
The host thread/process interface in ompi

VVD & the ompi team

March 2016
Versions: 5/2010, 4/2008, 1/2008, 5/2007, 12/2006.

Abstract

We describe in detail the thread/process interface in ort, the host
runtime library of ompi. This guide is targeted towards developers who
want to develop their own thread/process libraries and use them through
ompi.

1 Introduction

Since version 2.0.0, the runtime system of ompi has undergone a major reor-
ganization so as to allow support of attached OpenMP 4 devices. The entire
runtime system is implemented in runtime/ and consists of two major runtime
subsystems:

• the host subsystem which represents the traditional OpenMP runtime,
operating on the main system (host) processors/cores.

• the devices subsystem which consists of specialized modules that:

– provide runtime support for codes executing on attached devices

– serve as interfaces between the host runtime and the device runtimes.

This document refers to the host subsystem. Documentation regarding devices
and their corresponding interfaces is provided elsewhere.

ompi’s host runtime system (ort) is implemented in runtime/host/ (files
ort*.c). ort uses multiple execution entities (EEs) to control the execution
of OpenMP programs compiled by ompi. In earlier versions, the only type of
execution entity supported was threads. However, since V1.0.0, an EE can be
either a thread or a process. Apart from the EEs, no matter what their type is,
ort also employs locks and other related primitives, but :

it does not implement those primitives.

ort relies on an execution entity library (eelib) to provide those primitives.
All such libraries consist of at least two files: othr.c and ee.h, which lie in the
appropriate subdirectory of runtime/host/. For example, the default library
which is based on posix threads is in runtime/host/ee pthreads/ in ompi’s
source distribution.

1

When implementing a new eelib, one must choose a name for it (say foo),
create runtime/host/ee foo/ and provide ortconf.foo, othr.c and ee.h in
there. The library can be built into ompi by using:

./configure --with-ortlib=foo [plus any other options]

cd lib

make clean

make

make install

as explained in the README and doc/runtime.txt files shipped with ompi.
In the next sections we describe what ort expects from eelib and what

facilities ort provides to it.

2 What ort expects from eelib

ort expects basically few things from eelib:

1. A #define that states the type of EE provided.

2. Code that implements locks

3. Code that creates and joins EEs

Optionally, eelib may provide barriers (see Section 3.2) and tasks (see Sec-
tion 3.3). A couple more things required are discussed in Section 2.4.

2.1 The type of EE

In the top of ee.h, there must exist either

#define EE_TYPE_PROCESS

or

#define EE_TYPE_THREAD

If none is given, the EEs are assumed to be threads.

2.2 Locks

Regarding locks, the library must provide the following 5 self-explanatory func-
tions:

int othr_init_lock(othr_lock_t *lock, int kind);

int othr_destroy_lock(othr_lock_t *lock);

int othr_set_lock(othr_lock_t *lock);

int othr_unset_lock(othr_lock_t *lock);

int othr_test_lock(othr_lock_t *lock);

2

#define EETYPE THREAD

/* The data types */

typedef struct {

pthread_mutex_t lock, ilock;

pthread_cond_t cond;

pthread_t owner;

int count;

} nestlock_t;

typedef struct {

int type; /* normal/spin/nested */

union {

pthread_mutex_t normal; /* normal lock */

nestlock_t nest; /* nest lock */

pthread_spinlock_t spin; /* posix spin locks */

} data;

} othr_lock_t;

/* The functions */

extern int othr_init_lock(othr_lock_t *lock, int kind);

extern int othr_destroy_lock(othr_lock_t *lock);

extern int othr_set_lock(othr_lock_t *lock);

extern int othr_unset_lock(othr_lock_t *lock);

extern int othr_test_lock(othr_lock_t *lock);

Figure 1: Portion of an example ee.h. The 5 functions are implemented in
othr.c

The library must support three different kinds of locks, namely normal, nested
and spin locks. The first two are available to user OpenMP programs, while the
spin locks are used internally by ort. The actual kind of a lock is determined
upon its initialization, where the second argument of othr_init_lock() can
be one of ORT_LOCK_NORMAL, ORT_LOCK_NEST, ORT_LOCK_SPIN. However, the
library must provide a single type for all locks, ‘othr_lock_t’; obviously, this
must be a union. As a concrete example, for an eelib based on POSIX threads,
one could have the ee.h shown in Fig. 1.

2.3 Execution entities

For clarity, we will assume the library provides threads. For eelibs that provide
processes, the ‘othr_’ prefix should be changed to ‘oprc_’ in what follows.
There are just three functions that ort requires in order to manipulate EEs.

int othr_request(int numees, int level);

void othr_create (int numees, int level, void *arg, void **info);

void othr_waitall(void **info);

First of all, it is important to note that the sole EE that exists when the
application runs is called initial EE and it is not manipulated by the eelib.
Second, ort asks always for batches of EEs, so as to create a team of threads
using only one call to othr create().

When ort needs to create a team of EEs it follows the steps below:

3

1. It calls A = othr request(N,L) and asks for a specific number of EEs
(N). The second parameter (L) refers to the nesting level. The initial EE
is the only EE that is at level 0. The EEs created by the initial EE are
all at level 1. In general, the EEs created by any EE in level x (‘parent’
EE) will all belong to level x+ 1 (‘children’ EE).

othr request(N,L) should return an integer A indicating the number of
EEs that the threading library can provide, which may be less than N ; it
may even be 0. In fact, the pthreads1 library which used to ship with
earlier versions of ompi, works with only 1 nesting level. If any thread at
level > 0 calls othr request(), the library always returns 0.

2. It calls othr create(A,L,secret,&info). This is the actual function
that creates the team of A EEs. The number A returned by the call to
othr request() is assumed to be guaranteed, i.e. othr create() may
not create fewer threads or ort will break down. Similary, ort may not
ask for the creation of more/less than A threads.

The parameters passed include the nesting level (L is the same as in the
call to othr request()), plus an argument to be known by the threads
(secret—more on this in a while) and an info argument which will be
explained below.

Here comes the first crucial point: the threads that will be created by eelib
do not know the function they should execute. Thus the created threads must
execute an eelib-provided “driver” function, which in turn will execute the
unknown function through the following call1:

ort_ee_dowork(myid, secret);

where secret is what othr create() provided and myid is the id of the thread:

the ids of the threads in a team of A threads, must be 1, 2, . . . , A.

The id 0 is reserved for the parent of the team and should not be used for any
child. It is eelib’s responsibility to provide correct ids for the threads it creates.

This is almost all there is to it. Well, almost, since there is one more thing:
info, and this is the second and final crucial point. If eelib supports multiple
levels of threads, then it is almost certain that for each team it creates it must
do some kind of bookkeeping. Another thing that is also almost certain is that
the created threads will need some kind of access to this bookkeeping (e.g. they
might want to know who their parent is, they might need to have a shared
lock to modify team-specific data, etc.). This is the reason behind the info

parameter in the othr create(A,L,secret,&info) call.
ort maintains a specific variable for every thread that creates a team of

threads (i.e. for every thread that becomes a parent). This variable is info, is
declared as void* and is up to eelib to use it. Thus, eelib may for example

1Important: the call must be made in the context of the thread, i.e. nobody else may call
this on behalf of the thread in question.

4

allocate memory, put its bookkeeping stuff there, and before returning from
othr create() make *info point to the allocated block.

Any child may access this info block in the parent of the team using:

stuff = ort_get_parent_othr_info(); /* Returns void* */

One thing that is good to know is that it is guaranteed by ort that the first time
a thread becomes a parent, its info variable is initialized to NULL. After that,
whether the same thread creates another team or not, ort does not touch this
info variable at all. Although, it may not seem important, it might actually
prove useful if eelib needs to utilize some kind of memory recycler, in order to
avoid repeated malloc()’s and free()’s.

The last function that ort requires is othr waitall(), for joining threads.
It is only called by the parent of the created team; this function should wait
until all children have finished their work. Upon return from this call, the team
seizes to exist and the parent continues its way. The function is called with
a single parameter, a pointer to the info variable that is associated with the
parent.

If in othr create() eelib does indeed allocate a memory block and makes
*info point to the allocated block, there should be a way to free() the allo-
cated memory when the team finishes its work and the threads are done. The
only place that this is possible is in othr waitall().

2.4 The rest of the required functions

eelib should implement another 5 functions, as listed below:

int othr_initialize(int *argc, char ***argv,

ort_icvs_t *icv, ort_caps_t *caps);

void othr_finalize(int exitvalue);

int othr_yield(void);

int othr_key_create(othr_key_t *key, void (*destructor)(void *));

void *othr_getspecific(othr_key_t key);

int othr_setspecific(othr_key_t key, const void *value);

Starting from the bottom, the last 3 of them should behave exactly as the
corresponding POSIX threads functions, so that ort has a means of creating
keys for thread-specific storage. One can instead use thread local storage (TLS)
if available by the underlying system compiler (just #define USE_TLS in ee.h—
see runtime/ee_pthreads).

The othr yield() function should yield the processor so that other threads
can run.

Finally, ort calls othr initialize() upon startup and othr_finalize()

upon termination. This first function should initialize the threading library
and prepare it for use by ort. The first two parameters passed to the func-
tion are pointers to the program arguments, which the library may manipu-
late freely. The next parameter (icv) contains all the ‘internal control vari-
ables’ of ort (see ort.h). Of particular importance are icv->stacksize and
icv->nthreads; if they are ≤ 0, the eelib is free to use its own values. If,
however, icv->stacksize > 0 then all created EEs must have that particular

5

stack size. If icv->nthreads > 0, then the eelib must provide at least that
many EEs.

The last parameter in othr initialize() (caps) is the set of the library’s
‘capabilities’ and must be filled by the eelib. In particular, if the eelib sup-
ports some kind of nested parallelism (i.e. levels> 1), then caps->supports_nested
should be set to 1. If it supports dynamic adjustment of threads supports_dynamic
should be set to 1. Finally, if it supports nested and non dynamic, it should
set supports_nested_nondynamic to 1. This last one is used because some
OpenMP systems support a limmited form of nesting which works only if dy-
namic adjustement is enabled. In particular, they can support nesting but they
limmit the total number of threads that may be running at any point in time.
caps->max_levels_supported should be set to 1 if the library does not support
nested parallelism, or to a particular number if it can operate only up to a cer-
tain nesting level. If there is no limit to the nesting levels, this capability should
be set to -1. Analogously, caps->max_threads_supported should be set to a
maximum value or -1 if there is no limit. Finally, caps->default_numthreads
specifies the default number of threads that the library can provide if ort does
not ask for any particular number.

2.5 A couple more for processes

If the EE type is process, the eelib must also provide:

int oprc_pid();

void oprc_shmalloc(void **ptr, int size, int upd);

void oprc_shmfree(void *p);

which, correspondingly, return the process id of the EE, allocate space in shared
memory and free it.

3 What facilities are provided by ort to eelib

Assuming one works in directory runtime/host/othr foo, there are 3 basic
files that one may include in othr.c:

config.h

../sysdeps.h

../ort.h

The first one resides in the common/ directory of ompi’s source tree and
provides some definitions created during configuration time, such as the name
of the package (“ompi”), its version etc. One may need to perform some extra
tests for the availability of certain system header files or library functions; the
place to do those is file configure.in, so that the results are available as
definitions in file config.h.

The second file contains some system-specific utilities and definitions. The
definitions include the processor type of the system, the platform type, the
operating system type, the size of the processors’ cache lines, and a few others.
This file provides two major facilities that can be useful for a threading library:

6

• A function to obtain the number of processors available. Use as in:

np = ort_get_num_procs();

• A macro to force serialization of memory operations, i.e. to provide a
memory barrier / fence. Use as in:

... /* Code above */

FENCE;

... /* Code below */

FENCE guarantees that all pending memory operations in the code above
the fence will be finished before any operations below the fence start.

Finally, the third file (../ort.h) provides the rest of the facilities described
below. In fact, this file includes the other two headers, so this is the only file
one has to include, after all:

#include "../ort.h"

3.1 What is provided in ort.h

The first thing ort provides is a set of memory allocation functions (ort alloc(),
ort calloc(), ort alloc aligned(), ort calloc aligned(), ort realloc aligned())
which also check whether the requested memory block could not be allocated
(causing an exit). The last three functions allocate memory aligned to the cache
line size of the processor, which is a must for performance. The actual memory
allocated contains usually more bytes than requested and starts at an unaligned
position, so the functions return a pointer to the aligned portion of the memory
block and set their ‘actual’ parameter to point to the actual (unaligned) block
start; the latter is what one should free() if needed.

Finally, there is a function to display a warning and another one to diplay
an error and exit() with a particular value.

3.2 Barriers

ort implements a default barrier in ort.c/ort.h which makes use of the locks
provied by eelib. The barrier functions are also available for eelib to use:

void ort_default_barrier_init(ort_defbar_t *bar, int numees)

void ort_default_barrier_wait(ort_defbar_t *bar, int thrid)

void ort_default_barrier_destroy(ort_defbar_t *bar)

You may want to experiment with your own barrier algorithms. In order to
override the one in ort.c, all you have to do in your ee.h is:

#define AVOID_OMPI_DEFAULT_BARRIER

7

and implement the following 3 functions in your othr.c:

void othr_barrier_init(othr_barrier_t *bar, int n);

void othr_barrier_wait(othr_barrier_t *bar, int id);

void othr_barrier_destroy(othr_barrier_t *bar);

Of course, ee.hmust provide the prototypes, plus the definition for othr barrier t.
Finally, notice that in light of the tasking support in OpenMP, barriers are task
scheduling points that require/make sure that all tasks of the binding thread
team have finished before continuing. See runtime/host/ee_pstrheads/ for
an example.

3.3 Tasks

NOTE: This section is incomplete.
ompi provides support for tasks in ort, which is independent of the actual

EE that is used. However, it also allows for an eelib to provide its own task
implementation, if needed. In order to do this, all you have to do is:

#define AVOID_OMPI_DEFAULT_TASKS

in your ee.h, and implement the following 3 functions in your othr.c:

void othr_new_task();

void othr_new_task_exec();

void othr_taskwait();

. . . to be completed.

8

