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Introduction to

Information Retrieval

ΠΛΕ70: Ανάκτηση Πληροφορίας
Διδάσκουσα: Ευαγγελία Πιτουρά

Διάλεξη 10: Σταχυολόγηση Ιστού και Ευρετήρια. 
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Τι θα δούμε σήμερα
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1. Web crawlers or spiders (κεφ 20)

2. Personalization/Recommendations

3. Lucene
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Web Crawling (σταχυολόγηση ιστού)

Κεφ 20
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Web crawler or spider

How hard and why?

� Getting the content of the documents is easier for many 

other IR systems.

� E.g., indexing all files on your hard disk: just do a recursive 

descent on your file system

� For web IR, getting the content of the documents takes 

longer, because of latency.

� But is that really a design/systems challenge?
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Βασική λειτουργία

� Begin with known “seed” URLs

� Fetch and parse them

� Extract URLs they point to

� Place the extracted URLs on a queue

� Fetch each URL on the queue and 

repeat

κεφ. 20.2
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Κεφ. 20.2
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URL frontier

Κεφ. 20.1.1
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Simple picture – complications

� Web crawling isn’t feasible with one machine

� All of the above steps distributed

� Malicious pages

� Spam pages 

� Spider traps – incl dynamically generated

� Even non-malicious pages pose challenges

� Latency/bandwidth to remote servers vary

� Webmasters’ stipulations

� How “deep” should you crawl a site’s URL hierarchy?

� Site mirrors and duplicate pages

� Politeness – don’t hit a server too often

κεφ. 20.1.1

8
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Simple picture – complications

κεφ. 20.1.1

9

Magnitude of the problem

To fetch 20,000,000,000 pages in one month . . .

we need to fetch almost 8000 pages per second!

� Actually: many more since many of the pages we 

attempt to crawl will be duplicates, unfetchable, 

spam etc.
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What any crawler must do

� Be Polite: Respect implicit and explicit 

politeness considerations

� Only crawl allowed pages

� Respect robots.txt (more on this shortly)

� Be Robust: Be immune to spider traps and 

other malicious behavior from web servers 

(very large pages, very large websites, 

dynamic pages etc)

Κεφ. 20.1.1

10
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What any crawler should do

� Be capable of distributed operation: designed to 

run on multiple distributed machines

� Be scalable: designed to increase the crawl rate 

by adding more machines

� Performance/efficiency: permit full use of 

available processing and network resources

Κεφ. 20.1.1
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What any crawler should do

� Fetch pages of “higher quality” first

� Continuous operation: Continue fetching 

fresh copies of a previously fetched page

� Extensible: Adapt to new data formats, 

protocols

Κεφ. 20.1.1

12
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Updated crawling picture

URLs crawled
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URL frontier

Crawling thread

Κεφ. 20.1.1
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URL frontier

� Can include multiple pages from the same 

host

� Must avoid trying to fetch them all at the 

same time

� Must try to keep all crawling threads busy

Κεφ. 20.2

14
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Processing steps in crawling

� Pick a URL from the frontier

� Fetch the document at the URL

� Parse the URL

� Extract links from it to other docs (URLs)

� Check if URL has content already seen

� If not, add to indexes

� For each extracted URL

� Ensure it passes certain URL filter tests

� Check if it is already in the frontier (duplicate URL 

elimination)

E.g., only crawl .edu, 
obey robots.txt, etc.

Which one?

Κεφ. 20.2.1
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Explicit and implicit politeness

� Explicit politeness: specifications from 

webmasters on what portions of site can 

be crawled

� robots.txt

� Implicit politeness: even with no 

specification, avoid hitting any site too 

often

Sec. 20.2

16



9

Introduction to Information RetrievalIntroduction to Information Retrieval

Robots.txt

� Protocol for giving spiders (“robots”) limited 

access to a website, originally from 1994

� www.robotstxt.org/wc/norobots.html

� Website announces its request on what can(not) 

be crawled

� For a server, create a file /robots.txt

� This file specifies access restrictions

Κεφ. 20.2.1
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Robots.txt example

� No robot should visit any URL starting with 

"/yoursite/temp/", except the robot called 

“searchengine": 

User-agent: *

Disallow: /yoursite/temp/ 

User-agent: searchengine

Disallow:

Κεφ. 20.2.1

18
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Βασική αρχιτεκτονική του σταχυολογητή
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Κεφ. 20.2.1
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DNS (Domain Name Server)

� A lookup service on the internet

� Given a URL, retrieve its IP address

� Service provided by a distributed set of servers – thus, 

lookup latencies can be high (even seconds)

� Common OS implementations of DNS lookup are 

blocking: only one outstanding request at a time

� Solutions

� DNS caching

� Batch DNS resolver – collects requests and sends them out 

together

Κεφ. 20.2.2

20
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Parsing: URL normalization

� When a fetched document is parsed, some of the 

extracted links are relative URLs

� E.g., http://en.wikipedia.org/wiki/Main_Page has a 

relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL 
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

� During parsing, must normalize (expand) such relative 

URLs

Κεφ. 20.2.1
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Content seen?

� Duplication is widespread on the web

� If the page just fetched is already in 

the index, do not further process it

� This is verified using document 

fingerprints or shingles

Κεφ. 20.2.1

22
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Filters and robots.txt 

� Filters – regular expressions for URL’s to 

be crawled/not

� Once a robots.txt file is fetched from a 

site, need not fetch it repeatedly

� Doing so burns bandwidth, hits web 

server

� Cache robots.txt files

Κεφ. 20.2.1
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Duplicate URL elimination

� For a non-continuous (one-shot) crawl, 

test to see if an extracted+filtered URL has 

already been passed to the frontier

� For a continuous crawl – see details of 

frontier implementation

Κεφ. 20.2.1

24
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Distributing the crawler

� Run multiple crawl threads, under different 

processes – potentially at different nodes

� Geographically distributed nodes

Κεφ. 20.2.1
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Distributing the crawler

Κεφ. 20.2.1

26
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Distributing the crawler

� Partition hosts being crawled into nodes

� Hash used for partition

� How do these nodes communicate and share 

URLs?

Κεφ. 20.2.1
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Communication between nodes

� Output of the URL filter at each node is sent to the 

Dup URL Eliminator of the appropriate node
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Κεφ. 20.2.1
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URL frontier: two main considerations

� Politeness: do not hit a web server too frequently

� Freshness: crawl some pages more often than 
others

� E.g., pages (such as News sites) whose content 
changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of 
a page go to its own site, creating a burst of 
accesses to that site.)

Κεφ. 20.2.3
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Politeness – challenges

� Even if we restrict only one thread to fetch 

from a host, can hit it repeatedly

� Common heuristic: insert time gap 

between successive requests to a host that 

is >> time for most recent fetch from that 

host

Κεφ. 20.2.3

30
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Mercator URL frontier

Goals: ensure that 

1. only one connection is open at a time to any 

host; 

2. a waiting time of a few seconds occurs 

between successive requests

3. high-priority pages are crawled preferentially.

Sec. 20.2.3

31
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Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

URL frontier: Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

32
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Mercator URL frontier

URLs flow in from the top into the frontier

� Front queues manage prioritization

� Back queues enforce politeness

� Each queue is FIFO

Sec. 20.2.3

33
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Front queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3

34
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Front queues

� Prioritizer assigns to URL an integer priority 

between 1 and K

� Appends URL to corresponding queue

� Heuristics for assigning priority

� Refresh rate sampled from previous crawls

� Application-specific (e.g., “crawl news sites more 

often”)

� Page-rank based

Sec. 20.2.3

35
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Biased front queue selector

� When a back queue requests a URL (in a 

sequence to be described): picks a front queue

from which to pull a URL

� This choice can be round-robin biased to 

queues of higher priority, or some more 

sophisticated variant

� Can be randomized

Sec. 20.2.3

36
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Back queue invariants

� Each back queue is kept non-empty while the 

crawl is in progress

� Each back queue only contains URLs from a 

single host

� Maintain a table from hosts to back queues

Host name Back queue

… 3

1

B

Sec. 20.2.3
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Back queues

Biased front queue selector
Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

38
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Back queue heap

� One entry for each back queue

� The entry is the earliest time te at which the host 

corresponding to the back queue can be hit again

� This earliest time is determined from

� Last access to that host

� Any time buffer heuristic we choose

Sec. 20.2.3
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URL processing

A crawler thread seeking a URL to crawl:

� Extracts the root of the heap

� If necessary waits until tl

� Fetches URL at head of corresponding back queue q

(look up from table)

Sec. 20.2.3

40
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URL processing

After fetching the URL

� Checks if (back)queue q is now empty – if so, pulls a 

URL v from front queues

� If there’s already a back queue for v’s host, append v to q

and pull another URL from front queues, repeat

� Else add v to q

� When q is non-empty, create heap entry for it

Sec. 20.2.3

41
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Number of back queues B

� Keep all threads busy while respecting politeness

� Mercator recommendation: three times as many 

back queues as crawler threads

Sec. 20.2.3

42
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DISTRIBUTED INDEXES
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Κατανομή των Ευρετηρίων

How to distribute the term index across a large 

computer cluster that supports querying. 

Two alternatives index implementations 

� partitioning by terms or global index organization, 

and

� partitioning by documents or local index 

organization. 

Sec. 20.2.3

44
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Κατανομή βάσει Όρων

� Index terms partitioned into subsets, 

� Each subset resides at a node. 

� Along with the terms at a node, we keep their postings 

A query is routed to the nodes corresponding to its query 

terms. 

In principle, this allows greater concurrency since a 

stream of queries with different query terms would hit 

different sets of machines.

Sec. 20.2.3
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Κατανομή βάσει Εγγράφων

� Documents partitioned into subsets

� Each subset resides in a node

� Each node contains the index for a subset of all 

documents. 

Α query is distributed to all nodes, with the results from 

various nodes being merged before presentation to the 

user.

Sec. 20.2.3

46
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� In principle, index partition allows greater 

concurrency, since a stream of queries with different 

query terms would hit different sets of machines.

� In practice, partitioning indexes by vocabulary terms 

turns out to be non-trivial. 

Sec. 20.2.3

47

Κατανομή βάσει Όρων: μειονεκτήματα
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� Multi-word queries require the sending of long 

postings lists between sets of nodes for merging, and 

the cost of this can outweigh the greater concurrency.

� Load balancing the partition is governed not by an a 

priori analysis of relative term frequencies, but rather 

by the distribution of query terms and their co-

occurrences, which can drift with time or exhibit 

sudden bursts. 

� Μore difficult implementation.

Sec. 20.2.3

48

Κατανομή βάσει Όρων: μειονεκτήματα
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More common 

� trades more local disk seeks for less inter-node 

communication. 

� One difficulty: global statistics used in scoring - such as 

idf –

� must be computed across the entire document collection 

even though the index at any single node only contains a 

subset of the documents. 

� Computed by distributed ̀ `background'' processes that 

periodically refresh the node indexes with fresh global 

statistics.

Sec. 20.2.3
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Κατανομή βάσει Εγγράφων
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How to distributed documents to nodes?

�Hash of each URL to nodes 

At query time, 

the query is broadcast to each of the nodes, each node 

sends each top k results which are merged to find the 

top k documents for the query

Sec. 20.2.3

50

Μέθοδος Κατανομής Εγγράφων
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A common implementation heuristic: 

Partition the document collection into 

� indexes of documents that are more likely to score 

highly on most queries and 

� low-scoring indexes with the remaining documents

Only search the low-scoring indexes when there are too 

few matches in the high-scoring indexes

Sec. 20.2.3

51

Μέθοδος Κατανομής Εγγράφων

CONNECTIVITY SERVERS



27

Introduction to Information RetrievalIntroduction to Information Retrieval

Connectivity Server

� Support for fast queries on the web graph

� Which URLs point to a given URL?

� Which URLs does a given URL point to?

Stores mappings in memory from

� URL to outlinks, URL to inlinks

� Applications

� Crawl control

� Web graph analysis

� Connectivity, crawl optimization

� Link analysis

Κεφ. 20.4
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Connectivity Server

Κεφ. 20.4

� Assume that each web page is represented by a 
unique integer

� Maintain An adjacency table:  a row for each web 
page, with the rows ordered by the 
corresponding integers. 

� One for pages link to and one for pages linked to 
by

� Focus on the former
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Boldi and Vigna 2004

� http://www2004.org/proceedings/docs/1p595.pdf

� Webgraph – set of algorithms and a java 

implementation

� Fundamental goal – maintain node adjacency lists 

in memory

� For this, compressing the adjacency lists is the 

critical component

Κεφ. 20.4
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Adjacency lists

� The set of neighbors of a node

� Assume each URL represented by an integer

� E.g., for a 4 billion page web, need 32 bits per 

node

� Naively, this demands 64 bits to represent each 

hyperlink

Κεφ. 20.4
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Adjaceny list compression

� Properties exploited in compression:

� Similarity (between lists)
� Many rows have many entries in common. Thus, if we explicitly 

represent a prototype row for several similar rows, the remainder 

can be succinctly expressed in terms of the prototypical row.

� Locality (many links from a page go to 

“nearby” pages)
� By encoding the destination of a link, we can often use small integers and 

thereby save space.

� Use gap encodings in sorted lists
� store the offset from the previous entry in the row

Κεφ. 20.4
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Storage

� Boldi/Vigna get down to an average of ~3 

bits/link

� (URL to URL edge)

� How?

Why is this remarkable?

Sec. 20.4
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Main ideas of Boldi/Vigna

� Consider lexicographically ordered list of all URLs, 

e.g., 

� www.stanford.edu/alchemy

� www.stanford.edu/biology

� www.stanford.edu/biology/plant

� www.stanford.edu/biology/plant/copyright

� www.stanford.edu/biology/plant/people

� www.stanford.edu/chemistry

Sec. 20.4
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Boldi/Vigna

� Each of these URLs has an adjacency list

� Main idea: due to templates, the adjacency list of a 

node is similar to one of the 7 preceding URLs in 

the lexicographic ordering

� Express adjacency list in terms of one of these

� E.g., consider these adjacency lists

� 1, 2, 4, 8, 16, 32, 64

� 1, 4, 9, 16, 25, 36, 49, 64

� 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

� 1, 4, 8, 16, 25, 36, 49, 64
Encode as (-2), remove 9, add 8

Why 7?

Sec. 20.4
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