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Abstract
In this paper, we study the problems of detecting holes
and antiholes in general undirected graphs and present
algorithms for them, which, for a graph on n vertices and
m edges, run in O(n + m2) time and require O(nm) space;
we thus provide a solution to the open problem posed by
Hayward, Spinrad, and Sritharan in [12] asking for an O(n4)-
time algorithm for finding holes in arbitrary graphs. The
key element of the algorithms is a special type of depth-
first search traversal which proceeds along P4s (i.e., chordless
paths on four vertices) of the input graph. We also describe
a different approach which allows us to detect antiholes in
graphs that do not contain chordless cycles on 5 vertices in
O(n + m2) time requiring O(n +m) space. Our algorithms
are simple and can be easily used in practice. Additionally,
we show how our detection algorithms can be augmented
so that they return a hole or an antihole whenever such a
structure is detected in the input graph; the augmentation
takes O(n+m) time and space.

Keywords: hole, antihole, weakly chordal graph, co-

connectivity.

1 Introduction

We consider finite undirected graphs with no loops
or multiple edges. Let G be such a graph and let
v0, v1, . . . , vk−1 be a sequence of k distinct vertices such
that there is an edge from vi to v(i+1) mod k (for all

i = 0, . . . , k− 1), and no other edge between any two of
these vertices; we say that this is a chordless cycle on
k vertices. A hole is a chordless cycle on five or more
vertices; an antihole is the complement of a hole.

Holes and antiholes have been extensively studied
in many different contexts in algorithmic graph theory.
Most notable examples are the weakly chordal graphs
(also known as weakly triangulated graphs) [9, 10],
which contain neither holes nor antiholes, and the strong
perfect graph conjecture (Berge [1]), which states that
a graph is perfect if and only if it contains no holes and
no antiholes on an odd number of vertices (the recent
proof of the conjecture by Chudnovsky et al. [4] has
renewed the interest in the problem). Thus, finding a
hole or an antihole in a graph efficiently is an important
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graph-theoretic problem, both on its own and as a step
in many recognition algorithms.

Several algorithms for detecting holes and antiholes
in graphs have been proposed in the literature. The
definition of holes and antiholes implies that such algo-
rithms can be applied without error on the biconnected
components of the input graph and of its complement,
respectively, instead of the entire graph. Although this
approach may lead to the fast detection of holes and an-
tiholes in graphs with small biconnected components, it
does not yield any gain in the asymptotic sense.

The problem of determining whether a graph con-
tains a chordless cycle on k or more vertices, for some
fixed value of k ≥ 4, is solved in O(nk) time (Hayward
[11]); Spinrad [16] provided an improved solution taking
O(nk−3M) time, where M ' n2.376 is the time required
to multiply two n×nmatrices. Note that the problem of
determining whether a graph contains a chordless cycle
on four or more vertices can be solved in O(n+m) time
[9, 15, 18] (it is the well-known chordal graph recogni-
tion problem).

The algorithms of [11] and [16] can be used for
the recognition of weakly chordal graphs in O(n5) and
O(n4.376) time respectively. Further progress on the
weakly chordal graph recognition problem includes the
O(n4)-time and O(nm)-space algorithm of Spinrad and
Sritharan [17], and the O(m2)-time and O(n+m)-space
algorithm of Hayward, Spinrad, and Sritharan [12] and
of Berry, Bordat, and Heggernes [2]. It is interesting
to note that the algorithm of [12] produces a hole or
an antihole certificate whenever the input graph is not
weakly chordal. In the same paper, the authors posed
as an open problem the designing of an O(n4)-time
algorithm to find a hole in an arbitrary graph.

In this paper, we study the above mentioned open
problem and we present two algorithms, one for the
detection of holes and another for the detection of
antiholes in arbitrary graphs. Both algorithms run in
O(n +m2) time and require O(nm) space, and rely on
the detection of a cycle satisfying certain conditions in
the input graph or on its complement respectively. The
existence of such a cycle is checked by means of a special
depth-first search traversal, which we call P4-DFS. We
also describe another algorithm for the detection of
antiholes in graphs that do not contain chordless cycles
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on five vertices: the algorithm processes each edge of the
input graph in order to determine whether the endpoints
of the edge participate in an antihole, and relies on
the computation of the co-connected components of
subgraphs of the input graph; it runs in O(n+m2) time
and takes O(n+m) space. The same approach yields an
O(n2m)-time and O(n2)-space algorithm for detecting
holes in graphs that do not contain chordless cycles on
five vertices.

Additionally, we describe how to augment our three
detection algorithms so that they return a hole or
an antihole in the case where such a structure exists
in the input graph; the augmented hole (antihole,
respectively) detection algorithm produces a hole (an
antihole, respectively) in O(n + m) additional time
and O(n + m) space. Finally, we note that, as a by-
product, our hole and antihole detection algorithms can
be used for recognizing weakly chordal graphs leading to
a solution that matches the best currently known time
complexity for this problem.

2 Preliminaries

Let G be a finite undirected graph with no loops or
multiple edges. We denote by V (G) and E(G) the
vertex set and edge set of G. The subgraph of a graphG
induced by a subset S of vertices of G is denoted by
G[S].

A path in G is a sequence of vertices v0v1 . . . vk
such that vivi+1 ∈ E(G) for i = 0, 1, . . . , k − 1; we say
that this is a path from v0 to vk and that its length
is k. A path is called simple if none of its vertices
occurs more than once; it is called trivial if its length
is equal to 0. A simple path v0v1 . . . vk is chordless if
vivj /∈ E(G) for any two non-consecutive vertices vi,
vj in the path. Throughout the paper, the chordless
path on k vertices is denoted by Pk. In particular,
a chordless path on 3 vertices is denoted by P3 and
a chordless path on 4 vertices is denoted by P4. A
sequence of vertices v0v1 . . . vk−1 forms a cycle (resp.
simple cycle) iff v0vk−1 ∈ E(G) and v0v1 . . . vk−1 is a
path (resp. simple path) in G; its length is equal to k.
A simple cycle v0v1 . . . vk−1 is said to be chordless if no
edge vivj exists in E(G) such that |i − j| 6= 1 mod k.
The chordless cycle on k vertices is denoted by Ck; in
particular, C5 is the chordless cycle on 5 vertices.

The neighborhood N(x) of a vertex x ∈ V (G) is
the set of all the vertices of G which are adjacent to
x. The closed neighborhood of x is defined as N [x] :=
N(x)∪{x}. The neighborhood of a subset S of vertices
is defined as N(S) :=

(⋃
x∈SN(x)

)
− S and its closed

neighborhood as N [S] := N(S) ∪ S. The notion of
the neighborhood can be extended to edges: for an

edge e = xy, the neighborhood (closed neighborhood)
of e is the vertex set N({x, y}) (resp. N [{x, y}]) and is
denoted by N(e) (resp. N [e]). For an edge e = xy, we
define the following three sets:

A(e;x) = N(x) −N [y],

A(e; y) = N(y)−N [x],

A(e) = N(x) ∩N(y);

clearly, these sets form a partition of the neighbor-
hood N(e) of the edge e.

We close this section by describing the co-
connectivity problem which plays a crucial role in the
antihole detection algorithm for graphs that do not con-
tain a C5, which we propose in this paper. The co-
connectivity problem on a graph G is that of finding the
connected components of the complement G; the con-
nected components of G are called co-connected compo-
nents (or co-components) of G. The co-components of
a graph G on n vertices and m edges can be computed
in O(n+m) time and space [8, 13, 3].

3 Detecting Holes

The hole detection algorithm relies on the result stated
in the following lemma.

Lemma 3.1. An undirected graph G contains a hole if
and only if G contains a cycle u0u1 . . . uk, where k ≥ 4,
such that uiui+1ui+2ui+3 for each i = 0, 1, . . . , k − 3,
and uk−2uk−1uku0 are P4s of G.

Proof. (=⇒) Suppose that G contains a hole; then the
vertices of the hole induce a cycle meeting the conditions
of the lemma.

(⇐=) Suppose now that G contains a cycle as described
in the lemma; let v0v1 . . . vh be the shortest such cycle.
Then, this cycle is a hole:

a) since the cycle meets the conditions of the lemma,
then h ≥ 4, which implies that the cycle is of length
at least equal to 5;

b) the cycle is chordless. Suppose for contradic-
tion that there existed chords. With each chord
vivj , we associate its “length,” which is defined as
length(vivj) = |j − i|; let v`vr, where ` < r, be the
chord of minimum length. Note that r ≥ ` + 4;
this follows from the fact that r ≥ 4 (because
v0v1v2v3 is a P4) and the fact that vr−3vr−2vr−1vr
is a P4. Then, vr−2vr−1vrv` is a P4 in G be-
cause it is a path in G, vr−2vr /∈ E(G) (recall that
vr−3vr−2vr−1vr is a P4), and v`vr−2 /∈ E(G) and
v`vr−1 /∈ E(G) for otherwise these would be chords
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whose length-value would be smaller than that of
the chord v`vr, in contradiction to the minimal-
ity of length(v`vr). Additionally, vivi+1vi+2vi+3

is a P4 for all i = `, ` + 1, . . . , r − 3. Thus, the
cycle v`v`+1 . . . vr would meet the conditions of
the lemma; as it would be shorter than the cycle
v0v1 . . . vh, this would contradict the fact that the
latter cycle is the shortest such cycle. Hence, the
cycle v0v1 . . . vh is chordless.

Therefore, G contains a hole.

Our algorithm for the detection of holes applies
Lemma 3.1. In particular, it uses a special type of
depth-first search traversal, which we will call P4-DFS:
the P4-DFS traversal works similarly to the standard
depth-first search [6], except that, in its general step,
it tries to extend a P3 abc into P4s of the form abcd,
then, for each such P4, it proceeds extending the P3 bcd
into P4s of the form bcde, and so on. Unlike the
standard depth-first search, the P4-DFS traversal may
proceed to a vertex that has been encountered before;
however, it does not need to proceed to a P3 that has
been encountered before. If the P4-DFS has at a given
moment proceeded to traverse a sequence of P3s abc,
bcd, . . ., wxy, xyz, then we call the sequence of vertices
a, b, . . . , y, z the current P4-DFS path. Then, it is not
difficult to see that the following holds:

Lemma 3.2. Suppose that the P4-DFS traversal is ap-
plied on the input graph G. Then, if the current P4-DFS
path ρ is extended to a vertex which belongs to ρ, then G
contains a cycle meeting the conditions of Lemma 3.1.

Note that the cycle mentioned in Lemma 3.2 contains
at least one P4 and thus is of length at least equal to 5.

In order to exhaustively search the input graph G,
the P4-DFS traversal starts from each P3 of G. On the
other hand, in order to prevent processing a P3 which
has been encountered before, it uses an auxiliary array
not in hole[(u, v), w], where u, v, w ∈ V (G) and u, v
are adjacent in G; for each pair of adjacent vertices u, v,
the array has entries not in hole[(u, v), w] as well as
not in hole[(v, u), w] for every w ∈ V (G), and hence
its size is 2m · n. The entry not in hole[(u, v), w]
is equal to 1 iff the vertices u, v, w induce a P3 uvw
of G which has been processed and found not to
participate in a hole, otherwise it is equal to 0
(note that two entries of the array correspond to
each P3 uvw, namely, not in hole[(u, v), w] and
not in hole[(w, v), u]). Additionally, in order to be
able to test whether a vertex belongs to the current P4-
DFS path, the algorithm uses another auxiliary array
in path[] of size n; for a vertex v, in path[v] is equal

to 1 if v belongs to the current P4-DFS path, and is 0
otherwise. Below, we give a detailed description of the
algorithm when applied on a connected input graph G;
the case of a disconnected input graph is discussed after
the analysis of the algorithm. The algorithm assumes
that G is given in adjacency list representation, from
which it computes the adjacency matrix of G so that
adjacency tests can be answered in constant time.

Hole-Detection Algorithm
Input: a connected undirected graph G.
Output: yes, if G contains a hole; otherwise, no.

1. Initialize the entries of the arrays not in hole[]

and in path[] to 0;
compute the adjacency matrix A[ ] of G;

2. For each vertex u of G do
2.1 in path[u] ← 1;
2.2 for each edge vw of G do

if u is adjacent to v and non-adjacent to w
and not in hole[(u, v), w] = 0

then in path[v] ← 1;
process(u, v, w);
in path[v] ← 0;

2.3 in path[u] ← 0;
3. Print that G does not contain a hole.

where the procedure process() is as follows:

process(a, b, c)
1. in path[c] ← 1;
2. for each vertex d adjacent to c in G do

2.1 if d is adjacent to neither a nor b in G
then {abcd is a P4 of G}

2.2 if in path[d] = 1
then print that G has a hole; Stop.
else if not in hole[(b, c), d] = 0

then process(b, c, d);
3. in path[c] ← 0;
4. not in hole[(a, b), c] ← 1;

not in hole[(c, b), a] ← 1;

It is important to observe that the description of the
procedure process() guarantees that from a P3 abc
we proceed to a P3 bcd only if abcd is a P4 of the
input graph G. Before returning, the procedure sets
the corresponding entries of the array not in hole[],
thus preventing a second call to the procedure on
the same P3. Additionally, a call process(a, b, c)
does not cause, for any depth of recursion, another
call process(a, b, c) or process(c, b, a), because, for
this to happen, the vertex a (respectively, c) would
be encountered again; then, the condition of the if
statement in Step 2.2 of process() would be found true
and the algorithm would instantly terminate. Thus, the
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procedure process() is called exactly once for each P3

of G.
The correctness of the algorithm follows from Lem-

mas 3.1 and 3.2 and the following result.

Lemma 3.3. If for a P3 abc of the input graph G, the
entry not in hole[(a, b), c] is set to 1, then the P3 abc
does not participate in a hole of G.

Proof. For the entry not in hole[(a, b), c] to be set
to 1, a call process(a, b, c) or process(c, b, a) needs
to have been made; suppose without loss of general-
ity that this is process(a, b, c). The proof applies
induction on the number of calls to the procedure
process() that have returned before the assignment
“not in hole[(a, b), c] ← 1” in Step 4 of the call
process(a, b, c).

For the basis step, let us suppose that no calls to
process() have returned. Then, no entry of the array
not in hole[] has been set to 1. Hence, no P4 of the
form abcd exists in G; if it existed, either the algorithm
would have terminated (if d belonged to the P4-DFS
path) or a call process(b, c, d) would have been made,
which should have returned for the control to proceed
to Step 4. Therefore, since no P4 abcd exists in G, the
P3 abc does not participate in a hole of G.

For the inductive hypothesis, we assume that the
statement of the lemma is true for P3s for which the
corresponding entries of the array not in hole[] have
been set equal to 1 after fewer than i0 > 0 calls to the
procedure process() have returned. For the inductive
step, we assume that the entry not in hole[(a, b), c]
corresponding to the P3 abc has been set equal to 1
after i0 calls to the procedure process() have returned,
and we show that the lemma holds for the P3 abc.
Suppose, for contradiction, that this is not the case;
then, abc participates in a hole of G, which implies
that there exists a vertex x such that abcx is a P4 of
the hole. Clearly, this vertex x has been considered
in Step 2.2 of the execution of process(a, b, c). It
must be the case that in path[x] is not equal to 1,
for otherwise the algorithm would have terminated.
Thus, if not in hole[(b, c), x] is equal to 0, a call
process(b, c, x) is made; if not in hole[(b, c), x] is
not equal to 0, then it must have been set to 1 by
a preceding call process(b, c, x) or process(x, c, b).
In either case, this call to process() was completed
before the execution of Step 4 of process(a, b, c). Thus,
the assignment “not in hole[(b, c), x] ← 1” has been
made after fewer than i0 calls to process() have
terminated; by the inductive hypothesis, we conclude
that the P3 bcx does not participate in any hole of G.
This comes into contradiction with the fact that the
P4 abcx is a P4 of a hole of G. Therefore, the P3 abc

does not participate in a hole of G. Our inductive proof
is complete; the lemma follows.

Time and Space Complexity. Let n and m be
the number of vertices and edges of the input graph G
respectively. Since G is connected, then n = O(m).
Before analyzing the time complexity of each step of the
algorithm, we turn to the procedure process(). We
note that the procedure is called exactly once for each
P3 of G, i.e., O(nm) times, and that, if we ignore the
time taken by the recursive calls, a call process(a, b, c)
takes O(|N(c)| + 1) time by using the adjacency list
of the vertex c to retrieve c’s neighbors, and by using
the adjacency matrix A[ ] to answer adjacency tests in
constant time. Therefore, the time taken by all the
calls to the procedure process() is O(m2), since each
quadruple of vertices a, b, c, d where abc is a P3 and d is
adjacent to c is uniquely characterized by the ordered
pair ((a, b), (c, d)) where (a, b) and (c, d) are ordered
pairs of adjacent vertices in G.

Step 1 of the main body of the algorithm clearly
takes O(nm) time. If the time taken by the calls to the
procedure process() is ignored, Step 2 takes O(nm)
time; again, the adjacencies are checked in constant time
by means of the adjacency matrix A[ ] of G. Step 3
takes constant time. Thus, the time complexity of the
algorithm for a connected graph on n vertices and m
edges is O(m2). The space needed is O(nm): O(n) and
O(nm) for the arrays in path[] and not in hole[]

respectively, and O(n2) for the matrix A[ ] and the
adjacency list representation of the input graph.

Summarizing, we have the following result.

Lemma 3.4. Let G be a connected undirected graph on
n vertices and m edges. Then, it can be determined
whether G contains a hole in O(m2) time and O(nm)
space.

The case of a disconnected input graph. If the
input graph G is disconnected, we work on each of its
connected components; let ni and mi denote the num-
ber of vertices and edges of the i-th connected compo-
nent respectively. The computation of the connected
components takes O(n + m) time [6], while processing
each of them takes O(m2

i ) time. Since
∑

imi = m, we
have that O(n+m2) time suffices for detecting holes in
any graph on n vertices and m edges. In this case, the
space needed is O

(∑
i(nimi)

)
= O(nm). Therefore, we

obtain the following theorem.

Theorem 3.1. Let G be an undirected graph on n
vertices and m edges. Then, it can be determined
whether G contains a hole in O(n+m2) time and O(nm)
space.
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3.1 Providing a Certificate
The hole detection algorithm can be easily augmented
so that it provides a certificate whenever it decides that
the input graph G contains a hole. In particular, we
need the following:

(i) The updating of the entries of the array in path[]

is done so that they reflect the position of the
corresponding vertex in the current P4-DFS path.
More specifically, in path[v] is set equal to i, if v
is the i-th vertex in the P4-DFS path; this may
necessitate replacing the call process(a, b, c) by
process(a, b, c, i), if c is the i-th vertex in the path.

(ii) The vertices in the current P4-DFS path are stored
in an array pathvertex[] in the order they appear
along the path.

(iii) If the algorithm concludes that G contains a hole,
then the condition in Step 2.2 of the procedure
process() during the execution of a call, say,
process(a, b, c, k), is found true for some vertex d;
suppose that d is located in the j-th position of the
current P4-DFS path. Then, the vertices located
in positions j, j + 1, . . . , k of the path form a
cycle satisfying the conditions in the statement of
Lemma 3.1. To isolate a hole, we call the following
procedure get hole(j, k) before terminating in
Step 2.2 of process(a, b, c, k). The procedure
computes the range [imin, imax] of indices of the
entries in the array pathvertex[] which store the
vertices inducing a hole in G.

get hole(j, k)
imin ← j; imax ← k;
i← imin;
repeat

u← pathvertex[i];
h← imax + 1;
for each vertex x adjacent to u in G do

if in path[x] ≥ i+ 4
and in path[x] < h

then h← in path[x];
if h ≤ imax
then imin ← i; imax ← h;
i← i+ 1;

until i > imax − 4;
print the vertices in the entries imin, imin + 1,
. . . , imax of the array pathvertex[];

The vertices printed induce a hole in G.

Note that, in each iteration of the repeat-until loop, at
the end of the execution of the for loop, the variable h
is equal to the minimum index of any entry in the
subarray pathvertex[i+ 4...imax] storing a neighbor

of pathvertex[i] in G, whenever such an entry exists,
and is equal to imax + 1 otherwise. The correctness of
the computation follows from Lemma 3.5.

Lemma 3.5. The vertices printed by procedure
get hole() induce a hole in the input graph G.

Proof. Let imin(t) and imax(t) denote the values of imin
and imax at the beginning of the iteration of the repeat-
until loop for i = t, and let ı̂min and ı̂max be their final
values. Clearly, the vertices printed by get hole()

induce a cycle. Moreover, its length is at least equal
to 5, since imax(i) ≥ imin(i) + 4 for every i; note that
k ≥ j + 4 and that h ≥ i+ 4. Finally, we show that the
cycle is chordless. Suppose for contradiction that there
existed a chord and suppose that it were incident on
the vertices pathvertex[`] and pathvertex[r], where
ı̂min ≤ ` < r ≤ ı̂max and ` 6= ı̂min or r 6= ı̂max or both;
then, r− ` < ı̂max− ı̂min. The definition of the P4-DFS
traversal implies that every four consecutive vertices in
the array pathvertex[] form a P4, and thus r− ` ≥ 4.
Hence, ` ≤ r − 4 ≤ ı̂max − 4, which, along with the
fact that the value of imax never increases, implies that
the repeat-until loop of the procedure get hole() has
been executed for i = `. At the end of the execution
of the for loop when i = `, the variable h would not
exceed r, because the vertex pathvertex[r] is adjacent
to pathvertex[`] in G, and `+4 ≤ r ≤ ı̂max ≤ imax(`);
then, the condition “h ≤ imax” would have been found
true, and the variables imin and imax would have been
set to ` and to an integer not exceeding r respectively.
This, however, comes into contradiction with the fact
that r − ` < ı̂max − ı̂min, since the value of imin never
decreases and the value of imax never increases.

The certificate computation takes O(n + m) time:
note that the vertices in the array pathvertex[] are
distinct, and that their neighbors can be accessed in
constant time per neighbor using the adjacency list re-
presentation of the input graph. The space required is
linear in the size of the input graph. Therefore, we have:

Theorem 3.2. Let G be an undirected graph on n
vertices and m edges. The hole detection algorithm
presented in this section can be augmented so that it
provides a certificate that G contains a hole, whenever
it decides so of G. The certificate computation takes
O(n+m) time and O(n+m) space.

4 Detecting Antiholes

Since an antihole is the complement of a hole, one
can use the algorithm of the previous section on the
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complement of a graph in order to determine whether
it contains an antihole. Such an approach may how-
ever require Θ(n4) time, where n is the number of
vertices of the graph, since the complement may have
as many as Θ(n2) edges. Below, we present an al-
gorithm for the detection of antiholes which applies
the P4-DFS traversal on the complement of the in-
put graph G without however computing the comple-
ment explicitly and which takes O(n + m2) time when
G has n vertices and m edges. The algorithm uses
an array not in antihole[(a, b), c], where a, b, c ∈
V (G) and ab ∈ E(G), and thus is of size 2m · n;
not in antihole[(a, b), c] is equal to 1 iff acb is a P3 of
G which has been found not to participate in an antihole
of G, and is 0 otherwise. The input graph G is assumed
to be connected; if G is disconnected, then we apply the
algorithm on each of G’s connected components.

Antihole-Detection Algorithm
Input: a connected undirected graph G.
Output: yes, if G contains an antihole; otherwise, no.

1. Initialize the entries of arrays not in antihole[]

and in path[] to 0;
compute the adjacency matrix of G;

2. For each vertex u of G do
2.1 in path[u] ← 1;
2.2 for each edge vw of G do

if u is adjacent to neither v nor w
and not in antihole[(v, w), u] = 0

then in path[v] ← 1;
process(v, u, w);
in path[v] ← 0;

2.3 in path[u] ← 0;
3. Print that G does not contain an antihole.

where the procedure process() is as follows:

process(a, b, c)
1. in path[c] ← 1;
2. for each vertex d adjacent to b in G do

2.1 if d is adjacent to a and non-adjacent to c
then {abcd is a P4 of G}

2.2 if in path[d] = 1
then print that G has an antihole; Stop.
else if not in antihole[(b, d), c] = 0

then process(b, c, d);
3. in path[c] ← 0;
4. not in antihole[(a, c), b]← 1;

not in antihole[(c, a), b]← 1;

Note that for a call process(a, b, c), a and c are
adjacent in G, while b is adjacent to neither a nor c.
So, if there exists a vertex d such that d is adjacent to
a and b and not adjacent to c, then the vertices a, b, c, d
induce the P4 abcd in G.

The correctness of the algorithm is established as in
the case of the hole detection algorithm of the previous
section.

Time and Space Complexity. Similarly to the
case of the hole detection algorithm, we obtain the result
stated in Theorem 4.1; observe that if we ignore the
time taken by the recursive calls, the execution of the
call process(a, b, c) takes O(|N(b)|+ 1) time, and that
each quadruple of vertices a, b, c, d where abc is a P3 of
G and d is adjacent to b in G is uniquely characterized
by the ordered pair ((a, c), (b, d)), where (a, c) and (b, d)
are ordered pairs of adjacent vertices in G.

Theorem 4.1. Let G be an undirected graph on n
vertices and m edges. Then, it can be determined
whether G contains an antihole in O(n+m2) time and
O(nm) space.

4.1 Providing a Certificate
Similarly to the hole detection algorithm, the above
algorithm can be easily augmented so that it provides a
certificate whenever it decides that the input graph G
contains an antihole. In particular,

(i) we use arrays in path[] and pathvertex[] as
described in Section 3.1;

(ii) if the algorithm concludes that G contains an an-
tihole, then the condition in Step 2.2 of the proce-
dure process() during the execution of a call, say,
process(a, b, c, k), is found true for some vertex d;
suppose that d is located in the j-th position of the
current P4-DFS path. Then, the vertices located
in positions j, j + 1, . . . , k of the path form a cy-
cle in G satisfying the conditions in the statement
of Lemma 3.1. To isolate an antihole, we call the
following procedure get antihole(j, k) before ter-
minating in Step 2.2 of process(a, b, c, k); the pro-
cedure computes the range [imin, imax] of indices of
the entries in the array pathvertex[] which store
the vertices inducing an antihole in G.

get antihole(j, k)
imin ← j; imax ← k;
i← imin;
repeat

u← pathvertex[i];
h← i+ 4;
while h ≤ imax

and pathvertex[h] is adjacent to u do
h← h+ 1;

if h ≤ imax {a non-neighbor was found}
then imin ← i; imax ← h;
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i← i+ 1;
until i > imax − 4;
print the vertices in the entries imin, imin + 1,
. . . , imax of the array pathvertex[];

The vertices printed induce an antihole in G.

It is not difficult to see that, for each value of i, when the
condition of the while loop is found false, the variable h
is equal to the minimum index of any entry in the sub-
array pathvertex[i+ 4...imax] storing a non-neighbor
of pathvertex[i] in G, whenever such an entry exists,
and is equal to imax + 1 otherwise. The correctness of
the procedure get antihole() follows from an argu-
ment similar to that used to prove Lemma 3.5; as in the
case of holes, the value of imin never decreases, whereas
the value of imax never increases.

The procedure requires O(n+m) time: the initial-
ization assignments take O(1) time; during the execu-
tion of the repeat-until loop for the vertex u stored
in pathvertex[i], the condition of the while loop is
checked at most |N(u)| times (it is found false at
the first-encountered non-neighbor of u) and thus the
while loop takes O(N(u)) time (thanks to the adja-
cency matrix of G), while O(1) time suffices for the
remaining assignments. Since the vertices in the array
pathvertex[] are distinct, it follows that the proce-
dure get antihole() takes O(n+m) time. The space
required is linear in the size of the input graph. There-
fore, the following theorem holds:

Theorem 4.2. Let G be an undirected graph on n
vertices and m edges. The antihole detection algorithm
presented in this section can be augmented so that
it provides a certificate that G contains an antihole,
whenever it decides so of G. The certificate computation
takes O(n+m) time and O(n+m) space.

5 Detecting Antiholes in Graphs that do not
Contain a C5

Antiholes in general graphs can be detected by taking
advantage of the following property:

Lemma 5.1. Let G be an undirected graph. Then,
G contains an antihole if and only if there exists an
edge e = xy of G and a vertex u ∈ V (G) − N [e] such
that in the complement of the subgraph of G induced by
N(e)∩N(u) there exists a path from a vertex in A(e;x)
to a vertex in A(e; y).

Proof. (=⇒) Suppose that G contains an antihole and
let this be the complement of the hole v0v1 . . . vk, where
k ≥ 4. Then, the vertices v1 and vk are adjacent in

G; let e be the edge of G connecting them. Then,
v0 ∈ V (G) − N [e], v2 ∈ A(e; vk), vk−1 ∈ A(e; v1), and
{v2, . . . , vk−1} ⊆ N(e) ∩N(v0); these and the fact that
the sequence vk−1, . . . , v2 induces a path inG imply that
the conditions of the lemma hold for the edge v1vk of G
and the vertex v0.
(⇐=) Suppose now that there exists an edge e = xy
of G and a vertex u ∈ V (G) − N [e] such that in the
complement of the subgraphG[N(e)∩N(u)] there exists
a path from a vertex in A(e;x) to a vertex in A(e; y).
Let p0p1 . . . pk be a shortest such path; that is, p0 ∈
A(e;x)∩N(u), pk ∈ A(e; y)∩N(u), pi ∈ A(e)∩N(u) for
all i = 1, . . . , k−1, and pipj ∈ E(G) for 0 ≤ i < j−1 ≤
k − 1. Then, the subgraph G[{x, u, y, p0, p1, . . . , pk}] of
G is the complement of a chordless cycle of length at
least 5; in other words, G contains an antihole.

Lemma 5.1 readily implies an antihole detection
algorithm which for a graph G on n vertices and m
edges runs in Θ(nm2) time in the worst case: for the
appropriate pairs of an edge e = xy and a vertex u, we
compute the co-components of the subgraph G[N(e) ∩
N(u)] and check whether any of them contains vertices
from both A(e;x) and A(e; y); as there may be as many
as Θ(nm) such pairs, and for each one of them Θ(n+m)
time may be needed and suffices for the above mentioned
computations, the overall time complexity is Θ(nm2).
An improved algorithm can be obtained for graphs not
containing C5s, for which the following fact holds.

Fact 5.1. Let G be an undirected graph which does not
contain a C5, and let e = xy be an edge of G. Then,
for every pair of vertices a and b such that a ∈ A(e;x),
b ∈ A(e; y), and (N(a)∩N(b))−N [e] 6= ∅, it holds that
a and b are adjacent in G.

Proof. Let w be any vertex in (N(a) ∩ N(b)) − N [e];
clearly, wa,wb ∈ E(G), and wx,wy 6∈ E(G). If the
vertices a and b were not adjacent in G, then the
subgraph of G induced by a, x, y, b, and w would be
a C5, a contradiction.

In light of Fact 5.1, for any edge e = xy and any
vertex u ∈ V (G) − N [e] of a graph G that does not
contain a C5, any path from a vertex in A(e;x) to a
vertex in A(e; y) in the complement of the subgraph
of G induced by N(e) ∩ N(u) is of length at least
2 and contains a vertex in A(e). Then, instead of
computing such a path we need only determine if there
exist vertices a ∈ A(e;x) ∩ N(u), b ∈ A(e; y) ∩ N(u),
and v ∈ A(e) ∩N(u) such that v, a belong to the same
co-component of the subgraph G[N(x) ∩ N(u)], and
v, b belong to the same co-component of the subgraph
G[N(y) ∩ N(u)]; see Figure 1: C and D denote the
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co-components of the subgraphs G[N(x) ∩ N(u)] and
G[N(y) ∩ N(u)] containing v and a, and v and b
respectively, and the dotted paths indicate chordless
paths in the complements of these subgraphs. We show
next that the existence of such vertices v, a, and b is
equivalent to the existence of an antihole in G.

Lemma 5.2. Let G be an undirected graph which does
not contain a C5. Then, G contains an antihole if and
only if there exists an edge e = xy of G and vertices
u ∈ V (G)−N [e], a ∈ A(e;x)∩N(u), b ∈ A(e; y)∩N(u),
and v ∈ A(e) ∩ N(u) such that a, v belong to the
same co-component of the subgraph G[N(x)∩N(u)], and
b, v belong to the same co-component of the subgraph
G[N(y) ∩N(u)].

Proof. (=⇒) Suppose that G contains an antihole.
Since G does not contain a C5, the antihole is of
length at least 6; let it be the complement of the hole
v0v1 . . . vk (k ≥ 5). The vertices v1 and vk are adjacent
in G; if e is the edge of G connecting them, then,
v0 ∈ V (G) − N [e], v2 ∈ A(e; vk) ∩ N(v0), vk−1 ∈
A(e; v1) ∩ N(v0), and {v3, . . . , vk−2} ⊆ A(e) ∩ N(v0).
Since k ≥ 5, it is easy to see that the conditions of
the lemma hold for v1, vk, v0, vk−1, v2, v3 in place of
x, y, u, a, b, v respectively.
(⇐=) Suppose now that there exists an edge e = xy of
G and vertices u, a, b, v as described in the statement of
the lemma. Then, in the complement of the subgraph
of G induced by N(e) ∩ N(u) there exists a path from
vertex a ∈ A(e;x) to vertex b ∈ A(e; y). Then, by
Lemma 5.1, G contains an antihole.

We give below a detailed description of the antihole
detection algorithm for a connected input graph G; for
disconnected input graphs, we apply the algorithm on
each of their connected components.

Antihole-Detection Algorithm for Graphs that do not
contain a C5

Input: a connected undirected graph G that does not
contain a C5.

Output: yes, if G contains an antihole; otherwise, no.

1. For each vertex u of G do

1.1 for each vertex w not adjacent to u in G do
1.1.1 compute the set Nu,w = N(u) ∩N(w);
1.1.2 compute the co-components of G[Nu,w];
1.1.3 store the set Nu,w as a list of vertex re-

cords, ordered by vertex index, where
each vertex z ∈ Nu,w is associated with
the representative cc(Nu,w; z) of the
co-component to which it belongs;

1.2 for each edge e = xy of G s.t. x, y /∈ N [u] do
{x, y /∈ N [u] is equivalent to u ∈ V (G)−N [e]}
1.2.1 {mark the co-components of G[Nu,x]}

{containing a vertex in A(e;x)}
for each vertex w ∈ Nu,x do

mark1[w] ← 0;
for each vertex w ∈ Nu,x −Nu,y do
{mark the representative}
mark1[cc(Nu,x;w)] ← 1;

1.2.2 {mark the co-components of G[Nu,y]}
{containing a vertex in A(e; y)}
for each vertex w ∈ Nu,y do

mark2[w] ← 0;
for each vertex w ∈ Nu,y −Nu,x do
{mark the representative}
mark2[cc(Nu,y;w)] ← 1;

1.2.3 for each vertex v ∈ Nu,x ∩Nu,y do
if mark1[cc(Nu,x; v)] = 1

and mark2[cc(Nu,y; v)] = 1
then print that G contains an anti-

hole; Stop;

2. Print that G does not contain an antihole.

The correctness of the algorithm follows from
Lemma 5.2: for a vertex u of G and an edge e = xy such
that x, y 6∈ N [u], then A(e;x) ∩ N(u) = Nu,x − Nu,y,
A(e; y)∩N(u) = Nu,y−Nu,x, and A(e)∩N(u) = Nu,x∩
Nu,y; moreover, the condition “if mark1[cc(Nu,x; v)] =
1 and mark2[cc(Nu,y; v)] = 1” and the fact that the
vertex v belongs to Nu,x ∩Nu,y imply that in the com-
plement of G[Nu,x] there exists a path from v to a vertex
in A(e;x) and that in the complement of G[Nu,y] there
exists a path from v to a vertex in A(e; y).

Time and Space Complexity. Let n and m be
the number of vertices and edges of the input graph G;
since G is connected, n = O(m). Step 1.1.1 can
be completed in O(n) time, while the construction
of G[Nu,w] and the computation of its co-components
can be done in O(|Nu,w|2) time [8, 13, 3]. Since
|Nu,w| ≤ min{|N(u)|, |N(w)|}, we have that |Nu,w|2 ≤
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|N(u)| · |N(w)|; thus, for a vertex u of G, Step 1.1.2
takes O(n) +

∑
w O

(
|N(u)| · |N(w)|

)
= O(m |N(u)|)

time1. The construction of the list storing Nu,w in
Step 1.1.3 can be done in O(|N(u)|) time by traversing
the adjacency list of u, by collecting those vertices that
belong to Nu,w, and by updating the co-component
representative information; the ordering by vertex index
comes for free, had we sorted the adjacency lists of the
vertices in G by vertex index, something which can be
achieved in O(n+m) time using radix sorting during a
preprocessing phase.

The sorting of the lists representing the sets Nu,w

implies that determining which vertices belong toNu,x−
Nu,y, Nu,y − Nu,x, and Nu,x ∩ Nu,y can be achieved
by simply traversing the lists for Nu,x and Nu,y in
lockstep fashion. Then, each execution of Step 1.2
takes O(|N(u)|) time, since Nu,x, Nu,y ⊆ N(u). Thus,
for a vertex u of G, Step 1.2 takes

∑
eO(|N(u)|) =

O(m |N(u)|) time. Step 2 takes constant time. In
total, the entire execution of the algorithm on G takes
O
(∑

uO(n +m+m |N(u)|)
)

= O(m2) time.
Let us now turn to the space complexity of the

algorithm. The adjacency list representation of the
input graph requires O(n +m) space. For an iteration
of the for loop in Step 1, we need: O(n) space to store
Nu,w and the re-indexing arrays, and O(n+m) space to
store G[Nu,w], both reusable in each iteration of the for
loop in Step 1.1;

∑
w O(1 + |Nu,w|) = O(n + m) space

to store the list representations of the sets Nu,w for all
w ∈ V (G) − N [u]; O(n) space for the arrays mark1[]

and mark2[], reusable in each iteration of the for loop
in Step 1.2. This space can be reused from iteration
to iteration of the for loop in Step 1, so that the space
complexity of the algorithm is O(n +m).

In summary, our antihole detection algorithm runs
in O(m2) time using O(n+m) space when applied on a
connected undirected graph on n vertices and m edges.
If the input graph is disconnected, then we apply the
algorithm on each of its connected components. Since
the connected components of a graph can be computed
in time and space linear in the size of the graph [6] and
since these components are pairwise vertex- and edge-
disjoint, we obtain the following result.

Theorem 5.1. Let G be an undirected graph on n
vertices and m edges which does not contain a C5.
Then, it can be determined whether G contains an
antihole in O(n+m2) time and O(n+m) space.

1 Note that working on the subgraph G[Nu,w] requires re-
indexing of vertices, i.e., mapping the indices 1, . . . , n of vertices
in G to the indices 1, . . . , |Nu,w| of vertices in G[Nu,w] and vice
versa; this can be done by using two arrays of O(n) total space
which take O(n) time to initialize and constant time to answer
each re-indexing request.

5.1 Providing a Certificate
Like the previous algorithms, this algorithm too can be
augmented so that it provides a certificate whenever it
decides that the input graph G contains an antihole. In
particular, if G contains an antihole, then whenever the
algorithm finds that, for a vertex u and an edge e = xy
of G such that x, y /∈ N [u], there exists a vertex v ∈
Nu,x ∩ Nu,y for which mark1[cc(Nu,x; v)] = 1 and
mark2[cc(Nu,y; v)] = 1, it executes the following in
Step 1.2.3 before terminating:

(i) computes the subgraph G[N(e) ∩N(u)];

(ii) uses a dummy vertex s and makes it adjacent to
all the vertices of the subgraph except for those in
Nu,x −Nu,y;

(iii) runs BFS on the complement of the resulting graph
starting at s until a vertex, say, b, in Nu,y −Nu,x
is encountered;

It is not difficult to see that if the path on tree edges
from s to b in the BFS-tree of Step (iii) is sv1v2 . . . vkb,
then the vertices x, u, y, v1, . . . , vk, b induce an antihole
in G of length at least 6 (since G does not contain a C5,
then k ≥ 2 in accordance with Fact 5.1).

The computation of the adjacency list representa-
tion of the subgraph G[N(e) ∩ N(u)] can be done in
O(n + m) time and space by using a copy of the adja-
cency list representation of G and by removing from it
all unnecessary lists and vertex records. The addition
of the dummy vertex s can be done in O(n) time and
space. Executing BFS on the complement of the result-
ing graph can be done in time and space linear in the
size of the graph, i.e., in O(n+m) time and space (see
[8, 13, 14]). Finally, the path on tree edges needed to
complete the antihole can be easily obtained in time lin-
ear in its length if the BFS-tree is represented by means
of parent pointers. Therefore, we have:

Theorem 5.2. Let G be an undirected graph on n
vertices and m edges which does not contain a C5. The
antihole detection algorithm presented in this section
can be augmented so that it provides a certificate that
G contains an antihole, whenever it decides so of G.
The certificate computation takes O(n + m) time and
space.

Remark. Since an antihole is the complement of a
hole and the complement of a C5 is also a C5, one can
detect whether a graph G, which does not contain a
C5, contains a hole by applying the above algorithm
on its complement G; this results into an O(n4)-time
and O(n2)-space algorithm. If however the operation of
the algorithm on G is interpreted in terms of G so that
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G is not constructed explicitly, then it can be shown
that the algorithm runs in O(n2m) time and requires
O(n2) space. This result indicates that the same
approach results in a hole detection algorithm which
in the worst case proves asymptotically more time-
and space-consuming than the corresponding antihole
detection algorithm. This seems to be due to the fact
that checking whether a graph contains an antihole of
length k requires that certain Θ(k2) edges exist and that
certain k edges are missing, whereas in the case of a hole
of length k, one needs to verify that k edges exist and
Θ(k2) edges are missing; in the former case, the cost of
checking the non-existence of the k edges can be paid
for by the Θ(k2) existing edges, something which does
not hold in the latter case.

6 Concluding Remarks

We have presented algorithms for detecting holes and
antiholes in general undirected graphs. For an input
graph on n vertices and m edges, both algorithms run
in O(n + m2) time and require O(nm) space. The
algorithms can be augmented so that they return a hole
or an antihole (whenever such a structure exists in the
graph) in O(n + m) additional time and space. We
have also described an antihole detection algorithm for
graphs not containing a C5 which runs in O(n + m2)
time and requires only O(n+m) space.

The obvious open problem is to design algorithms
for finding a hole and/or an antihole in general graphs
with improved time and/or space complexity; note that
all the P3s participating in P4s of a graph on n vertices
and m edges can be computed in O(nm) time [14]. It
is worth mentioning that o(n + m2)-time algorithms
for both problems would imply an improvement on the
currently best algorithms for recognizing weakly chordal
graphs [12, 2].

We also pose as an open problem the construction
of O(n + m2)-time algorithms for detecting whether a
graph contains a C5. None of our algorithms seems to be
modifiable to handle this special case while maintaining
the O(n + m2) time complexity. We note that, due to
our antihole detection algorithm for graphs that do not
contain a C5, an O(n + m2)-time and O(n + m)-space
algorithm for detecting a C5 would imply an antihole
detection algorithm for general graphs of the same time
and space complexity.

Finally, in light of the “strong perfect graph theo-
rem” [4], it would be very interesting to come up with
efficient algorithms for the detection of odd-length holes
and/or odd-length antiholes in general graphs. For a
graph on n vertices, the currently fastest algorithms for
these problems run in O(n9) time [5, 7].
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