
1

Introduction to Information RetrievalIntroduction to Information Retrieval

Introduction to

Information Retrieval

ΠΛΕ70: Ανάκτηση Πληροφορίας
Διδάσκουσα: Ευαγγελία Πιτουρά

Διάλεξη 10: Σταχυολόγηση Ιστού και Ευρετήρια. 

1

Introduction to Information RetrievalIntroduction to Information Retrieval

Τι θα δούμε σήμερα

2

1. Web crawlers or spiders (κεφ 20)

2. Personalization/Recommendations

3. Lucene



2

Introduction to Information RetrievalIntroduction to Information Retrieval

3

Query 

String

IR

System

Ranked

Documents

1. Page1

2. Page2

3. Page3

.

.

Document

corpus

Web Spider

Spiders (σταχυολόγηση ιστού)

Introduction to Information RetrievalIntroduction to Information Retrieval

Web Crawling (σταχυολόγηση ιστού)

Κεφ 20

4

Web crawler or spider

How hard and why?

� Getting the content of the documents is easier for many 

other IR systems.

� E.g., indexing all files on your hard disk: just do a recursive 

descent on your file system

� For web IR, getting the content of the documents takes 

longer, because of latency.

� But is that really a design/systems challenge?



3

Introduction to Information RetrievalIntroduction to Information Retrieval

Βασική λειτουργία

� Begin with known “seed” URLs

� Fetch and parse them

� Extract URLs they point to

� Place the extracted URLs on a queue

� Fetch each URL on the queue and 

repeat

κεφ. 20.2

5

Introduction to Information RetrievalIntroduction to Information Retrieval

Crawling picture

Web

URLs frontier

Unseen Web

Seed
pages

URLs crawled
and parsed

Κεφ. 20.2

6



4

Introduction to Information RetrievalIntroduction to Information Retrieval

URL frontier

Κεφ. 20.1.1

7

Introduction to Information RetrievalIntroduction to Information Retrieval

Simple picture – complications

� Web crawling isn’t feasible with one machine

� All of the above steps distributed

� Malicious pages

� Spam pages 

� Spider traps – incl dynamically generated

� Even non-malicious pages pose challenges

� Latency/bandwidth to remote servers vary

� Webmasters’ stipulations

� How “deep” should you crawl a site’s URL hierarchy?

� Site mirrors and duplicate pages

� Politeness – don’t hit a server too often

κεφ. 20.1.1

8



5

Introduction to Information RetrievalIntroduction to Information Retrieval

Simple picture – complications

κεφ. 20.1.1

9

Magnitude of the problem

To fetch 20,000,000,000 pages in one month . . .

we need to fetch almost 8000 pages per second!

� Actually: many more since many of the pages we 

attempt to crawl will be duplicates, unfetchable, 

spam etc.

Introduction to Information RetrievalIntroduction to Information Retrieval

What any crawler must do

� Be Polite: Respect implicit and explicit 

politeness considerations

� Only crawl allowed pages

� Respect robots.txt (more on this shortly)

� Be Robust: Be immune to spider traps and 

other malicious behavior from web servers 

(very large pages, very large websites, 

dynamic pages etc)

Κεφ. 20.1.1

10



6

Introduction to Information RetrievalIntroduction to Information Retrieval

What any crawler should do

� Be capable of distributed operation: designed to 

run on multiple distributed machines

� Be scalable: designed to increase the crawl rate 

by adding more machines

� Performance/efficiency: permit full use of 

available processing and network resources

Κεφ. 20.1.1

11

Introduction to Information RetrievalIntroduction to Information Retrieval

What any crawler should do

� Fetch pages of “higher quality” first

� Continuous operation: Continue fetching 

fresh copies of a previously fetched page

� Extensible: Adapt to new data formats, 

protocols

Κεφ. 20.1.1

12



7

Introduction to Information RetrievalIntroduction to Information Retrieval

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

Κεφ. 20.1.1

13

Introduction to Information RetrievalIntroduction to Information Retrieval

URL frontier

� Can include multiple pages from the same 

host

� Must avoid trying to fetch them all at the 

same time

� Must try to keep all crawling threads busy

Κεφ. 20.2

14



8

Introduction to Information RetrievalIntroduction to Information Retrieval

Processing steps in crawling

� Pick a URL from the frontier

� Fetch the document at the URL

� Parse the URL

� Extract links from it to other docs (URLs)

� Check if URL has content already seen

� If not, add to indexes

� For each extracted URL

� Ensure it passes certain URL filter tests

� Check if it is already in the frontier (duplicate URL 

elimination)

E.g., only crawl .edu, 
obey robots.txt, etc.

Which one?

Κεφ. 20.2.1

15

Introduction to Information RetrievalIntroduction to Information Retrieval

Explicit and implicit politeness

� Explicit politeness: specifications from 

webmasters on what portions of site can 

be crawled

� robots.txt

� Implicit politeness: even with no 

specification, avoid hitting any site too 

often

Sec. 20.2

16



9

Introduction to Information RetrievalIntroduction to Information Retrieval

Robots.txt

� Protocol for giving spiders (“robots”) limited 

access to a website, originally from 1994

� www.robotstxt.org/wc/norobots.html

� Website announces its request on what can(not) 

be crawled

� For a server, create a file /robots.txt

� This file specifies access restrictions

Κεφ. 20.2.1

17

Introduction to Information RetrievalIntroduction to Information Retrieval

Robots.txt example

� No robot should visit any URL starting with 

"/yoursite/temp/", except the robot called 

“searchengine": 

User-agent: *

Disallow: /yoursite/temp/ 

User-agent: searchengine

Disallow:

Κεφ. 20.2.1

18



10

Introduction to Information RetrievalIntroduction to Information Retrieval

Βασική αρχιτεκτονική του σταχυολογητή

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

Κεφ. 20.2.1

19

Introduction to Information RetrievalIntroduction to Information Retrieval

DNS (Domain Name Server)

� A lookup service on the internet

� Given a URL, retrieve its IP address

� Service provided by a distributed set of servers – thus, 

lookup latencies can be high (even seconds)

� Common OS implementations of DNS lookup are 

blocking: only one outstanding request at a time

� Solutions

� DNS caching

� Batch DNS resolver – collects requests and sends them out 

together

Κεφ. 20.2.2

20



11

Introduction to Information RetrievalIntroduction to Information Retrieval

Parsing: URL normalization

� When a fetched document is parsed, some of the 

extracted links are relative URLs

� E.g., http://en.wikipedia.org/wiki/Main_Page has a 

relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL 
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

� During parsing, must normalize (expand) such relative 

URLs

Κεφ. 20.2.1

21

Introduction to Information RetrievalIntroduction to Information Retrieval

Content seen?

� Duplication is widespread on the web

� If the page just fetched is already in 

the index, do not further process it

� This is verified using document 

fingerprints or shingles

Κεφ. 20.2.1

22



12

Introduction to Information RetrievalIntroduction to Information Retrieval

Filters and robots.txt 

� Filters – regular expressions for URL’s to 

be crawled/not

� Once a robots.txt file is fetched from a 

site, need not fetch it repeatedly

� Doing so burns bandwidth, hits web 

server

� Cache robots.txt files

Κεφ. 20.2.1

23

Introduction to Information RetrievalIntroduction to Information Retrieval

Duplicate URL elimination

� For a non-continuous (one-shot) crawl, 

test to see if an extracted+filtered URL has 

already been passed to the frontier

� For a continuous crawl – see details of 

frontier implementation

Κεφ. 20.2.1

24



13

Introduction to Information RetrievalIntroduction to Information Retrieval

Distributing the crawler

� Run multiple crawl threads, under different 

processes – potentially at different nodes

� Geographically distributed nodes

Κεφ. 20.2.1

25

Introduction to Information RetrievalIntroduction to Information Retrieval

Distributing the crawler

Κεφ. 20.2.1

26



14

Introduction to Information RetrievalIntroduction to Information Retrieval

Distributing the crawler

� Partition hosts being crawled into nodes

� Hash used for partition

� How do these nodes communicate and share 

URLs?

Κεφ. 20.2.1

27

Introduction to Information RetrievalIntroduction to Information Retrieval

Communication between nodes

� Output of the URL filter at each node is sent to the 

Dup URL Eliminator of the appropriate node

WWW

Fetch

DNS

Parse

Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

Host
splitter

To
other
nodes

From
other
nodes

Κεφ. 20.2.1

28



15

Introduction to Information RetrievalIntroduction to Information Retrieval

URL frontier: two main considerations

� Politeness: do not hit a web server too frequently

� Freshness: crawl some pages more often than 
others

� E.g., pages (such as News sites) whose content 
changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of 
a page go to its own site, creating a burst of 
accesses to that site.)

Κεφ. 20.2.3

29

Introduction to Information RetrievalIntroduction to Information Retrieval

Politeness – challenges

� Even if we restrict only one thread to fetch 

from a host, can hit it repeatedly

� Common heuristic: insert time gap 

between successive requests to a host that 

is >> time for most recent fetch from that 

host

Κεφ. 20.2.3

30



16

Introduction to Information RetrievalIntroduction to Information Retrieval

Mercator URL frontier

Goals: ensure that 

1. only one connection is open at a time to any 

host; 

2. a waiting time of a few seconds occurs 

between successive requests

3. high-priority pages are crawled preferentially.

Sec. 20.2.3

31

Introduction to Information RetrievalIntroduction to Information Retrieval

Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

URL frontier: Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

32



17

Introduction to Information RetrievalIntroduction to Information Retrieval

Mercator URL frontier

URLs flow in from the top into the frontier

� Front queues manage prioritization

� Back queues enforce politeness

� Each queue is FIFO

Sec. 20.2.3

33

Introduction to Information RetrievalIntroduction to Information Retrieval

Front queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3

34



18

Introduction to Information RetrievalIntroduction to Information Retrieval

Front queues

� Prioritizer assigns to URL an integer priority 

between 1 and K

� Appends URL to corresponding queue

� Heuristics for assigning priority

� Refresh rate sampled from previous crawls

� Application-specific (e.g., “crawl news sites more 

often”)

� Page-rank based

Sec. 20.2.3

35

Introduction to Information RetrievalIntroduction to Information Retrieval

Biased front queue selector

� When a back queue requests a URL (in a 

sequence to be described): picks a front queue

from which to pull a URL

� This choice can be round-robin biased to 

queues of higher priority, or some more 

sophisticated variant

� Can be randomized

Sec. 20.2.3

36



19

Introduction to Information RetrievalIntroduction to Information Retrieval

Back queue invariants

� Each back queue is kept non-empty while the 

crawl is in progress

� Each back queue only contains URLs from a 

single host

� Maintain a table from hosts to back queues

Host name Back queue

… 3

1

B

Sec. 20.2.3

37

Introduction to Information RetrievalIntroduction to Information Retrieval

Back queues

Biased front queue selector
Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

38



20

Introduction to Information RetrievalIntroduction to Information Retrieval

Back queue heap

� One entry for each back queue

� The entry is the earliest time te at which the host 

corresponding to the back queue can be hit again

� This earliest time is determined from

� Last access to that host

� Any time buffer heuristic we choose

Sec. 20.2.3

39

Introduction to Information RetrievalIntroduction to Information Retrieval

URL processing

A crawler thread seeking a URL to crawl:

� Extracts the root of the heap

� If necessary waits until tl

� Fetches URL at head of corresponding back queue q

(look up from table)

Sec. 20.2.3

40



21

Introduction to Information RetrievalIntroduction to Information Retrieval

URL processing

After fetching the URL

� Checks if (back)queue q is now empty – if so, pulls a 

URL v from front queues

� If there’s already a back queue for v’s host, append v to q

and pull another URL from front queues, repeat

� Else add v to q

� When q is non-empty, create heap entry for it

Sec. 20.2.3

41

Introduction to Information RetrievalIntroduction to Information Retrieval

Number of back queues B

� Keep all threads busy while respecting politeness

� Mercator recommendation: three times as many 

back queues as crawler threads

Sec. 20.2.3

42



22

DISTRIBUTED INDEXES

Introduction to Information RetrievalIntroduction to Information Retrieval

Κατανομή των Ευρετηρίων

How to distribute the term index across a large 

computer cluster that supports querying. 

Two alternatives index implementations 

� partitioning by terms or global index organization, 

and

� partitioning by documents or local index 

organization. 

Sec. 20.2.3

44



23

Introduction to Information RetrievalIntroduction to Information Retrieval

Κατανομή βάσει Όρων

� Index terms partitioned into subsets, 

� Each subset resides at a node. 

� Along with the terms at a node, we keep their postings 

A query is routed to the nodes corresponding to its query 

terms. 

In principle, this allows greater concurrency since a 

stream of queries with different query terms would hit 

different sets of machines.

Sec. 20.2.3

45

Introduction to Information RetrievalIntroduction to Information Retrieval

Κατανομή βάσει Εγγράφων

� Documents partitioned into subsets

� Each subset resides in a node

� Each node contains the index for a subset of all 

documents. 

Α query is distributed to all nodes, with the results from 

various nodes being merged before presentation to the 

user.

Sec. 20.2.3

46



24

Introduction to Information RetrievalIntroduction to Information Retrieval

� In principle, index partition allows greater 

concurrency, since a stream of queries with different 

query terms would hit different sets of machines.

� In practice, partitioning indexes by vocabulary terms 

turns out to be non-trivial. 

Sec. 20.2.3

47

Κατανομή βάσει Όρων: μειονεκτήματα

Introduction to Information RetrievalIntroduction to Information Retrieval

� Multi-word queries require the sending of long 

postings lists between sets of nodes for merging, and 

the cost of this can outweigh the greater concurrency.

� Load balancing the partition is governed not by an a 

priori analysis of relative term frequencies, but rather 

by the distribution of query terms and their co-

occurrences, which can drift with time or exhibit 

sudden bursts. 

� Μore difficult implementation.

Sec. 20.2.3

48

Κατανομή βάσει Όρων: μειονεκτήματα



25

Introduction to Information RetrievalIntroduction to Information Retrieval

More common 

� trades more local disk seeks for less inter-node 

communication. 

� One difficulty: global statistics used in scoring - such as 

idf –

� must be computed across the entire document collection 

even though the index at any single node only contains a 

subset of the documents. 

� Computed by distributed ̀ `background'' processes that 

periodically refresh the node indexes with fresh global 

statistics.

Sec. 20.2.3

49

Κατανομή βάσει Εγγράφων

Introduction to Information RetrievalIntroduction to Information Retrieval

How to distributed documents to nodes?

�Hash of each URL to nodes 

At query time, 

the query is broadcast to each of the nodes, each node 

sends each top k results which are merged to find the 

top k documents for the query

Sec. 20.2.3

50

Μέθοδος Κατανομής Εγγράφων



26

Introduction to Information RetrievalIntroduction to Information Retrieval

A common implementation heuristic: 

Partition the document collection into 

� indexes of documents that are more likely to score 

highly on most queries and 

� low-scoring indexes with the remaining documents

Only search the low-scoring indexes when there are too 

few matches in the high-scoring indexes

Sec. 20.2.3

51

Μέθοδος Κατανομής Εγγράφων

CONNECTIVITY SERVERS



27

Introduction to Information RetrievalIntroduction to Information Retrieval

Connectivity Server

� Support for fast queries on the web graph

� Which URLs point to a given URL?

� Which URLs does a given URL point to?

Stores mappings in memory from

� URL to outlinks, URL to inlinks

� Applications

� Crawl control

� Web graph analysis

� Connectivity, crawl optimization

� Link analysis

Κεφ. 20.4

Introduction to Information RetrievalIntroduction to Information Retrieval

Connectivity Server

Κεφ. 20.4

� Assume that each web page is represented by a 
unique integer

� Maintain An adjacency table:  a row for each web 
page, with the rows ordered by the 
corresponding integers. 

� One for pages link to and one for pages linked to 
by

� Focus on the former



28

Introduction to Information RetrievalIntroduction to Information Retrieval

Boldi and Vigna 2004

� http://www2004.org/proceedings/docs/1p595.pdf

� Webgraph – set of algorithms and a java 

implementation

� Fundamental goal – maintain node adjacency lists 

in memory

� For this, compressing the adjacency lists is the 

critical component

Κεφ. 20.4

Introduction to Information RetrievalIntroduction to Information Retrieval

Adjacency lists

� The set of neighbors of a node

� Assume each URL represented by an integer

� E.g., for a 4 billion page web, need 32 bits per 

node

� Naively, this demands 64 bits to represent each 

hyperlink

Κεφ. 20.4



29

Introduction to Information RetrievalIntroduction to Information Retrieval

Adjaceny list compression

� Properties exploited in compression:

� Similarity (between lists)
� Many rows have many entries in common. Thus, if we explicitly 

represent a prototype row for several similar rows, the remainder 

can be succinctly expressed in terms of the prototypical row.

� Locality (many links from a page go to 

“nearby” pages)
� By encoding the destination of a link, we can often use small integers and 

thereby save space.

� Use gap encodings in sorted lists
� store the offset from the previous entry in the row

Κεφ. 20.4

Introduction to Information RetrievalIntroduction to Information Retrieval

Storage

� Boldi/Vigna get down to an average of ~3 

bits/link

� (URL to URL edge)

� How?

Why is this remarkable?

Sec. 20.4



30

Introduction to Information RetrievalIntroduction to Information Retrieval

Main ideas of Boldi/Vigna

� Consider lexicographically ordered list of all URLs, 

e.g., 

� www.stanford.edu/alchemy

� www.stanford.edu/biology

� www.stanford.edu/biology/plant

� www.stanford.edu/biology/plant/copyright

� www.stanford.edu/biology/plant/people

� www.stanford.edu/chemistry

Sec. 20.4

Introduction to Information RetrievalIntroduction to Information Retrieval

Boldi/Vigna

� Each of these URLs has an adjacency list

� Main idea: due to templates, the adjacency list of a 

node is similar to one of the 7 preceding URLs in 

the lexicographic ordering

� Express adjacency list in terms of one of these

� E.g., consider these adjacency lists

� 1, 2, 4, 8, 16, 32, 64

� 1, 4, 9, 16, 25, 36, 49, 64

� 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

� 1, 4, 8, 16, 25, 36, 49, 64
Encode as (-2), remove 9, add 8

Why 7?

Sec. 20.4



31

Introduction to Information RetrievalIntroduction to Information Retrieval

ΤΕΛΟΣ α’ μέρους 11ου Μαθήματος

Ερωτήσεις?

Χρησιμοποιήθηκε κάποιο υλικό των:

�Pandu Nayak and Prabhakar Raghavan, CS276:Information Retrieval and Web Search (Stanford)

�Hinrich Schütze and Christina Lioma, Stuttgart IIR class

61


