Y .
Peer Y processes the query and also forwards it on
outgoing FSLs.

� A non-forwarding search link (NSL) X Y repre-
sents an overlay link that carries search messages from
peerX to peer Y . Peer Y processes the query but does
not forward it.

� A forwarding index link (FIL) X Y represents an
overlay link that carries index updates from peer X
to peer Y . These index updates inform Y about new,
modified or deleted content at peer X. Peer Y inte-
grates the index updates into its own index, and also
forwards the updates on outgoing FILs.

� A non-forwarding index link (NIL)X Y represents
an overlay link that carries index updates from X to
Y . Peer Y should add the updates to its own index but
does not forward them.

For example, a supernode network such as Kazaa can be
represented using SIL, as shown in Figure 1. Supernode
vertices are connected to one another using FSLs ( ),
while vertices representing normal nodes are connected to
supernodes using an FSL and a NIL ( ).

In this paper, we use the SIL model both as a visualiza-
tion tool for drawing search networks and as a framework
for analyzing the properties of networks that result from
our techniques. By constructing SIL graphs and exam-
ining their graph structure, we can gain insights into the
behavior of the P2P search networks represented by the
SIL graphs.

3 Constructing search networks using
local decisions

Let us now see how an ad hoc search network can be con-
structed. Imagine that there is a node, A, that wished to
join a search network. First, A must discover some nodes
that are already in the network to serve as A’s neighbors.
This is usually done using a hostcatcher, which is a node
that tracks which other nodes are currently in the network.
Node A must contact a hostcatcher at a well-known ad-
dress, and get some node ids. Later, when A has been
in the network for a while, it may want to keep its own
list of live node ids to avoid depending on the centralized
hostcatcher.

Now that A knows about some potential neighbors, it
performs the connect() operation to form links. For exam-
ple, A may select B as a potential neighbor. Node A may
decide, say, to form a search linkA B and an index link
A B. If B agrees to these links, then the connections
are made andA begins sending update messages toB and
sending and forwarding search messages to B. A may
also decide to connect() to another node, C. In this case,
Amay simply decide to form an index linkA C. Since
this link is directed fromC toA,Awill have a copy ofC’s
index and can search C’s content. This process continues,
withA connecting to neighbors until it feels it has enough
connections (for example, more than some parameter m).
As other nodes (D, E ...) join the network, they will also
perform connect(), possibly connecting toA.

After A has been in the network for a while, it may be-
come overloaded with search and update messages. This
may happen because other nodes have connected directly
toA, or because other nodes have connected elsewhere in
the network but their search messages are being forwarded
to A. At this point, A can shed load by simply dropping
some links. This is called the break() operation. For ex-
ample, A may be receiving more search messages from
a link A F than it is receiving from any other link.
Then, A should probably drop the link A F . If A is
still overloaded, it can drop more links. Nodes that have
been disconnected from A (such as F ) can now perform
connect() to replace the broken connection to A. For ex-
ample, F may decide to form a search link to nodes other
than A, or may decide to form an index link F A so
that F is still able to search A’s content.

Using connect(), nodes self-organize into a search net-
work. Then, using break(), the network becomes self-
tuning: overloaded nodes shed load and other nodes pick
up the slack. Moreover, the network can tune itself for the
load pattern it is experiencing. For example, if nodes are
overloaded with search messages, they will drop search
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links, which can then be replaced with index links, evolv-
ing the network into a more index-centric structure. Simi-
larly, if nodes are overloaded with update messages, index
links can be replaced by search links, shifting the network
into a more search-centric mode.

In this section, we examine the decisions available to
nodes during connect() and break(). During connect(),
a node must decide which types of links to form, while
during break(), a node must decide which link or links
to disconnect. We focus on graphs that are constructed
from FSLs and NILs. This simplifies our analysis, since
there are fewer graphs to consider than in the full SIL
model. We have chosen FSLs and NILs because these
edge types are sufficient to represent the most popular
existing search network topologies, such as Gnutella or
supernode networks such as Kazaa. For clarity, we will
use the term “search links” to mean FSLs, and “index
links” to mean NILs.

3.1 The connect() operation

In our framework, there is no pre-determination of how
two nodes will connect. In the simplest case, a node A
could simply create a single link with another node B.
Such a link could be a search link or index link, and may
be directed “forward” (A ! B) or “backward” (A  
B). We call this a “one-way connect()” operation, since a
single link is formed in one direction. Multiple one-way
connect() operations could result in multiple links between
a pair of nodes. Note that multiple links between the same
nodes, while conceptually distinct, could be multiplexed
over a single TCP connection.

When performing a one-way connect(), a node must de-
cide which link to form with a particular neighbor, and the
easiest thing to do is to randomly choose the link type and
direction. This process is described by two parameters:
Psl, the probability that a search link is chosen instead
of an index link, and Pf , the probability that the link is
a forward link. For example, node A may set Pf = 1
and Psl = 0:5. Then, whenever A performs a connect(),
it would form a forward link, but would flip a coin to
determine whether to form a search link or index link.

One-way connections have the disadvantage of being
asymmetric; out of the pair of nodes, only one node can
search the other unless multiple connect()s are performed.
A more symmetric method of connecting is to form two
links in one connect() operation in order to ensure that
both connected nodes can search each other. We call this
method “two-way connect().” There are four combina-
tions of two links which ensure that the connected nodes
can search each other:

I. A B II. A B

III. A B IV. A B

In type I, A and B search each other directly, while in
type II A and B search each other indirectly. In types III
and IV, one node searches the other directly and is itself
searched indirectly.

A node must decide between the four connection types
(I, II, III and IV) when performing a two-way connect().
As with one-way connect()s, the node can assign proba-
bilities to each possibility, and then choose randomly. For
example, a node that uses PI = 0:5, PII = 0:5, PIII = 0
and PIV = 0 would form type I and type II links with
equal probability but would never form type III or type IV
links.

There are other ways of connecting besides one-way and
two-way connect() (for example, a connect() that forms

A B ) that may also be interesting to study. How-
ever, here we will restrict our attention to one-way and
two-way connections to simplify our analysis.

The probability parameters Psl, Pf , PI , PII and so on
can be set in a number of ways. One way is for a node
to adaptively learn good values, depending on network
conditions. For example, a node using one-way connect()
may become overloaded with search messages, and thus
decrease Psl. Another way to set the probability parame-
ters is to run experiments to find values that tend to produce
efficient networks in many cases, even though they may
not be optimal for specific nodes. This latter approach is
the one we take, and in Section 4, we examine the values
of the parameters that lead to efficient networks (networks
where nodes are comparatively lightly loaded.)

3.1.1 Propertied connect()

In its simplest form, connect() makes connections ran-
domly, without aiming for a particular topology. While
this method produces a flexible network in which each
node connects as it sees fit, it may also lead to inefficient
networks, since adding a new link results in higher load on
one or more nodes but may not improve the effectiveness
of the network. Consider for example the network repre-
sented by the SIL graph in Figure 2a. In this network, node
A is able to search node B because there is a search path
from A to B. Now consider Figure 2b. In this network,
an index link has been added from B to A. This index
link results in added load on node A, since A must now
process index updates from B. However, the extra link
does not benefit A, since A was already able to search B
via a search path. In fact, in the network of Figure 2b, the
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Figure 2: Networks: (a) search path, (b) one-index-cycle,
(c) search-fork

index link does not benefit any node. We say that the link
is redundant.

More formally, we define redundancy as a property of
a graph where an edge can be removed without reducing
the coverage for any vertex. The coverage of a vertex A
is the number of other vertices that A can search. Two
topological features that exhibit redundancy are the one-
index-cycle and the search-fork. A one-index-cycle is a
cycle that includes a single index link. An example is
shown in Figure 2b. A search-fork is a triangle-shaped
feature, in which there is a search link from A to B, a
search path from A to C and an index link from B to C.
An example is shown in Figure 2c. This feature leads to
unnecessary load because B must process A’s searches
even though those searches will also be processed over
B’s index by C.

We can improve the effectiveness of the connect() op-
eration by specifying that a connect() can only complete
if it does not form a one-index-cycle or a search-fork. Al-
though this principle does not guarantee that the resulting
network is efficient, it does eliminate some clear sources of
inefficiency. We refer to a connect() operation that avoids
one-index-cycle and search-fork features as a “propertied
connect()”, that is, a connect() that avoids introducing bad
properties into the network.

In order to perform a propertied connect(), a node must
be able to detect whether a link that it is about to make will
create a search-fork or a one-index-cycle. It is possible to
detect these properties without adding too much overhead
to the network if we extend the ping-pong mechanism of
P2P networks. In Gnutella, a node periodically announces
its presence with a ping message, and other nodes respond
with pongs. If a node “hears” its own pings, there must
be a cycle in the network. By adding counters to the ping
message, the message can act as a simple state machine
that can detect specific features, like one-index-cycles and
search forks. Whenever a node forwards a ping message
on a link, it simply updates the counter corresponding

to the link type. Then, a node can perform a propertied
connect() by tentatively forming a link, listening for its
own pings to see if that link created a search-fork or one-
index-cycle, and breaking the link if it has.

Note also that avoiding search-forks and one-index-
cycles is not sufficient to ensure that no redundancy ex-
ists in the network. Elsewhere, we have shown that two
other properties, index-forks and search-loops, must also
be avoided to eliminate all redundancy. We experimented
with avoiding all four properties on various networks, but
found that such networks tended to have low coverage,
as many potential links were rejected. Avoiding search-
forks and one-index cycles did not impact coverage as
much, while still significantly reducing the load on net-
work nodes. Therefore, we found it was useful to detect
and avoid just the one-index-cycle and search-fork prop-
erties.

3.2 The break() operation

When a node becomes overloaded, there are several ways
that it can break() links. Each method depends on a pa-
rameter called the break threshold BT , which determines
what load level constitutes “overloaded.”

� MostLoadedLink: the link causing the most load is
broken, if that link is transmitting more than BT mes-
sages per unit time.

� MostLoadedLinks: all links transmitting more thanBT

messages per unit time are broken.

� MostLoadedType: if the majority of the load on a node
is search load, and the total search load on the node
larger than BT , then all search links are broken. In
contrast, if most of the load is update load, and the
total update load is larger thanBT , then all index links
are broken.

� MostLoadedLinkOfType: if the majority of the load
on a node is search load, and the search load is larger
than BT , then the most heavily loaded search link is
broken. In contrast, if the majority of the load on a
node is update load, and the update load is larger than
BT , then the most heavily loaded index link is broken.

The goal of the MostLoadedLink and MostLoadedLinks
methods is to simply break whatever links are causing a
node A to be overloaded. Hopefully, the disconnected
neighbors will reconnect to nodes other thanA, so that the
load is better spread around the network. The MostLoad-
edType and MostLoadedLinkOfType methods are more
focused on determining whether it is searching or updat-
ing that is causing the node to be overloaded, and then
breaking specific links to reduce the search or update load
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connect() parameters

Type propertied or non-propertied
Connection one-way or two-way
Link one-way Pf , Psl
probabilities two-way PI , PII , PIII , PIV

break() parameters

Method MostLoadedLink, MostLoadedLinks,
MostLoadedType, MostLoadedLinkOfType

Threshold BT

Interval BI

Table 1: Tuning connect() and break().

as appropriate. Then, a network that has a large search
load will increase the number of index links and reduce
the number of search links, self-tuning itself to reduce
search load. At the same time, an index-heavy network
with a large update load will self-tune to replace index
links with search links and reduce the update load.

A node may monitor load and break links continuously.
For example, a node may have a thresholdBT and when-
ever a link starts to produce more load than BT , that link
is broken. In contrast, a node may perform breaking pe-
riodically, say, every few minutes. Whenever it is time
to perform a break(), the node determines which links, if
any, are above the thresholdBT , and breaks them. We can
label the break interval BI . In the periodic case, a node
may set BT to zero. For example, if the node was using
the MostLoadedLink method with BT = 0, whenever it
was time to break(), the most loaded link would be broken,
regardless of how much load it carried.

4 Evaluation

We have evaluated our techniques by simulating network
construction and analyzing the properties of the resulting
networks. Our first task was to identify how best to tune
the connect() and break() operations. In Section 3 we
presented several alternatives, and these options are sum-
marized in Table 1. For example, a node may perform
propertied or non-propertied connect()s. In either case,
the node may make one-way or two-way connections. For
each of these connection types, there are various proba-
bility parameters that determine which specific links are
made. Similarly, there are many options when performing
a break() operation.

Once we know which parameters work well for con-
nect() and break(), we can compare the resulting ad hoc
networks to existing techniques. We chose to compare
our techniques to the two most popular deployed net-
work types, pure search (e.g. Gnutella) and supernode

(e.g. Kazaa) networks. These networks provide the same
search semantics as the ad hoc self-supervising networks
we are studying here. Recently, researchers have pro-
posed other types of networks, such as distributed hash
tables and random-walk search networks. However, as
these new network types are not yet widely deployed, and
as they provide different search semantics than our ad hoc
networks (see Section 5), we felt it was most appropriate
to conduct an “apples-to-apples” comparison to the widely
used and quite popular supernode and pure search network
types.

We use a load efficiency metric both for the ad hoc net-
work tuning process and for comparing ad hoc networks
to supernode networks. The specific metric we used in our
evaluations is Messages per Covered Node (MCN), which
is calculated as the load on a node divided by the cover-
age for that node. For example, if node A has a search
load of 15 messages/unit time and an update load of 7
messages/unit time, and can search 11 nodes directly or
indirectly, then the MCN for that node is (7+15)=11 = 2
messages/covered node. We chose MCN as our metric
because it represents the amount of processing and band-
width resources a node must contribute for each node it is
able to search, and thus effectively measures the inherent
efficiency of the network regardless of the network size or
coverage. In our experiments, we calculate the MCN for
each node, and then take the average MCN of all nodes in
the network.

We also require in our experiments that coverage be
relatively high, specifically that coverage is greater than
half the network. If a particular technique results in a
network with low MCN but also low coverage, we reject
it as the network, though “efficient,” is not providing ser-
vice to member peers. Coverage does not have to be 100
percent, as existing networks such as Gnutella and Kazaa
themselves do not provide full coverage. Our reasoning is
that as long as the network provides “enough” coverage so
that peers can find content, then we can turn our attention
to efficiency by minimizing MCN.

4.1 Simulation setup

Our model of P2P search networks is simple, yet it is
powerful enough to provide interesting insights into the
behavior of peer-to-peer search networks. Similarly, we
make simplifying assumptions in our simulation model so
that we can study the inherent properties of a wide range
of network types and parameter configurations. The key
parameters for our simulations and their base values are
shown in Table 2; these parameters are discussed in de-
tail below. The base values in Table 2 indicate the values
used in the results we report. We tried a variety of val-
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Param Description Base values

N Nodes per network 200
R Runs per experiment 10
LS; Mean search and update LS = LU=10,
LU messages per unit time per LS = LU ,

node (Normally distributed LS = 10� LU
with � = 1

4
mean)

Ltot LS + LU 100
M Minimum desired links per 20

node
IB Mean interval between 10 ticks

node births
�L Mean node lifetime 1000 ticks
�L Node lifetime standard 250 ticks

deviation

Table 2: Simulation parameters.

ues for these parameters, and the overall results remained
consistent except where noted.

In our simulations, we model a peer-to-peer search net-
work as a SIL graph, with vertices representing nodes and
edges representing search and index links (as described in
Section 2). The graph starts empty, and vertices are “born”
at random intervals, on average every IB time ticks. When
a vertex is born, it selects random vertices already in the
graph and connect()s to those vertices, until the new vertex
has at leastM incoming or outgoing edges. If the vertex is
unable to formM edges, say because there are not enough
vertices in the graph, then that vertex waits a few simula-
tion time ticks and tries again. Once a node A has at least
M links, the node does not perform connect() unless its
links have dropped below M , although other nodes may
connect to A bringing the number of A’s links above M .

In our experiments we used M = 20, which represents
between 5 to 20 neighbors for a node, since up to four
links may connect with the same node. We experimented
with a range of values for M , and found that M = 20
results in networks with relatively high coverage, even as
the number of nodes in the network N grows. Moreover,
it is reasonable to expect a node to have 20 open connec-
tions, as we have observed machines running a Gnutella
client with that many open Gnutella connections. At the
same time, our results showed that M affects coverage
(higher M increases coverage) but does not change the
basic results and conclusions we report below.

For the break() operation, the simulation schedules
“break” events every BI simulation time ticks. A break
event involves a two step process: first, every node cal-
culates its local load and decides which, if any, edges to
break, and second, the selected edges are removed from the
graph. This represents a simplified version of the break()
operation in a real network, where nodes would conti-

nously monitor their load and perform a break() whenever
they felt it necessary. By implementing breaks in a syn-
chronous manner, where all breaks occur at once, we were
able to create a more controlled simulation environment
to effectively study such issues as the impact of the break
frequency on the efficiency of the network.

We also tested two scenarios, one where nodes joined
the network and stayed until the end of the simulation,
and another scenario where nodes were given a “lifetime”
value, and when the simulation reached the birthday plus
the lifetime for a given node, that node and all of its associ-
ated edges were removed from the graph. Lifetime values
were chosen randomly from a normal distribution with a
mean of �L and standard deviation �L. In either scenario,
we stopped the simulation after the last node to be born
performed its birthday connect()s, and calculated our load
metric. In both scenarios (nodes leave or do not leave) re-
sults were roughly equivalent; although the absolute value
of our measurements may change, our conclusions remain
valid, unless explicitly stated.

In the case of propertied connect()s, we only allowed a
link to be added to the graph if it did not create a one-index-
cycle or search-fork. Since we are primarily concerned
here with measuring the potential benefits of propertied
connect()s, we assumed that the network being constructed
had some mechanism for detecting properties.

We simulated load patterns by assigning to each vertex
two values: LS , the number of messages generated on
search links by the node per unit time, andLU , the number
of index update messages sent out on index links per unit
time. We studied scenarios where the mean LS was much
higher than, equal to, and much less than the mean LU .
For simplicity, we assume that both search and update
messages are equally expensive to process. Certainly, one
type of message may be more expensive than another, but
this situation is analogous in our framework to a situation
where there are more messages of one type. The load on a
nodeA is the total number of search and update messages
processed by that node, e.g. the sum of the LU values for
nodes with an index edge to A and the LS values for the
nodes with a search path to A.

We tested networks built with one-way connect() opera-
tions with various values of Psl and Pf . In our discussion
and figures below, it is convenient to adopt a shorthand
for naming a network type depending on the values of
these parameters: “1-way(fPf /sPsl).” For example, “1-
way(f1.0/s0.5)” indicates that a network was built with
one-way connect() where Pf = 1 and Psl = 0:5. Sim-
ilarly, we tested networks built with two-way connect()
operations with varying values of PI :::PIV . In this case,
a convenient shorthand for naming network types is to
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Figure 3: Non-propertiedconnect() versus propertied con-
nect().

list just the connection types that were used; for exam-
ple “2-way(I/II)” or “2-way(I/III/IV)”. For each type of
two-way network, we assigned equal probabilities to the
different connection types used in that network. Thus,
in a “2-way(I/II)” network, PI = PII = 0:5 while
PIII = PIV = 0.

4.2 The connect() operation

We start by studying the connect() operation. For now,
nodes do not perform break()s, so that we can understand
and tune the behavior of connect(). We ran an experiment
where nodes joined the network using non-propertiedcon-
nect()s, and compared the resulting load to that in networks
built with propertied connect()s. We ran this experiment
for 28 different network types, and four representative re-
sults from the scenario where LS >> LU are shown in
Figure 3. The horizontal axis shows the type of network
configuration, while the vertical axis shows the messages
per covered node (MCN) metric. We show both MCN-
Average, which represents the average MCN over all nodes
in the network, and MCN-Max, which represents the load
for the node with the highest MCN in the network. The
figure includes MCN-Average and MCN-Max for both the
non-propertied connect() case (“No prop”) and the prop-
ertied connect() case (“Prop”). Note that one bar, “Prop:
MCN-Max” for 2-way(III/IV) is so high that to make the
graph readable we had to chop off the bar and show the
actual value instead (“3614.5”).

This graph shows three different effects of the proper-
tied connect() operation: sometimes the effect is benefi-
cial, sometimes it is detrimental, and sometimes the results
are mixed, as MCN-Max increases but MCN-Average de-

1

2

3

(Some index links have been omitted for clarity.)

Figure 4: A “search cluster” topology resulting from 2-
way(I/II) connect().

creases. An example of where property checking is detri-
mental is the 2-way(III/IV) network type shown in Fig-
ure 3. A large increase in MCN-Max was also observed in
several other networks that had type III or type IV links,
which are both search link/index link pairs. When a node
A has an incoming search/index pair to a node B, it can-
not form outgoing links toB or B’s ancestors, since such
outgoing links would form a one-index-cycle. The result
is that the FSL/NIL pairs impose a sort of partial order-
ing on nodes, with some nodes becoming heavily loaded
termini at the end of long chains of search/index pairs.
The same effect is observed to a lesser degree in many
one-way networks, where the strictness of the partial or-
dering is lessened by the fact that single links, and not
search/index pairs are formed. The large MCN-Max pulls
up MCN-Average, sometimes overcoming the benefits of
property checking (as in the case of 2-way(III/IV)) and
sometimes not (as with 2-way(I/II/III)).

In contrast, the propertied 2-way(I/II) network has a
lower MCN-Average and lower MCN-Max than in the
non-propertied case. This network is unique in that it
converges to a fairly orderly topology, which we can best
describe as “search clusters.” In this topology, clusters of
nodes are connected by search links, while nodes in dif-
ferent clusters are connected by index links. The effect is
that nodes only send search messages to nodes in their own
cluster. High coverage is achieved because each cluster
has indexes from many or most of the nodes outside the
cluster. Figure 4 shows an example. Each node in cluster
1 has a search link to a node in cluster 2 or 3. Thus, cluster
2 nodes can search cluster 1 nodes without any searches
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going to cluster 1. Clusters 2 and 3 would also have out-
going index links, although we have omitted them from
the figure for clarity.

To see why the 2-way(I/II) network converges to this
topology with propertied connect()s, recall that a type I
link is a pair of search links (in opposite directions), while
a type II link is a pair of index links (in opposite directions).
Whenever a type II pair of index links is formed between
two nodes, there is effectively a “boundary” between the
two nodes, since there cannot be search links or a search
path between those two nodes without forming a one-index
cycle. As a result, the two nodes are necessarily in separate
clusters. Similarly, if a type I pair of search links is formed
between two nodes, those nodes are necessarily in the
same cluster, since index links between the two nodes
would also form a one-index-cycle. The result is that the
ad hoc network self-organizes into an orderly topology.
Note that propertied 2-way(I/II) networks still converge
to search clusters even if we do not check for search-
forks. As long as all links formed are type I or type II,
every search-fork that occurred would also be a one-index-
cycle. This fact makes it easier to deploy a network using
2-way(I/II) connects, since only one property would have
to be detected.

The search cluster topology is more efficient than the
non-propertied 2-way(I/II) network because the nodes
must only handle searches that originate within their own
cluster. This is especially helpful in the case where
LS >> LU , since much of the load in the network is
search load and reducing the search load on a node is the
key to efficiency.

The results for the load patterns LS = LU and
LS << LU are similar: checking properties is beneficial
for some networks, partially beneficial for others (e.g. by
decreasing MCN-Average at the expense of higher MCN-
Max), and detrimental for still others. For the 2-way(I/II)
type specifically, checking properties is beneficial in the
LS = LU case but not in theLS << LU scenario. This is
because the efficiency of search clusters is due to extensive
inter-cluster indexing, and when the update rate is high,
this extensive indexing causes excessive load. Nonethe-
less, the search clusters topology that results from the ad
hoc 2-way(I/II) connect() is an interesting example of how
in some scenarios checking properties of search networks
can lead to significantly more efficient networks.

Now that we have studied how to use connect() to build
networks, we can now compare the resulting ad hoc net-
works to supernode networks. For our comparison, we
chose the “most-efficient” propertied and non-propertied
ad hoc networks, that is, the networks with either the low-
est MCN-Max or the lowest MCN-Average:
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Figure 5: Tuning supernode networks.

� One-way: The 1-way(f1.0/s0.5) network, in both the
propertied and non-propertied forms.

� Clusters: The propertied 2-way(I/II) network, which
forms “clusters” as discussed above.

� Gnutella+IV: The non-propertied 2-way(I/IV) net-
work, which is essentially Gnutella augmented with
type IV (search/index) links.

4.2.1 Comparison to supernode networks

We can compare the best ad hoc networks to supernode
networks, but we must first decide how many supernodes
there will be in the network. We ran an experiment where
we varied Psn, the probability that a node was chosen
as a supernode, from 0 to 1. When Psn = 0, one node
was chosen as the supernode, since the network cannot
function without at least one supernode. When Psn = 1
all nodes are supernodes, which is equivalent to a pure
search network like Gnutella. The results for LS >> LU
are shown in Figure 5. As the figure shows, increasing
the number of supernodes increases the MCN-Average.
Because supernodes are more heavily loaded than normal
nodes, as the number of supernodes increases more nodes
in the network are heavily loaded and the MCN-Average
goes up. At the same time, as the number of supernodes
increases, MCN-Max initially decreases, and then levels
off. When there are more supernodes, the index update
load from normal nodes is spread around to more nodes,
and the MCN-Max decreases as the update load on su-
pernodes decreases. However, every search message is
processed by every supernode, and the MCN-Max levels
off at about 90 messages per unit time, which represents
search load that cannot be eliminated by changing the
number of supernodes. The results for the load patterns
LS = LU and LS << LU are similar, though the value at
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Figure 6: Ad hoc connect() networks compared to existing
networks.

which MCN-Max levels off changes.
We chose three points in Figure 5 for our compari-

son:

� Central indexing: Psn = 0

� Part-supernodes: Psn = 0:1

� Gnutella: Psn = 1

Besides the extremes of central indexing and Gnutella,
part-supernodes is interesting because Psn = 0:1 is the
smallest Psn after the “knee” in Figure 5. Figure 6, which
represents LS >> LU , shows these supernode networks
compared to networks built using our ad hoc techniques.
Note that MCN-Average for central-indexing is 0.993, not
zero.

First, note that the ad hoc networks tend to have equal
or higher MCN-Max than the supernode networks. Even
if the MCN-Average of these networks is low, the MCN-
Average of the central-index network is still lower, mean-
ing that the ad hoc networks do not represent an improve-
ment over supernodes.

The exception is the clusters network. This network
has a significantly lower MCN-Max than any of the su-
pernode networks. For example, the Gnutella network has
an MCN-Max of 91.1 messages per covered node. This
is roughly the lowest MCN-Max that is achievable in a
supernode network, since in any supernode network there
would be at least one node handling all of the searches,
and this node would have an MCN-Max of at least 90.
In comparison, the clusters network has an MCN-Max
of only 30.1 messages per covered node. This indicates
that clusters is more appropriate for networks where there
are few or no nodes capable of handling the high load
of supernodes. The increase in MCN-Average over part-
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Figure 7: Cluster networks versus supernode networks for
various load patterns.

supernodes indicates that in the cluster topology the load
is being spread around the network more effectively, so
that every node is contributing search resources and no
one node is significantly overloaded. This load sharing
is achieved despite the fact that nodes were not aiming
for a specific topology but were instead using the ad hoc
connect() operation to self-organize.

As we change the load patterns, the advantage of cluster
networks decreases, while other ad hoc networks remain
less efficient than supernode networks. When LS = LU ,
cluster networks have a roughly equal MCN-Max as
Gnutella networks, and a lower MCN-Max than the other
supernode types. When LS << LU , supernode networks
are clearly better. This relationship can be seen more
clearly in Figure 7, which shows cluster networks and
part-supernode networks for various load patterns. On
the left of the figure, where updates outnumber searches,
part-supernodes are superior, with a lower MCN-Max and
MCN-Average than cluster networks. As the proportionof
searches grows, part-supernode networks become less ef-
ficient, while the efficiency of cluster networks improves.
When there are at least as many searches as updates, the
MCN-Max of cluster networks is less than MCN-Max
of part-supernode networks, while the MCN-Average of
cluster networks is within a factor of 2.7 or less of the
MCN-Average of part-supernode networks.

Figure 7 illustrates how cluster networks achieve better
load balancing (significantly lower MCN-Max) than su-
pernode networks when LS > LU . We expect this load
scenario to be an important and common case. For mul-
timedia filesharing, searches are likely to outnumber up-
dates as nodes often submit multiplequeries before finding
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an object of interest and adding it to their shared repository.
Other applications are also likely to have LS > LU . For
example, in a peer-to-peer digital library, users are likely
to search for and download digital objects for their per-
sonal use without necessarily adding them to the collection
at their local library and causing that library to issue an
index update message. For these applications, there is a
compelling case for using the clusters network instead of
a supernode network, as clusters most effectively utilizes
the network’s resources to satisfy queries.

There are two other methods used in existing systems
to tune supernode networks. One method is to partition
the network into subnetworks. Then, supernodes would
only handle the search and index load from nodes in their
subnetwork, and nodes would not be able to search nodes
in other subnetworks. While this reduces the absolute load
on supernodes, our simulations show that the MCN is un-
affected, since the decrease in load is accompanied by a
corresponding decrease in coverage. The second method
is to place a time-to-live (TTL) value on search messages,
so that messages are only forwarded a certain number of
hops. This again reduces load, since fewer search mes-
sages reach each supernode. In our experiments, adding a
TTL value decreased the MCN-Max somewhat for supern-
ode networks. However, we observed a similar decrease in
MCN-Max when we used TTL in the ad hoc networks. The
relative performance between supernode networks and ad
hoc networks remained unchanged.

4.3 The break() operation

Next, we studied the effects of the break() operation. To
do this, we first attempted to find the break method and pa-
rameters that produced the most efficient graphs for each
connect() type. Our simulations involved over three thou-
sand combinations of network type, break method, BI

and BT values. Due to space limitations, the details of
this optimization are omitted. Our results indicate that
a periodic MostLoadedLink or MostLoadedLinks break
with a medium to high threshold is best. By perform-
ing the break periodically, the disruption to the coverage
of the network is minimized. By avoiding an extremely
high threshold, nodes ensure that some links are broken,
but without the unnecessary disruption caused by a low
threshold. MostLoadedType breaks too many links (for
example, all search links) while MostLoadedLinkOfType
may break a lightly loaded link of one type when a heav-
ily loaded link of the other is actually the one causing
problems.

We then examined whether break() and connect() to-
gether produced more efficient networks than connect()
alone. We tried both propertied and non-propertied con-
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Figure 8: The break() operation versus no break().

nect() operations. Some representative results from the
28 network types we tried are shown in Figure 8 for the
case LS >> LU . First, the non-propertied 1-way net-
work did not benefit at all from the break() operation.
This is typical of many of the non-propertied networks.
Even though overloaded nodes break links, these nodes
quickly become overloaded again as new links are made
in a random, undisciplined way.

One type of network that did benefit from break() is the
non-propertied 2-way(I/II) network, with a lower MCN-
Max and MCN-Average. Although broken links are still
replaced randomly, over time the number of search links
in the network decreases, and the proportionof index links
increases, and the network self-tunes for the high search
load that is present. A 2-way(I/II) network is best able
to effect this replacement of search links by index links
because when a link is made, it is either pure search (type
I) or pure index (type II).

In contrast, the propertied networks often benefit from
the break() operation. In these networks, using break()
usually decreased MCN-Max over the non-break() case.
The decrease in MCN-Max was often accompanied by an
increase or no change in MCN-Average. One example
is the propertied 2-way(III) network shown in Figure 8.
In this case, MCN-Max decreased by 80.4 percent when
break() was used, while MCN-Average increased by six-
tenths of one percent. In propertied networks, broken links
are replaced in a more disciplined way by avoiding one-
index-cycles or search-forks, and loads are able to effec-
tively shed load. Sometimes this means that other nodes
must become more loaded to take up the slack (and thus
MCN-Average increases). In the case of the 2-way(III)
network specifically, the break() operation reduces the oc-
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currence of terminus nodes (see Section 4.2). Thus, a se-
vere source of inefficiency is eliminated, and MCN-Max
decreases without significantly increasing MCN-Average.

Another interesting case is the cluster network. In this
case, using the break() operation is significantlybeneficial,
resulting in a 48.0 percent decrease in both MCN-Max and
MCN-Average. The break() operation allows large clus-
ters to break up into smaller clusters. This usually occurs
through a process of nodes “seceding” from a large cluster
one at a time and reforming into smaller clusters. Since
nodes only receive search messages from other nodes in
the same cluster, smaller clusters means that nodes receive
fewer search messages, and this situation is better for the
high search load scenario of LS >> LU . The search
clusters of are also able to tune themselves for other load
patterns. For example, when update messages are more
prevalent than search messages, break() allows two clus-
ters to join by replacing index links with search links, and
thus nodes receive fewer update messages.

For other network types, the results for other load pat-
terns (LS = LU and LS << LU ) are similar to the results
in the LS >> LU case: break() allows some networks
(such as those discussed above) to tune themselves for
higher efficiency for the current load pattern. Overall then,
break() is an effective operation for network self-tuning.

Now we can compare ad hoc networks with connect()
and break() to supernode networks. We chose the fol-
lowing three networks that performed best under break(),
achieving an MCN-Max less than 100:

� Wheels: This is a propertied 2-way(III) network. The
resulting network tends to have multiple terminus
nodes that are each the hub of a “wheel”. The analogy
is not precise, as the wheels network is more messy
than the orderly clusters network.

� Bridges: This is a non-propertied 2-way(I/II) network.
Without property checking, the network tends to form
into disorderly clusters, where nodes in the same clus-
ter have index link “bridges” between them.

� Clusters: As defined earlier, a propertied 2-way(I/II)
network.

4.3.1 Comparison to supernode networks

Figure 9 shows the comparison between connect()/break()
ad hoc networks and supernode networks for the LS >>
LU scenario. As this figure shows, many of the ad hoc
networks using break() achieve a smaller MCN-Max than
any of the supernode networks. In the case of bridge and
cluster networks, the MCN-Max is significantly lower; the
bridge network has less than one third the MCN-Max of
the supernode networks and the cluster network has about
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Figure 9: Ad hoc connect() and break() networks com-
pared to supernode networks.

one sixth the MCN-Max of the supernode networks. This
reduction in MCN-Max is achieved for the ad hoc network
without unduly burdening the average nodes. The MCN-
Average of the bridge network is only 1.7 times the MCN-
Average of the part-supernode network, and the MCN-
Average of the cluster network was only 1.2 times the
part-supernode MCN-Average.

Our results indicate that our techniques compare favor-
ably with the common case for supernode networks (e.g.
some nodes are supernodes but not all) by spreading the
load equally to all nodes. Moreover, in the case of a net-
work where all nodes have roughly equivalent capacities,
our techniques would fare better than any supernode net-
work, since the low MCN-Max indicates that none of the
nodes are overloaded. These results hold for the other
load patterns (LS = LU and LS << LU ) as well: break()
allows the bridge and cluster networks to tune themselves
and spread load around more effectively than supernode
networks.

Even if the network has nodes of widely varying ca-
pacities, our techniques perform quite well. Consider the
wheels network, which has both a lower MCN-Max (by
35.8 percent) and a lower MCN-Average (by 30.9 percent)
than the supernode network with one tenth supernodes (for
LS >> LU ). This means that in any scenario where part-
supernodes is appropriate, the wheels network is more
efficient for all nodes for that load pattern. For other load
patterns (LS = LU or LS << LU ), the wheels network
has a higher MCN-Average than supernode networks.

Finally, we ran an experiment where we used the break()
operation in supernode networks. The break() operation
executed in the same way as in the ad hoc networks, and
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broken links were replaced using the supernode network
version of connect() (supernodes connected to each other
while normal nodes connected to supernodes). Our results
(not shown) indicate that break() is ineffective as a method
for tuning supernode networks, as it did not significantly
change MCN-Max or MCN-Average. The structure of the
topology is too rigid; even when links are broken the same
inherent traffic patterns remain. Ad hoc networks, with
their flexible topologies, are much better suited to tuning
with break().

We can summarize our results as follows:

� Constructinga network in an autonomous, ad hoc fash-
ion does not hurt the efficiency of the network, even
though there is no classification of nodes or rigid struc-
ture.

� On the contrary, such ad hoc techniques can lead to a
very efficient network, a network that is better than a
supernode network for both the situation where some
nodes are more powerful than others, and also for the
scenario where nodes have roughly equivalent capa-
bilities.

� The break() operation is an effective way to reduce
load on all nodes in an ad hoc network.

� Checking for properties when performing connect()
is always beneficial for the 2-way(I/II) network (clus-
ters), and beneficial for some other types of networks
when the break() operation is used.

� The cluster network (with or without break()s) and
the bridge network (with break()s) are more effective
than supernode networks at spreading the load to all
nodes without overloading nodes. This is important
for search-heavy applications where few or none of
the nodes have enough capacity to act as supernodes.

� The wheels network (with break()s) is more effective
than supernode networks at reducing load on all nodes,
and is useful for situations where some nodes have
higher capacity than others.

5 Related work

Many researchers have focused on the problem of peer-
to-peer search networks. Several studies [15, 14] have
focused on characterizing networks such as Gnutella,
and many researchers agree that a flooding network like
Gnutella cannot easily scale. Pandurangan et al have
looked at techniques for constructing Gnutella-like net-
works with desirable properties [12], although their focus
is on pure-search networks without index links. Other
flooding-like networks that employ indexing similar to

our index links include routing index networks [6], lo-
cal indexing networks [17], and of course supernode net-
works [2, 18].

Some researchers have abandonded flooding networks
in favor of highly structured distributed hash tables
(DHTs), such as Chord [16] and CAN [13], in an attempt to
provide a much more scalable lookup service. DHTs focus
on finding the location of an object whose name is known,
but often rely on a separate mechanism for information
discovery (as pointed out in [13]). The search networks
we study here combine the operations of discovery (“what
information is available?”) and location (“where is a par-
ticular file located?”). Moreover, DHTs are not yet widely
deployed, and the popularity of Gnutella and supernode
networks suggest that flooding networks are still worthy
of study despite the advent of DHTs.

Still others have proposed to retain the unstructured na-
ture of search networks but to replace the flooding-based
searching with random walk searches [10]. In these sys-
tems, content is proactively replicated throughout the net-
work to ensure that the random walks can find content [4],
and replication may place an undue burden on sites that
store data which they have no interest in. Moreover, ran-
dom walks may travel many nodes before finding content,
which increases the latency of searches.

The concept of self-supervising networks as we use it
is similar to Dijkstra’s concept of a self-stabilizing sys-
tem [7] in that the system converges to a desirable state
through the actions of the nodes in the system. Self-
supervision has been examined for peer-to-peer systems
specifically. For example, Anthill [3] is a framework for
developing self-organizing and self-tuning networks, al-
though the techniques used (such as genetic programming)
are more complex than the simple operations we examine
here.

Peer-to-peer search is so far most popular in fileshar-
ing applications, but several other applications have been
proposed. These include data storage for ubiquitous com-
puting [9], privacy-preserving publishing [8], and content
discovery in distributed digital archives [5]. Our tech-
niques can be used to provide efficient and adaptive infor-
mation discovery services for these applications.

6 Conclusion

Peer-to-peer search networks are a popular and effec-
tive architecture for information discovery in massively
distributed digital repositories. Many researchers have
suggested that flooding-based search networks should be
replaced by other search techniques. However, we be-
lieve that the flooding model is still extremely interest-
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ing and viable because of its simplicity, flexibility and
robustness. We have investigated constructing flooding-
based search networks that are built in an ad hoc manner,
without restricting a priori which nodes can connect or
what types of information they can exchange. In order to
make these ad hoc networks efficient, we have made them
self-supervising, so that the network topology forms and
changes as necessary to be as efficient as possible.

Our techniques improve over existing networks, such as
supernode networks, in several key situations. If there are
no nodes in the network able to take on the overwhelming
burden of becoming a supernode, our ad hoc networks can
be tuned to more evenly distribute load in the network.
This is done by dropping links using the break() operation
to shed load, by checking to ensure that efficiency prop-
erties are preserved when connect()ing to the network, or
by doing both. Even if there are nodes that have higher
capacity, our techniques allow an ad hoc network to orga-
nize and tune itself into a structure that is more efficient
than existing supernode networks for both the supernode
and the normal node. Our results indicate that ad hoc,
self-supervising networks are an effective architecture for
peer-to-peer search.
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