Introduction to

Abaokouoa: Evayyedia Mitoupd

Introduction to Information Retrieval

Lucene: Tt elval;

= Open source Java library for indexing and searching
= Lets you add search to your application
= Not a complete search system by itself
= Written by Doug Cutting

= Used by LinkedIn, Twitter, ...

= ..and many more (see http://wiki.apache.org/lucene-
java/PoweredBy)

= Ports/integrations to other languages
= C/C++, C#, Ruby, Perl, Python, PHP, ...

Introduction to Information Retrieval

Mnyég

® Lucene: http://lucene.apache.org/core/

= Lucene in Action: http://www.manning.com/hatcher3/

= Code samples available for download

ene
1o

= Ant: http://ant.apache.org/
= Java build system used by “Lucene in Action” code

Introduction to Information Retrieval

Lucene in a search system

Search Ul

1

Acquire
content

Raw
Content

Introduction to Information Retrieval

Lucene in action

= Command line Indexer
= .../lia2e/src/lia/meetlucene/Indexer.java

= Command line Searcher
= .../lia2e3/src/lia/meetlucene/Searcher.java

Introduction to Information Retrieval

How Lucene models content

= A Document is the atomic unit of indexing and
searching
= A Document contains Fields
= Fields have a name and a value

= Examples: Title, author, date, abstract, body, URL,
keywords, ..

= Different documents can have different fields

+* You have to translate raw content into Fields

+* Search a field using name:term, e.g., title:lucene

Introduction to Information Retrieval

Parametric and field indexes

» Documents often contain metadata: specific
forms of data about a document, such as its
author(s), title and date of publication.

» Metadata generally include fields such as the date
of creation, format of the document, the author, title
of the document, etc

» There is one parametric index for each field
(e.g., one for title, one for date, etc)

Introduction to Information Retrieval

Bl rapirie sesrch

Parametric indexes = s———

Tt

Bus st vniicomy

Lacgramge e ot iaint mad 0110V B

Language

Example query: “find documents authored by William
Shakespeare in 1601, containing the phrase alas poor Yorick”.

= Usual postings intersections, except that we may merge
postings from standard inverted as well as parametric indexes.

= For ordered values (e.g., year) may support querying ranges ->
use a structure like a B-tree for the dictionary of sucg fields

Introduction to Information Retrieval

Zone indexes

= Zones similar to fields, except the contents of a zone can be
arbitrary free text.
= example, document titles and abstracts

= We may build a separate inverted index for each zone of a
document, to support queries such as
“find documents with merchant in the title and william in
the author list and the phrase gentle rain in the body”.

= Whereas, the dictionary for a parametric index comes from a
fixed vocabulary, the dictionary for a zone index whatever
vocabulary stems from the text of that zone.

Introduction to Information Retrieval

Zone indexes

|n|||a-n.ans:ra=+—-| 1 I—-| 121 H 1441 H 1729 |
| wiam e l—-| 2 l—-| 1 H 8 I—-‘l 16 |
e e H e H]

= we can reduce the size of the dictionary by encoding
the zone in which a term occurs in the postings
= Also, supports weighted zone scoring

willanm |—- 2author 2 title —= 3 awthor —= 4title 5.author

Introduction to Information Retrieval

Lucene in a search system

Search Ul

1

Build
docu [nent

Acquire
content]

Raw
Content

Introduction to Information Retrieval

Fields

Fields may

= Be indexed or not

= Indexed fields may or may not be analyzed (i.e., tokenized with an
Analyzer)

= Non-analyzed fields view the entire value as a single token
(useful for URLs, paths, dates, social security numbers, ...)

= Be stored or not
= Useful for fields that you’d like to display to users
= QOptionally store term vectors

= Like a positional index on the Field’s terms
= Useful for highlighting, finding similar documents, categorization

Field construction

Lots of different constructors

import org.apache.lucene.document.Field

Field(String name,
String value,
Field.Store store, // store or not
Field.Index index, // index or not
Field. TermVector termVector);

value can also be specified with a Reader, a TokenStream, or a
bytel]

Introduction to Information Retrieval

Field options
= Field.Store

= NO : Don’t store the field value in the index
= YES : Store the field value in the index
= Field.Index
= ANALYZED : Tokenize with an Analyzer
= NOT_ANALYZED : Do not tokenize
= NO : Do not index this field
= Couple of other advanced options
= Field.TermVector
= NO : Don’t store term vectors
= YES : Store term vectors
= Several other options to store positions and offsets

Introduction to Information Retrieval

Using Field options

NOT_ANALYZED YES Identifiers,
telephone/SSNs,
URLs, dates, ...

ANALYZED YES WITH_POSITIONS_OFFSETS Title, abstract

ANALYZED NO WITH_POSITIONS_OFFSETS Body

NO YES NO Document type, DB
keys (if not used for
searching)

NOT_ANALYZED NO NO Hidden keywords

Introduction to Information Retrieval

Document

import org.apache.lucene.document.Field

= Constructor:
= Document();

= Methods
= void add(Fieldable field); / Field implements
// Fieldable

= String get(String name); // Returns value of
/l Field with given
/[name

= Fieldable getFieldable(String name);
= ...and many more

Introduction to Information Retrieval

Multi-valued fields

= You can add multiple Fields with the same name

= Lucene simply concatenates the different values for that
named Field

Document doc = new Document();
doc.add(new Field(“author”,
“chris manning”,
Field.Store.YES,
Field.Index. ANALYZED));
doc.add(new Field(“author”,
“prabhakar raghavan”,
Field.Store.YES,
Field.Index. ANALYZED));

Introduction to Information Retrieval

Core indexing classes

= |ndexWriter

= Central component that allows you to create a new index,
open an existing one, and add, remove, or update
documents in an index

= Directory

= Abstract class that represents the location of an index

= Analyzer
= Extracts tokens from a text stream

Basic Application

Document
super_name: Spider-Man
name: Peter Parker
category: superhero
powers: agility, spider-sense

Query
(powers:agility)

Hits
(Matching Docs)

Get Lucene jar file

‘addDocument()

[IndexWriter ’ [IndexSearcher

2. Write indexing code
to get data and
create Document

objects
3. Write code to
- create query

objects
Lucene Index 4. Write code to

use/display results

Basic Application: notes

Only a single IndexWriter may be open on an index
An IndexWriter is thread-safe, so multiple threads can add
documents at the same time.

Multiple IndexSearchers may be opened on an index

¢ IndexSearchers are also thread safe, and can handle
multiple searches concurrently

¢ an IndexSearcher instance has a static view of the index,
it sees no updates after it has been opened

An index may be concurrently added to and searched, but
new additions won’t show up until the IndexWriter is
closed and a new IndexSearcher is opened.

10

Introduction to Information Retrieval

Analyzers

Tokenizes the input text

= Common Analyzers
» WhitespaceAnalyzer
Splits tokens on whitespace
= SimpleAnalyzer
Splits tokens on non-letters, and then lowercases
= StopAnalyzer
Same as SimpleAnalyzer, but also removes stop words
= StandardAnalyzer

Most sophisticated analyzer that knows about certain
token types, lowercases, removes stop words, ...

Introduction to Information Retrieval

Analysis examples

“The quick brown fox jumped over the lazy dog”

= WhitespaceAnalyzer

= [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy]
[dog]

= SimpleAnalyzer

= [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy]
[dog]

= StopAnalyzer

= [quick] [brown] [fox] [jumped] [over] [lazy] [dog]
= StandardAnalyzer

= [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

11

Introduction to Information Retrieval

More analysis examples

WhitespaceAnalyzer

SimpleAnalyzer

StopAnalyzer

StandardAnalyzer

= “XY&Z Corporation — xyz@example.com’

)

= [XY&Z] [Corporation] [-] [xyz@example.com]

= [xy] [z] [corporation] [xyz] [example] [com]

= [xy] [z] [corporation] [xyz] [example] [com]

= [xy&z] [corporation] [xyz@example.com]

Introduction to Information Retrieval

What’s inside an Analyzer?

= Analyzers need to return a TokenStream
public TokenStream tokenStream(String fieldName,

Reader reader)

TokenStreamQ

Tokenizer

TokenFilter

Reader > Tokenizer > TokenFilter [TokenFilter

—

12

Introduction to Information Retrieval

Tokenizers and TokenFilters

= Tokenizer = TokenFilter
= WhitespaceTokenizer = LowerCaseFilter
= KeywordTokenizer = StopFilter
= LetterTokenizer = PorterStemFilter

StandardTokenizer ASCIIFoldingFilter

StandardFilter

Introduction to Information Retrieval

IndexWriter construction

// Deprecated

IndexWriter(Directory d,
Analyzer a, // default analyzer
IndexWriter.MaxFieldLength mfl);

I/ Preferred
IndexWriter(Directory d,
IndexWriterConfig c);

13

Introduction to Information Retrieval

Creating an IndexWriter

import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.store.Directory;
import org.apache.lucene.analysis.standard.StandardAnalyzer;

private IndexWriter writer;

public Indexer(String indexDir) throws IOException {
Directory dir = FSDirectory.open(new File(indexDir));
writer = new IndexWriter(
dir,
new StandardAnalyzer(Version.LUCENE_30),
true,
IndexWriter.MaxFieldLength.UNLIMITED);

Introduction to Information Retrieval

Core indexing classes

= Document
= Represents a collection of named Fields.

= Text in these Fields are indexed.

= Field

= Note: Lucene Fields can represent both “fields” and
“zones” as described in the textbook

14

Introduction to Information Retrieval

A Document contains Fields

import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;

protected Document getDocument(File f) throws Exception {
Document doc = new Documenty();
doc.add(new Field("contents”, new FileReader(f)))
doc.add(new Field("filename”,
f.getName(),
Field.Store.YES,
Field.Index.NOT_ANALYZED));
doc.add(new Field("fullpath”,
f.getCanonicalPath(),
Field.Store.YES,
Field.Index.NOT_ANALYZED));
return doc;

}

Introduction to Information Retrieval

Index a Document with IndexWriter

private IndexWriter writer;

private void indexFile(File f) throws
Exception {
Document doc = getDocument(f);
writer.addDocument(doc);

15

Introduction to Information Retrieval

Indexing a directory

private IndexWriter writer;

public int index(String dataDir,
FileFilter filter)
throws Exception {
File[] files = new File(dataDir).listFiles();
for (File f: files) {

if (... &&
(filter == null || filter.accept(f))) {
indexFile(f);

}

}

return writer.numDocs();

Introduction to Information Retrieval

Closing the IndexWriter

private IndexWriter writer;

public void close() throws IOException {
writer.close();

16

Adding/deleting Documents to/from an

IndexWriter

void addDocument(Document d);
void addDocument(Document d, Analyzer a);

Important: Need to ensure that Analyzers used at indexing time
are consistent with Analyzers used at searching time

// deletes docs containing term or matching
/I query. The term version is useful for

// deleting one document.

void deleteDocuments(Term term);

void deleteDocuments(Query query);

Introduction to Information Retrieval

Index format

= Each Lucene index consists of one or more segments
= Asegment is a standalone index for a subset of documents
= All segments are searched

= A segment is created whenever IndexWriter flushes
adds/deletes

= Periodically, IndexWriter will merge a set of
segments into a single segment
= Policy specified by a MergePolicy
= You can explicitly invoke optimize() to merge
segments

Introduction to Information Retrieval

Basic merge policy

= Segments are grouped into levels

= Segments within a group are roughly equal size (in
log space)

= Once a level has enough segments, they are merged
into a segment at the next level up

Introduction to Information Retrieval

Core searching classes

= IndexSearcher
= Central class that exposes several search methods on an index
= Query

= Abstract query class. Concrete subclasses represent specific
types of queries, e.g., matching terms in fields, boolean
gueries, phrase queries, ...

= QueryParser

= Parses a textual representation of a query into a Query
instance

18

Introduction to Information Retrieval

Creating an IndexSearcher

import org.apache.lucene.search.IndexSearcher;

public static void search(String indexDir,
String q)
throws IOException, ParseException {
Directory dir = FSDirectory.open(
new File(indexDir));
IndexSearcher is = new IndexSearcher(dir);

Introduction to Information Retrieval

Query and QueryParser

import org.apache.lucene.search.Query;
import org.apache.lucene.queryParser.QueryParser;

public static void search(String indexDir, String q)
throws IOException, ParseException

QueryParser parser =
new QueryParser(Version.LUCENE_30,
"contents”,
new StandardAnalyzer(
Version.LUCENE_30));
Query query = parser.parse(q);

19

Introduction to Information Retrieval

Core searching classes (contd.)

= TopDocs

= Contains references to the top documents returned by a
search

= ScoreDoc
= Represents a single search result

Introduction to Information Retrieval

search() returns TopDocs

import org.apache.lucene.search.TopDocs;

public static void search(String indexDir,
String q)
throws IOException, ParseException
IndexSearcheris = ...;

Query query = ...;

TopDocs hits = is.search(query, 10);

20

Introduction to Information Retrieval

TopDocs contain ScoreDocs

import org.apache.lucene.search.ScoreDoc;

public static void search(String indexDir, String q)
throws IOException, ParseException

IndexSearcher is = ...;
TopDocs hits = ..;
for(ScoreDoc scoreDoc : hits.scoreDocs) {

Document doc = is.doc(scoreDoc.doc);
System.out.printin(doc.get("fullpath"));

Introduction to Information Retrieval

Closing IndexSearcher

public static void search(String indexDir,
String q)
throws IOException, ParseException

IndexSearcheris = ...;

is.close();

21

Introduction to Information Retrieval

IndexSearcher

= Constructor:

= IndexSearcher(Directory d);
= deprecated

Introduction to Information Retrieval

IndexReader

Query —{ |ndexSearcher —— TopDocs

v

IndexReader

v

Directory

Introduction to Information Retrieval

IndexSearcher

= Constructor:
= IndexSearcher(Directory d);
= deprecated

= IndexSearcher(IndexReader r);

= Construct an IndexReader with static method
IndexReader.open(dir)

Introduction to Information Retrieval

Searching a changing index

Directory dir = FSDirectory.open(...);
IndexReader reader = IndexReader.open(dir);
IndexSearcher searcher = new IndexSearcher(reader);

Above reader does not reflect changes to the index unless you reopen it.
Reopening is more resource efficient than opening a new IndexReader.

IndexReader newReader = reader.reopen();
If (reader != newReader) {

reader.close();

reader = newReader;

searcher = new IndexSearcher(reader);

23

Introduction to Information Retrieval

Near-real-time search

IndexWriter writer = ...;
IndexReader reader = writer.getReader();
IndexSearcher searcher = new IndexSearcher(reader);

Now let us say there’s a change to the index using writer

I/ reopen() and getReader() force writer to flush
IndexReader newReader = reader.reopen();
if (reader != newReader) {

reader.close();

reader = newReader;

searcher = new IndexSearcher(reader);

Introduction to Information Retrieval

IndexSearcher

= Methods
= TopDocs search(Query q, int n);
= Document doc(int docID);

24

Introduction to Information Retrieval

QueryParser

= Constructor

= QueryParser(Version matchVersion,
String defaultField,
Analyzer analyzer);

= Parsing methods

= Query parse(String query) throws
ParseException;

= ...and many more

Introduction to Information Retrieval

QueryParser syntax examples
e e s T—

java Contains the term java in the default field

java junit Contains the term java or junit or both in the default
java OR junit field (the default operator can be changed to AND)
+java +junit Contains both java and junit in the default field

java AND junit

title:ant Contains the term ant in the title field

title:extreme —subject:sports Contains extreme in the title and not sports in subject

(agile OR extreme) AND java Boolean expression matches

title:”junit in action” Phrase matches in title

title:”junit action”~5 Proximity matches (within 5) in title
java* Wildcard matches

java™ Fuzzy matches
lastmodified:[1/1/09 TO Range matches

12/31/09]

25

Introduction to Information Retrieval

Construct Querys programmatically

= TermQuery
= Constructed from a Term

= TermRangeQuery

= NumericRangeQuery
= PrefixQuery

= BooleanQuery

= PhraseQuery

= WildcardQuery

= FuzzyQuery

= MatchAllIDocsQuery

Lucene Query Parser
Example: queryParser.parse(“name:Spider-Man");

- good human entered queries, debugging,
IPC

- does text analysis and constructs
appropriate queries

- not all query types supported

Programmatic query construction
Example: new TermQuery(new
Term(“name”,”Spider-Man”))

. explicit, no escaping necessary
does not do text analysis for you

Document Indexing Analysis

|LexCorp BFG-9000)

[Wh1tespaceTokenlzer

| LexCoj!\ BFG-9000 \

Analysis & Search Relevancy

Query Analysis

‘ Lex corp bfg9000 ‘
u

[WhitespaceTokenizer]

E

| Lex \Lforp || bfg9000 |

(WordDelimiterFilter catenateWords=1 |
=

| Lex || corp || BFG ||9000]

LexCorp
ju EL

[LowercaseFilter]
=

‘ lex ‘ corp ‘ bfg H9000‘
lexcorp

[WordDelimiterFilter catenateWords=0]
=

‘ Lex H corp H bfg H9000‘

-
[LowercaseFilter]
m =

‘ lex H corp H bfg H9000‘

~ ~
A Match!

26

Introduction to Information Retrieval

TopDocs and ScoreDoc

= TopDocs methods
= Number of documents that matched the search
totalHits
= Array of ScoreDoc instances containing results
scoreDocs
= Returns best score of all matches
getMaxScore()
= ScoreDoc methods
= Documentid
doc

= Document score
Score

Introduction to Information Retrieval

Scoring

= Scoring function uses basic tf-idf scoring with
= Programmable boost values for certain fields in documents
= Length normalization
= Boosts for documents containing more of the query terms

= IndexSearcher provides an explain() method that
explains the scoring of a document

Introduction to Information Retrieval

Based on “Lucene in Action”

= By Michael McCandless, Erik Hatcher, Otis Gospodnetic

cene 4
CTI0

[LERF S
ik B

e o B |

Introduction to Information Retrieval

TEAOZ 12°° MaBrjpatog

Epwtnoelg?

YAKO Twv:

v'Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search (Stanford)

28

