
Ž .JOURNAL OF ALGORITHMS 22, 57]92 1997
ARTICLE NO. AL950798

Connecting the Maximum Number of Nodes in the Grid
to the Boundary with Nonintersecting Line Segments*

Leonidas Palios

The Geometry Center, Unï ersity of Minnesota, Minneapolis, Minnesota 55454

Received February 4, 1994

Given a finite set S of nodes in a rectangular grid, we consider the problem of
finding the maximum size subset of S such that the nodes in the subset can be
connected to the boundary of the grid by means of nonintersecting line segments
parallel to the grid axes. The work is motivated from the VLSIrWSI array
processor technology, and in particular, the single-track switch model for config-

Žurable array processors S. Y. King et al., Fault-tolerant array processors using
Ž . .single-track switches, IEEE Trans. Comput. 38 1989 , 501]514 . The problem has

been investigated by Bruck and Roychowdhury, who described an algorithm to find
the maximum number of compatible connections of n given nodes in the grid in
Ž 3. Ž 2 . ŽO n time and O n space J. Bruck and V. P. Roychowdhury, How to play

Ž . .bowling in parallel on the grid, J. Algorithms 12 1991 , 516]529 . In this paper, we
Ž 2 . Ž 2 .improve their result by describing an O n log n time and O n space algorithm;

instrumental in this improvement is the introduction of a new type of priority
search trees which is of interest in its own right. Finally, we extend the algorithm to
handle the additional constraint that near-misses are disallowed; this is the first

Ž 2 .algorithm to resolve this case, and, like the general algorithm, it runs in O n log n
Ž 2 .time and requires O n space. Q 1997 Academic Press

1. INTRODUCTION

The work presented in this paper is motivated from the VLSIrWSI
array processor technology. An array processor is a synchronous parallel
computer with a number of processing elements that operate in parallel in

Ž w x w x w x.lockstep fashion see 4 , and 5 , 10 . Unfortunately, due to faults during
the manufacturing process, it is often the case that array processors

*This work has been supported by grants from the National Science Foundation
Ž . Ž .NSFrDMS-8920161 , the Department of Energy DOErDE-FG02-92ER25137 , Minnesota
Technology, Inc., and the University of Minnesota.

57

0196-6774r97 $25.00
Copyright Q 1997 by Academic Press

All rights of reproduction in any form reserved.

LEONIDAS PALIOS58

contain faulty processing elements. The design can be made fault-tolerant,
however, by incorporating spare processing elements in the array. Then, if
each faulty processing element can be substituted by a spare one, the array
processor can still be used. The process of finding the appropriate substi-
tutes and establishing the necessary connections is called reconfiguration.

One of the models for reconfigurable array processors is the single-track
w xswitch model, described by Kung et al. 5 : the array processor consists of a

two-dimensional array of processing elements with double-row-column
spare ones placed around them; the reconfiguration process involves
substituting a processing element for the one next to it along a straight-line
compensation path that connects a faulty element to a spare one located in
the same row or column, while no two compensation paths intersect. Then,
the problem of determining whether a given array processor is reconfig-
urable, that is, whether all the faulty processors can be compatibly substi-
tuted by spare ones, can be stated as follows:

P1: Given a finite set of nodes located at vertices of a rectangular
grid, determine whether each of these nodes can be connected to the
boundary of the grid by means of a single line segment parallel to
one of the coordinate axes of the grid, so that no two such line
segments intersect.

ŽWe use the expression ‘‘the boundary of the grid’’ to refer to the
boundary of a rectangle that encloses all the given nodes; since the set of

.nodes is finite such a rectangle always exists. An instance of this problem
where all the nodes can indeed be connected to the grid boundary as

Ž .described above along with the corresponding line segments is shown in
Fig. 1. However, one can easily produce cases where this is not possible.
For instance, consider a node p flanked with other nodes both in its row
and column; clearly, each of the four possible line segments that would
connect p to the boundary of the grid goes through another node and it
would thus intersect its corresponding line segment. Another simple case is
shown in Fig. 2, where not both nodes p and q can be connected to the
boundary by means of nonintersecting vertical or horizontal line segments.

w xThe problem was first addressed by Kung et al. 5 , who formulated it as a
maximum independent set problem and adapted an algorithm by Bron and

w x Ž 2 .Kerbosch 2 to solve it. Later, Roychowdhury and Bruck gave an O n
w xtime algorithm, where n is the number of the given nodes in the grid 9 . A

Ž . w xyear later, Birk and Lotspiech described an O n log n time algorithm 1 ,
which can be proven optimal by means of a reduction from the element
uniqueness problem.

CONNECTING GRID NODES TO THE BOUNDARY 59

FIGURE 1

Problem P1 leads to a maximization version, namely:

P2: Given a finite set S of nodes in a rectangular grid, compute the
size of a maximal subset of S such that each node in the subset can
be connected to the boundary of the grid by means of a line segment
parallel to one of the grid axes and no two such line segments
intersect.

FIGURE 2

LEONIDAS PALIOS60

An algorithm for this problem was presented by Bruck and Roychowdhury
w xin 3 ; it relies on appropriate partitions of the grid into a constant number

of rectilinear polygons, whose corresponding optimal connection patterns
are independent of each other and are easier to compute. The combina-
tion of the optimal solutions for these polygons gives the optimal solution
for the configuration. Taking the best among the optimal solutions of all
the configurations yields the optimal solution for the entire grid. If the

Ž 3.number of nodes is n, the algorithm runs in O n time and requires
Ž 2 .O n space.

Ž 2 .In this paper, we improve the above result by describing an O n log n
Ž 2 .time and O n space algorithm for problem P2. The general approach is

w xthe same as that in 3 ; the introduction and use of the following two key
elements, however, allows us to achieve the improved performance:

Ž .i a new way to compute some of the needed optimal partial solu-
tions, which relies on appropriate recursive expressions; the idea is so
powerful that in some cases it leads to methods faster by an order of
magnitude.
Ž .ii a new type of priority search trees that enable us to locate the

optimal solution among several candidates in time logarithmic in their
number. It is important to note that the additional data structures do not
increase the space complexity in the asymptotic sense.

Finally, we note that the related problem of computing the maximum
size of a rectilinear wiring pattern in a bounded portion of the grid is
NP-complete, even in the case where the number of bends is restricted to

Ž . w xone Manhattan wiring 8 .
We also consider the variant of problem P2, where we forbid near-misses

Ž w x.see 5 , that is, we have the additional constraint that connections in
Ž .opposite directions in adjacent rows columns resp. intersect at most one

Ž . w x w xcommon column row resp. Both 5 and 1 discuss the case where
Ž .near-misses are disallowed, the latter reference describing an O n log n

time algorithm for the corresponding variant of problem P1. In this paper,
we resolve the maximization version of the problem by extending our
algorithm for the general case to avoid near-misses. Interestingly, the
changes do not affect the asymptotic performance of the general algo-

Ž 2 .rithm, i.e., the modified algorithm runs in O n log n time and requires
Ž 2 .O n space.
The paper is structured as follows. In Section 2, we recall some of the

terminology pertaining to the problem in question and present our nota-
tion. Section 3 summarizes the fundamental observations on which the
algorithm of Bruck and Roychowdhury as well as our improved version
rely. Our algorithm is described and analyzed in Section 4. Section 5 deals
with the case where near-misses are disallowed, discussing how the algo-
rithm for the general case needs to be modified. Finally, Section 6

CONNECTING GRID NODES TO THE BOUNDARY 61

concludes the paper with a summary of results, some final remarks, and
open questions.

2. TERMINOLOGY AND NOTATION

We begin by mentioning that we assume, without loss of generality, that
the given n nodes are all contained in the rectangle with vertices at the

Ž . Ž . Ž . Ž .grid points 1, 1 , max row, 1 , max row, max col , and 1, max col ,]]]]
where

max row F n and max col F n. 1Ž .]]

This configuration can be achieved by ignoring the rows and columns of
the grid that do not contain any nodes, and by renumbering the remaining

Ž �ones; this normalization process can be performed in O min n q D qr
4.D , n log n time, where D and D are the length and width of thec r c

smallest rectangle enclosing all n nodes in the grid initially.
Since connections to the grid boundary are restricted to be parallel to

the grid axes, a node can be connected to the boundary by means of a line
segment along one of four possible directions, namely, up, down, left, or
right. However, for a given node in the grid, it is likely that not all four of
the directions may lead to feasible connections; think of other nodes
located in the same row or column. Let R be a simple rectilinear polygon

Ž .in the grid, which has been associated with some or maybe all of the
above four directions. Then, by a connection pattern in R, we refer to a set
of nonintersecting line segments, each corresponding to a different node in
R which it connects to the boundary of the grid along one of the
associated directions. A connection pattern in R that maximizes the
number of such line segments is called optimal, and the corresponding

Ž .maximum number of line segments is referred to as the optimal solution
in R. It should be obvious that there may be more than one optimal
connection pattern, but there is only one optimal solution. A connection
pattern is characterized as ¨ertically partitioned if there is a column c
Ž . Ž .1 F c F max col such that no connection line segment intersects the]
interior of the vertical strip bounded by the columns c and c q 1. See also
w x3 . From the same reference, we borrow the notion of quadrants of a
node; the four quadrants of node p, denoted by A, B, C, and D
counterclockwise around p, are depicted in Fig. 3.

Ž .Next, we define the notion of a near-miss: a horizontal vertical resp.
Žnear-miss is formed by a pair of connections in adjacent rows columns

. Ž .resp. which are intersected by at least two common columns rows resp.
of the grid. Figure 4 depicts a horizontal near-miss formed by the connec-

LEONIDAS PALIOS62

FIGURE 3

tions of p and q; note that neither the connections of p and r nor those
of q and s form a near-miss.

Notation. Both the algorithm of Bruck and Roychowdhury and our
algorithm rely on combining optimal solutions in portions of the grid
to compute the optimal solution in the entire grid. In most cases, these
grid portions are rectangles; for convenience, we use the expression
Ž . Ž .R r , r ; c , c where r F r and c F c to denote the rectangular1 2 1 2 1 2 1 2

FIGURE 4

CONNECTING GRID NODES TO THE BOUNDARY 63

portion of the grid enclosed by and including rows r and r , and columns1 2
c and c . Such a rectangle may be defined in terms of a node, say, t, in1 2
the grid; then, we use t.row and t.column to denote t ’s row and column
respectively. For example, the quadrant A of a node t can be denoted as
Ž . Ž .R 1, t.row; 1, t.column see Fig. 3 ; in figures, the convention is that row

indices increase from bottom to top, and column indices increase from left
to right.

Although, the problem statement allows for connections along all four
Ž .possible directions up, down, left, and right , we may seek the optimal

Ž .solution in a portion of the grid where connections along only some of
these directions are allowed. When referring to such a case in text, we
qualify the solution with the associated allowed directions; for example, an
‘‘optimal left]down solution’’ involves line segments connecting nodes to
the left and bottom boundary sides of the grid only. In figures, the allowed
directions are indicated by arrows; for instance, an arrow pointing left
indicates that nodes are allowed to be connected to the left side of the grid
boundary.

Ž .Finally, for a node t that is located at the vertex r, c of the grid, we
define the following quantities, which we will need later in the description
of the algorithm:

0, if k s 0 or k s r ;¡
optimal left solution in R k , r y 1; 1, c y 1 ,Ž .~ if 1 F k - r ;w xleft t k sŽ .
optimal left solution in R r q 1, k ; 1, c y 1 ,Ž .¢ if r - k F max row.]

0, if k s 0 or k s r ;¡
optimal right solution in R k , r y 1; c q 1, max col ,Ž .]~ if 1 F k - r ;w xright t k sŽ .
optimal right solution in R r q 1, k ; c q 1, max col ,Ž .]¢ if r - k F max row.]

0, if k s 0 or k s c ;¡
optimal down solution in R 1, r ; k , c y 1 ,Ž .~ if 1 F k - c ;w xdown t k sŽ .
optimal down solution in R 1, r ; c q 1, k ,Ž .¢ if c - k F max col.]

ŽNote that the first parameter in the above expressions is a node in the
.grid, whereas the second one is an integer, a row or column index. In

Ž .w xFigs. 5a and 5b, we give a graphical representation of the values left t k
Ž .w xand right t k for k) r, while in Fig. 5c, a graphical representation of

LEONIDAS PALIOS64

FIGURE 5

Ž .w xdown t k for k) c. It is important to observe that for 1 F k F k - r1 2
or r - k F k F max row1 2]

w xoptimal left solution in R k , k ; 1, c y 1 s left t kŽ . Ž .1 2 2

w xy left t k y 1 .Ž . 1

Ž .w x Ž .w xSimilar equalities hold for right t and down t as well.

3. FOUNDATIONS OF THE ALGORITHM

In this section, we summarize and formalize the fundamental observa-
Žw x.tions of Bruck and Roychowdhury 3 , on which their algorithm as well as

the improved version we present in this paper rely. Readers familiar with
w x3 are encouraged to at least review the formulas.

Bruck and Roychowdhury observed that the optimal connection pattern
for the entire grid either has a vertical partitioning or is of one of the two

Žsymmetric configurations depicted in Fig. 6 the left and right connections
shown are meant to indicate a pair of left and right connections in the
optimal connection pattern whose horizontal spans overlap, and which
have minimum separation; this justifies the assigned directions along which

.connections are allowed in the indicated grid partition . Hence, the maxi-
Ž .mum number of nodes in the grid from the given set that can be

connected to the grid boundary by means of nonintersecting line segments
is

�max optimal solution over all vertically partitioned connection patterns,

optimal solution over all connection patterns as shown in Fig. 6a,

4optimal solution over all connection patterns as shown in Fig. 6b .
2Ž .

We consider these three terms in order in the following paragraphs.

CONNECTING GRID NODES TO THE BOUNDARY 65

FIGURE 6

A. Vertically Partitioned Connection Patterns

According to its definition, a vertically partitioned connection pattern is
Ž .characterized by a column c 1 F c - max col such that the nodes in the]

Ž .rectangle R 1, max row; 1, c are connected up, down, or left, while the]
Ž .nodes in the rectangle R 1, max row; c q 1, max col are connected up,]]

Ž .down, or right Fig. 7 . Since the solutions in the two rectangles are clearly

FIGURE 7

LEONIDAS PALIOS66

independent of each other, the optimal solution corresponding to a verti-
cally partitioned connection pattern in the grid is

max optimal up]down]left solution in R 1, max row ; 1, c� Ž .]
1Fc-max col]

qoptimal up]down]right solution in

R 1, max row ; c q 1, max col . 34Ž . Ž .]]

B. Connection Patterns as Shown in Fig. 6a

It is clear from the figure that the solutions in the two L-shaped
polygons defined by the line segments associated with p and q are

Ž . Ž . Ž Ž .independent; so, if we denote the lower upper one as L p, q L q, p
.resp. , the optimal solution among all the connection patterns that corre-

spond to the configuration of Fig. 6a as

max optimal solution in L p , q q optimal solution in L q , p , 4� 4Ž . Ž . Ž .
p , q

Ž . Ž .where the optimal solutions in L p, q and L q, p satisfy the connection
restrictions indicated in the figure, and the maximum is computed over all

Ž .pairs of nodes p and q such that i p and q can be connected left and
Ž .right respectively, and ii p.row) q.row and p.column G q.column. For

Ž .such a pair p, q , let us concentrate on how to express the optimal
Ž . Ž Ž .solution in L p, q an expression for the optimal solution in L q, p can

.be found similarly . Only the two configurations shown in Fig. 8 are
possible, depending on whether the optimal connection pattern contains a

FIGURE 8

CONNECTING GRID NODES TO THE BOUNDARY 67

Ž .node in the rectangle R q.row q 1, p.row y 1; 1, q.column y 1 which is
connected down; the maximum of the corresponding optimal solutions

Ž .yields the optimal solution that we seek. The optimal solution in L p, q
that corresponds to the configuration of Fig. 8a is precisely

optimal down]left]right solution in R 1, q.row ; 1, max colŽ .]

w xq left q p.row y 1 . 5Ž . Ž .

Ž .See also Fig. 5a. In the configuration of Fig. 8b, the node s is meant to
be the highest node connected down in the optimal connection pattern in
Ž .L p, q ; the corresponding optimal solution is

w x w xs.a q left q p.row y 1 y left q s.rowŽ . Ž .Ž .
q optimal solution in M s, q , 6Ž . Ž .

where s.a denotes the optimal down]left solution in the quadrant A of s
Ž . Ž .see Fig. 3 , and M s, q denotes the L-shaped region at the bottom right
corner of the grid bounded by the connections of s and q. Therefore, the

Ž .optimal solution in L p, q over all connection patterns compatible with
the configuration of Fig. 8b is

w x w xmax s.a q left q p.row y 1 y left q s.row� Ž . Ž .Ž .
s

qoptimal solution in M s, q , 74Ž . Ž .

Žwhere s may be any node in the rectangle R q.row q 1, p.row y 1;
.1, q.column y 1 that can be connected down.

Ž .Finally, in order to compute the optimal solution in M s, q under the
connection restrictions indicated in Fig. 8b, we consider all possible
instances of the configuration shown in Fig. 9, where the node t is the

Ž .leftmost node in M s, q that is connected right; for each such case, the
Ž .corresponding optimal solution in M s, q is given by

w x w xdown s t .column y 1 q right t q.row q t .b ,Ž . Ž .

Žwhere t.b is the optimal down]right solution in the quadrant B of t see
. Ž .also Figs. 3 and 5 . Therefore, the optimal solution in M s, q is

w x w xmax down s t .column y 1 q right t q.row q t .b , 8� 4Ž . Ž . Ž .
t

Žwhere t may be q or any node in the rectangle R 1, q.row y 1; s.column q
.1, q.column y 1 that can be connected right.

LEONIDAS PALIOS68

FIGURE 9

C. Connection Patterns as Shown in Fig. 6b

This case is almost identical to case B. Since the corresponding con-
figurations are left-to-right mirror images, the entire discussion of
case B applies here, except that the directions left and right need to be
interchanged.

4. THE ALGORITHM

We now present the techniques and data structures that enable us to
improve the running time of the algorithm, and we analyze their complex-
ity in terms of the size n of the input set of nodes in the grid. Very briefly,

Ž .the algorithm begins with a preprocessing phase Section 4.1 , computes
the optimal solution over all vertically partitioned connection patterns
Ž .Section 4.2 , the optimal solution over all connection patterns as shown in

Ž .Fig. 6a Section 4.3 , and in a similar fashion the optimal solution over all
patterns as shown in Fig. 6b. Then, the maximum among these three

Ž .values yields the desired quantity in accordance with expression 2 .

4.1. The Preprocessing Phase

ŽIn this phase, we precompute and store in tables for constant time
. Ž . Ž .access some quantities that will be useful. First, as expressions 7 and 8

indicate, we need the optimal solutions in the quadrants of all the nodes.
Bruck and Roychowdhury also precompute these values; their approach

CONNECTING GRID NODES TO THE BOUNDARY 69

Ž 1.5 .involves computing each of them independently in O n log n time per
Ž 2.5 .node, for a total of O n log n time. However, the optimal solutions in

corresponding quadrants of two nodes are not completely independent,
and we can use this fact to our advantage. Indeed, thanks to recursive
definitions that we establish, we are able to compute the optimal left]down

Ž 2 . Žsolution in the quadrant A of all the nodes in O n total time Section
.4.1.1 ; extending the method to deal with solutions in the three remaining

quadrants is trivial. Since there are only four such quadrants, the total
Ž 2 .time to precompute all these optimal solutions is still O n .
Ž .w x Ž .w xNext, for each node t, we precompute the values of left t , right t ,

Ž .w xdown t , as well as those needed for the computation of the optimal
Ž .solution in L q, p and connection patterns as shown in Fig. 6b. For a

Ž .specific node, each of these arrays can be computed in O n time and
Ž .requires O n space to store. Therefore, precomputation of the values of

Ž 2 . Ž 2 .all these arrays for all the nodes takes O n time and O n space.
w x w x w xFinally, we also compute arrays leftmost , rightmost , lowest , and

w x w x Ž w x .highest : leftmost k rightmost k resp. is equal to the column of the
Ž .leftmost rightmost resp. node located in row k; if no node exists in row k,

Ž .it is set equal to n q 1 0 resp. . The entries for the other two arrays are
defined similarly over the columns of the grid. The entries of all four

Ž .arrays can be computed in O n time and space.

4.1.1. Computing the Optimal Left-Down Solution in the Quadrant A
of All the Nodes

Although seemingly counterintuitive, it turns out that computing the
Ž 2 .optimal left]down solution in the quadrant A of all O n grid ¨ertices

together takes less time than computing the corresponding solution for
Ž . Ž .each node independently. Let a i, j 0 F i F max row, 0 F j F max col]]

Ž .denote the maximum number of nodes in the rectangle R 0, i; 0, j that
can be connected to the left or bottom grid boundaries by means of
nonintersecting line segments; clearly, the optimal left]down solution in
the quadrant A of a node located at the intersection of row r and column

Ž . Ž .c is precisely the value a r, c see Fig. 3 .
Ž .Let us try to find a recursive definition for a i, j . First, since no nodes

are found in either the 0-th row or the 0-th column,

a i , 0 s 0, for all i : 0 F i F max row ;Ž .]

a 0, j s 0, for all j : 0 F j F max col.Ž .]

Ž .For the a i, j s, where both i and j are positive, we distinguish the fol-
lowing two cases:

Ž .1. No node in the ith row of R 0, i; 0, j , if any, is connected down:
Ž .Then, the optimal connection pattern in R 0, i; 0, j consists of an optimal

LEONIDAS PALIOS70

Ž .connection pattern in R 0, i y 1; 0, j plus a connection to the left from
Ž .the leftmost node among the nodes in the i-th row of R 0, i; 0, j , if any

such nodes exist. In other words, the optimal solution is

w x1, if leftmost i F j;
opt s a i y 1, j qŽ .1 ½ 0, otherwise,

w xwhere we remind that leftmost k is equal to the index of the column on
which the leftmost node in row k is located.

Ž .2. No node in the jth column of R 0, i; 0, j , if any, is connected left:
Ž .Then, the optimal connection pattern in R 0, i; 0, j consists of an optimal

Ž .connection pattern in R 0, i; 0, j y 1 plus a connection to the bottom
boundary side of the grid from the lowest node among the nodes in the jth

Ž .column of R 0, i; 0, j , if any such nodes exist. In other words, the optimal
solution is

w x1, if lowest j F i;
opt s a i , j y 1 qŽ .2 ½ 0, otherwise,

w xwhere lowest k is equal to the index of the row on which the lowest node
in column k is located.

It is not difficult to see that these two cases cover all possible connection
patterns. Connection patterns that do not fall in either case 1 or 2 must
have a connection down from a node in the ith row and a connection left

Ž .from a node in the jth column of R 0, i; 0, j ; such a connection pattern,
however, contains a pair of intersecting connections, and is thus disal-

Ž .lowed. Therefore, the optimal left]down solution in R 0, i; 0, j is the
maximum of the quantities opt and opt , that is,1 2

� 4a i , j s max opt , opt .Ž . 1 2

w x w xGiven that the values of leftmost and lowest are available after the
Ž .preprocessing phase, the computation of a i, j takes constant time if the

Ž . Ž .values of a i y 1, j and a i, j y 1 are already known. This implies that, if
Ž .the a i, j s are computed by increasing row and in each row by increasing

Ž 2 .column, the entire computation will require O n total time. Moreover,
Ž . Ž .the total space required is only O n ; notice that since a i, j depends on

Ž . Ž .a i y 1, j and a i, j y 1 , and the computation proceeds by increasing
Ž .row, we need only maintain the values of a i, j in the current row and the

row below it. In fact, max col q 1 F n q 1 entries suffice, as illustrated by]
w xthe use of the array t in the piece of C code included in Fig. 10 that

CONNECTING GRID NODES TO THE BOUNDARY 71

FIG. 10. Computing the optimal left]down solution in the quadrant A of all the nodes.

w xdoes the entire computation. The contents of t immediately before
Ž .a r, c is computed are:

a r , k , if 0 F k - c ;Ž .w xt k s ½ a r y 1, k , if c F k F max col.Ž .]

4.2. Vertically Partitioned Connection Patterns

Ž . Ž .In light of the normalization conditions 1 , the expression 3 implies
that the optimal solution over all vertically partitioned connection patterns

Ž . Žcan be found in O n time, provided that we have precomputed and
Ž . .tabulated in O n space the optimal up]down]left solutions in the

Ž .rectangles R 1, max row; 1, c and the optimal up]down]right solutions in]
Ž .R 1, max row; c q 1, max col for all c such that 1 F c - max col. We]]]

restrict our attention to computing the former set of solutions; the latter
set can be computed in an almost identical fashion, except that the grid
columns need to be processed from right to left. As in Section 4.1.1, the
idea of using recursive definitions leads to a very efficient method. Indeed,

Ž .in Section 4.2.1, we show how after the preprocessing phase the optimal
Ž .up]down]left solutions in R 1, max row; 1, c for all c can be computed in]

Ž .O n time by sweeping the grid from left to right.
The above discussion and the results in Sections 4.1.1 and 4.2.1 yield:

Ž 2 . Ž .LEMMA 4.1. Gï en a set S of n nodes in the grid, O n time and O n
space suffice to compute the size of a maximal subset of S such that each node

LEONIDAS PALIOS72

in the subset can be connected to the grid boundary by means of a line segment
parallel to one of the grid axes and these line segments do not intersect and
form a ¨ertically partitioned connection pattern.

4.2.1. Computing the Optimal Up]Down]Left Solutions in All
Ž .the Rectangles R 1, max row; 1, k Where 1 F k - max col.]]

First, we consider the case where k s 1; i.e., we are trying to compute
the optimal solution for the nodes in the first column, where their
associated line segments can be connected up, down, or left only. Then, all
these nodes can be connected left without conflict, and this obviously
forms an optimal connection pattern. Therefore,

optimal up]down]left solution in R 1, max row ; 1, 1Ž .]

s number of nodes in column 1 .Ž .

In case k) 1, the optimal connection pattern may be of one of the
following two configurations:

1. None of the nodes in the k th column are connected left: This
implies that the nodes in the k th column, if any, can be connected up or
down only; and hence their connections do not interfere with the connec-
tion pattern in the columns 1 through k y 1. Therefore, the optimal

Ž .solution sought in R 1, max row; 1, k equals]

optimal up]down]left solution in R 1, max row ; 1, k y 1Ž .]

0, if ' no nodes in column k ,
q 1, if ' 1 node in column k ,½ 2, if ' G 2 nodes in column k .

The first term accounts for the optimal solution involving the nodes in the
columns 1 through k y 1, while the second term accounts for the optimal
solution in the kth column, where the optimal connection pattern consists

Ž .of the top and bottom nodes if any being connected up and down
respectively.

2. At least one of the nodes in the k th column is connected left:
Figure 11 shows the configuration of the connection pattern if a node p in
the k th column is connected left. Then, in light of the definitions of the
quadrants associated with a node, the corresponding optimal solution is
p.a q p.d y 1; p.a and p.d are the optimal solutions in the quadrants A

Žand D of p, respectively note that if p can be connected left, there exists
an optimal connection pattern in quadrant A of p such that p is con-
nected left and the number of nodes connected to the grid boundary is

.p.a , while the term y1 takes care of the fact that the contribution of p

CONNECTING GRID NODES TO THE BOUNDARY 73

FIGURE 11

Ž .has been counted in both p.a and p.d see Fig. 3 . As a result, the optimal
solution in this case is

� 4max p.a q p.d y 1
node p

over all nodes p in the kth column that can be connected left.
The above discussion implies that, provided that the optimal up]down]

Ž .left solution in R 1, max row; 1, k y 1 and the optimal solutions in the]
quadrants A and D of each node are known, the optimal up]down]left

Ž . Ž .solution in R 1, max row; 1, k can be computed in O n q 1 time, where] k
n denotes the number of nodes in the k th column. Since the optimalk
solutions in the quadrants of each node have been precomputed, the entire

Ž . Žcomputation therefore takes O n time we take into account normaliza-
Ž ..tion conditions 1 , if we sweep the grid from left to right computing the

Ž .optimal up]down]left solutions in R 1, max r ; 1, k by increasing k.]

4.3. Connection Patterns as Shown in Fig. 6a

Ž .The expression 4 implies that the optimal solution over all connection
Ž 2 .patterns as shown in Fig. 6a can be computed in O n time provided that

Ž . Ž .we have found the optimal solutions in L p, q and L q, p . Again, we
Ž .concentrate on the computation of the optimal solutions in L p, q for all

Ž . Ž .appropriate pairs p, q ; the optimal solutions in L q, p can be found
Ž 2 .similarly. We show next how to carry out this computation in O n log n

Ž 3. w xinstead of O n as described in 3 .

LEONIDAS PALIOS74

The basic idea is to compute together all the optimal solutions in the
Ž .L p, q s for each specific node q and all ps; to do that, we augment the

partial solutions that contribute to the above optimal solutions in such a
Ž .way that the optimal solution in L p, q is equal to the sum of the

Ž . Žcorresponding augmented partial solutions minus a corrective term which
.depends only on p and q . Crucial in performing this task efficiently is the

use of a new type of priority search trees, which we introduce in Section
Ž4.3.1; these trees enable us to compute the optimal solution for a part of

.the grid among a number of candidates in time logarithmic in their
Ž 2 .number. Moreover, the total space they take is O n ; thus, the space

Žcomplexity of the algorithm does not increase in the asymptotic sense. In
Ž .fact, if we reuse the space that an obsolete tree is taking, O n space

.suffices.

4.3.1. The Data Structure: A New Type of Priority Search Trees

ŽSuppose that we are given an ordered set S of m objects in our case,
nodes in the grid, whose order is defined as a function of their row and

.column indices . Additionally, the elements of S have been assigned
priorities. Our objective is to perform the following operations on the
elements of S fast:

MaxUpTo p : Find the maximum among the priorities of all theŽ .
elements of S preceding p and including p if it
belongs to S.

SubUpTo k , p : Subtract k from the priority of all the elementsŽ .
of S preceding p.

Remo¨e p : Remove the element p from the set S.Ž .

ŽIt is interesting to observe that the description of the elements of S and
.to a lesser degree, the desired operations suggests that the right choice for

data structure to represent the set S may be a priority search tree, that is,
a balanced binary search tree with an additional heap ordering. Unfortu-

w x Ž w x.nately, the standard priority search tree described in 6 see also 7 stores
Ž .elements at the internal nodes of the tree, which causes the SubUpTo

Ž 2 .operation to take V log m time in the worst case: imagine the case
where the first log mr100 elements of S have the largest priorities so that

Ž .they are located at the top log mr100 levels of the tree one per level , and
assume that we reduce their priorities by such an amount that they all
have to be moved to the bottom log mr100 levels; filling each one of the
Ž .V log m vacant slots can be viewed as moving the vacant slot all the way

Ž 2 .down the tree, thus incurring an V log m total cost.

CONNECTING GRID NODES TO THE BOUNDARY 75

We therefore use a different type of priority search trees. The basic
structure is a balanced binary search tree whose leaves from left to right
correspond to the elements of S in order. The novelty lies in the way the
heap ordering of the priorities is stored and maintained in the tree: each
tree node is associated with two fields, namely max and debt, the idea
being that the field debt stores the amount by which the priorities of all
the leaves descending from that node have to be reduced. Thanks to this
field, subtracting k from the priorities of the first i elements of S reduces

Ž .to finding the at most 2 log i maximal subtrees whose sets of leaves
partition the set of the i leftmost leaves of our priority search tree, and
adding k to the debt field of their roots. Initially, all the debt fields equal
0; the max field of each tree leaf is initialized to the priority of the
associated element of S, while the max field of an internal tree node t is
initialized according to the heap ordering condition

� 4t .max s max c .max y c .debt , c .max y c .debt , 9Ž .l l r r

where c and c are the two children of t. A subtle point is that now thel r
current priority of an element of S associated with a leaf t of the tree
equals t.max minus the sum of the debt fields of all the tree nodes on the

Ž .path from the root to t inclusive . Clearly, building and initializing the
tree takes time linear in the size of S.

Let us now see how we can perform each of the above operations fast.
v Ž .MaxUpTo p : Thanks to the heap ordering, finding the maximum

over the priorities of the elements of S preceding and including p if it
belongs to S reduces into descending the tree guided by p, and computing
the maximum over the quantities

c .max y c .debt y a.debtÝl l
ancestor a of cl

of the left child c at each tree node where the path we are followingl
makes a right turn; note that each such child is the root of a subtree,
whose leaves all correspond to elements of S preceding p. Finally, if p is
in S, we also take into account p’s priority, i.e.,

t .max y t .debt y a.debt ,Ýp p
ancestor a of tp

where t is the tree leaf corresponding to p.p
v Ž .SubUpTo k, p : As described earlier, we descend the tree guided by

p, and we add k to the debt field of the left child of every tree node where
we take a right turn. After reaching a leaf, we walk up the same path while

LEONIDAS PALIOS76

making sure that the max field of each of the nodes in the path satisfies
Ž .the heap invariant 9 , updating the field appropriately if needed.

v Ž .Remo¨e p : The removal consists of two steps. First, we reduce the
priority of p, so that it does not contribute to the heap ordering at all.
Unless the entire tree is just a single node, in which case we just discard it
and terminate, the tree leaf t corresponding to p has a parent that hasp

another child, say t , corresponding to another element q of S. Then weq

compute d s t .max y t .debt y t .max q t .debt: if d F 0, the priorityp p q q

of p is no more than that of q, and we proceed to the second step;
Žotherwise, we add d to t .debt which is sufficient to reduce the priority ofp

.p so that it equals the priority of q , and then we move up from t to thep
Ž .root, if needed, updating the max fields, so that equality 9 holds. In the

second step, we remove the tree leaf t , and reduce the 3-node subtreep

rooted at t ’s parent, say t, into a single leaf that inherits t ’s fields, exceptp q

that its debt field is set to t.debt q t .debt. The removal may requireq

rebalancing, and local updating of the max fields if a rotation occurs.
� Ž . Ž . Ž .Figure 12 shows the initial tree for the set S s a 3, 5 , b 5, 6 , c 1, 6 ,

Ž . Ž . Ž .4 Ž Ž .d 4, 7 , e 6, 8 , f 2, 8 of nodes in the grid by p r, c , we denote the node
.p located in row r and column c of the grid , and respective priorities 7, 7,

Ž5, 6, 5, and 4. The nodes have been ordered in S by increasing column
.and decreasing row for nodes in the same column. The letter below each

leaf of the tree indicates the corresponding node in S; the two numbers in
each tree node correspond to its max and debt fields respectively. Figure

Ž Ž ..13a shows the changes in the max and debt fields after a SubUpTo 1, 6, 7
Ž .operation at the tree of Fig. 12; note that 6, 7 should be placed between c

FIGURE 12

CONNECTING GRID NODES TO THE BOUNDARY 77

FIGURE 13

and d in the ordered set S. Figure 13b shows the effect of a subsequent
Ž .Remo¨e e operation: a double rotation at the tree root.

The above discussion implies that performing each of the three opera-
tions as described above takes time linear in the height of the priority
search tree, that is, time logarithmic in the number of leaves of the tree,
since the tree is balanced. Summarizing, we have:

LEMMA 4.2. Gï en a set S of size m, a priority search tree of the type we
Ž .introduced in this section enables us to perform each of the MaxUpTo ,

Ž . Ž . Ž .SubUpTo , or Remo¨e operations on S in O log m time. The priority
Ž . Ž .search tree requires O m time to construct and O m space to store.

We close this section by mentioning that the priority search tree we
introduced supports other operations in logarithmic time as well: insertion,
computing the maximum over the priorities of all the elements of S

Ž . Ž Ž .between two potential elements of S the equivalent of MinYinXRange
w x. Ž .described in 6 , and the equivalents of MinXinRectangle and MaxXin-

Ž . w x Ž .Rectangle described in 6 . The equivalent of EnumerateRectangle ,
ŽŽ . .however, may take as much as Q k q 1 log m time, if k out of the m

elements of S are reported.

()4.3.2. Computing the Optimal Solution in L p, q for All the
()Appropriate Pairs p, q

Ž .Let us now see how we can compute the optimal solutions in L p, q for
Ž . Ž 2 .all the appropriate pairs p, q in O n log n total time. Since the expres-

Ž . Ž . Ž .sion 7 relies on the optimal solution in M s, q see Fig. 8b , we first
Ž .compute the optimal solution in M u, ¨ for all the appropriate pairs

Ž .u, ¨ ; thanks to the priority search tree that we described in Section 4.3.1,
Ž 2 .we can do that in O n log n total time.

LEONIDAS PALIOS78

The idea is that, for each node u that can be connected down, we
Ž .compute the optimal solutions in M u, ¨ for all appropriate ¨ s together;

Ž .these are the nodes in the quadrant B of u except u that can be
Ž .connected right Fig. 8b . In particular,

Ž0. We build a priority search tree T of the type described in Sectionu
. Ž .4.3.1 on the set S of nodes in the quadrant B of u except u that can beu

connected right; note that the latter requirement implies that S containsu
at most one node per row. The elements of S are ordered by increasingu

Žcolumn and decreasing row, if two nodes happen to be in the same
.column , which can be done in linear time using radix-sort. The priority of

Ž .such an element node t equals the optimal solution in the rectangle
Ž .R 1, u.row; u.column q 1, max col under the connection restrictions]

Ž .shown in Fig. 14 t is assumed to be the leftmost node connected right ,
which is

w x w xinit t s down u t .column y 1 q right t u.row q t .b; 10Ž . Ž . Ž . Ž .

the three terms correspond to the optimal solutions in the rectangles R ,1
R , and R , respectively. Figure 12 depicts the tree T that corresponds to2 3 u
the node u in Fig. 15. Note that the node z is not associated with any tree
leaf; as it cannot be connected right, it is not an element of S on which Tu u
is built. Figure 16 shows optimal connection patterns that comply with
Fig. 14 and justify the priorities 7 and 5 assigned to the nodes b and c,
respectively.

FIGURE 14

CONNECTING GRID NODES TO THE BOUNDARY 79

FIGURE 15

Ž .Then, the optimal solutions in M u, ¨ for all the nodes ¨ that define
Žsuch a configuration with u as suggested by Fig. 8b, these are the nodes in

Ž .the quadrant B of u except u that can be connected right, that is, the
.elements of S are computed as described below:u

Ž .1. We process the nodes x that define a region M u, x with u by
decreasing row. Since these nodes are precisely the nodes in S , we copyu
the elements of S in a list Q, and we radix-sort them by decreasing row inu
linear time.

2. Then, each node, say ¨ , in Q is processed in order as follows:
Ž .a. We perform a MaxUpTo ¨ operation in T , which, according tou

the ordering of S , returns the maximum over the priorities of ¨ and allu
the nodes associated with tree leaves preceding ¨ ; the value returned is

Ž .the optimal solution in M u, ¨ .

FIGURE 16

LEONIDAS PALIOS80

Ž .b. Next, we perform a SubUpTo 1, ¨ operation in T to reduce theu
priorities of all the nodes associated with tree leaves preceding ¨ .

Žc. Finally, we remove the node ¨ from the set S actually, the leafu
. Ž .associated with ¨ in T by performing a Remo¨e ¨ operation.u

The correctness of the procedure follows from the following argument:
Let us assume that we are processing node q from Q. Then, because of
the ordering of the leaves in T and the removal operation in Step 2c, theu
nodes associated with the leaves preceding q are precisely the nodes in the

Ž .rectangle R 1, q.row y 1; u.column q 1, q.column y 1 . Executing Step 2a
yields

� 4max current priority of t 11Ž .
t

Ž .as the optimal solution in M u, q , where, as indicated, the maximum is
Ž .computed over all nodes t in R 1, q.row y 1; u.column q 1, q.column y 1

Ž .and q as well. After having been assigned to its initial value init w
Ž .according to expression 10 , the priority of a node w decreased by 1 every

time step 2b was executed for a node ¨ in Q such that w lies in
Ž .R 1, ¨ .row y 1; u.column q 1, ¨ .column y 1 , or equivalently for every

Žnode in Q that lies in the rectangle R w.row q 1, u.row; w.column q 1,
. Ž .w xmax col . Therefore, taking into account the definition of right in]

Section 2, and the fact that the nodes in Q came from S , which containsu
only nodes that can be connected right, we find that the current priority of
a node w when q is being processed is

w x w xinit w y right w u.row y right w q.row . 12Ž . Ž . Ž . Ž .Ž .

Ž . Ž . Ž .Combining expressions 10 , 11 , and 12 , and substituting s for u yields
Ž . Ž .precisely expression 8 for the optimal solution in M s, q .

Ž .From a complexity point of view, the above procedure takes O n log n
Ž .time to find the optimal solutions in M u, ¨ for a fixed u and all the

Ž .appropriate ¨ s; the tree T requires O n time to build, while each of theu
Ž . Ž . Ž . Ž .MaxUpTo , SubUpTo , and Remo¨e operations takes O log n time

Ž . Ž .to execute Lemma 4.2 , since the number of elements of S is O nu
initially and always decreases. Repeating the procedure for all nodes u
that can be connected down will yield the optimal solutions in all the
Ž . Ž 2 .M u, ¨ that we need in O n log n total time. All these values are then

Ž Ž 2 . .stored in an array of O n size for constant time access.
Ž .We are now ready to compute the optimal solutions in L p, q , for all

Ž .the appropriate pairs p, q . Again, for each node q that can be connected

CONNECTING GRID NODES TO THE BOUNDARY 81

Ž .right, we compute the optimal solutions in L p, q for all appropriate ps
together. We perform the following steps:

0. We build a priority search tree T for each node q that can beq
connected right. The tree is built on the set S of nodes in the rectangleq
Ž .R q.row q 1, max row; 1, q.column y 1 that can be connected down, plus]

Ž .a dummy node located at 0, 0 . The elements of S are ordered byq
Žincreasing row and decreasing column, if two nodes happen to be in the

.same row , which again can be done in linear time using radix-sort; note
that the dummy node will be the first node in the ordered list. The priority
of the dummy node is equal to the optimal solution for the configuration
shown in Fig. 17a, that is,

optimal down]left]right solution in R 1, q.row ; 1, max colŽ .]

w xq left q max row . 13Ž . Ž .]

Ž Ž .Note that the optimal down]left]right solutions in R 1, i; 1, max col for]
Ž . Ž .all i 1 F i - max row can be precomputed in O n time in a fashion]

.similar to that described in Section 4.2.1. The priority of any other
Ž .element node s of S is equal to the optimal solution in the regionq

Žshown in Fig. 17b under the indicated restrictions s is assumed to be the
.highest node connected down , which is

w x w xs.a q left q max row y left q s.rowŽ . Ž .Ž .]

q optimal solution in M s, q ; 14Ž . Ž .

the three terms correspond to the optimal solutions in the rectangles R1
Ž .and R and in M s, q , respectively.2

FIGURE 17

LEONIDAS PALIOS82

Ž .1. For each node p in the quadrant C of q except q that can be
Ž .connected left, we perform a MaxUpTo p to compute the maximum

among the optimal solutions associated with each of the nodes in Sq
located below the row of p. If the value returned is ¨al, then we report

w x w x¨al y left q max row y left q p.row y 1 15Ž . Ž . Ž .Ž .]

Ž .as the optimal solution in L p, q .
The correctness of the procedure follows from the comparison of Figs. 8

Ž . Ž . Ž . Ž .and 17, and expressions 5 and 13 , and 6 and 14 taking into account
Ž . Ž .expression 15 as well. Since the size of S is O n , Lemma 4.2 impliesq

Ž . Ž .that the tree T of the node q requires O n time to construct and O nq
Ž .space to store. Additionally, the MaxUpTo operation takes time loga-

rithmic in the size of S , so the total time required to find the optimalq
Ž . Ž .solution in L p, q for each such pair p and q is O log n . In other words,

Ž .after having computed the optimal solutions in M u, ¨ , additional
Ž 2 .O n log n time suffices for the computation of the optimal solutions in
Ž . Ž .L p, q for all the appropriate pairs p, q .

Ž . Ž Ž ..Summarizing, the optimal solutions in L p, q and similarly in L q, p
Ž 2 .for all appropriate p and q can be found in O n log n time and can be

Ž 2 . Ž .tabulated in O n space. Then, the maximum in expression 4 can be
Ž 2 .computed in O n time, and therefore

Ž 2 .LEMMA 4.3. Gï en a set S of n nodes in the grid, O n log n time and
Ž 2 .O n space suffice to compute the size of a maximal subset of S such that

each node in the subset can be connected to the grid boundary by means of a
line segment parallel to one of the grid axes and these line segments do not
intersect and they form a connection pattern as shown in Fig. 6a.

4.4. Putting the Pieces Together

In Sections 4.2 and 4.3, respectively, we showed how to efficiently
Ž .compute the first and second terms in expression 2 ; the third term can be

computed in a fashion similar to the second one and in the same time and
space complexity. Then, Lemmas 4.1 and 4.3 imply that

Ž 2 .THEOREM 4.1. Gï en a set S of n nodes in the grid, O n log n time and
Ž 2 .O n space suffice to compute the size of a maximal subset of S such that

each node in the subset can be connected to the boundary of the grid by means
of a line segments parallel to one of the grid axes and no two such line
segments intersect.

CONNECTING GRID NODES TO THE BOUNDARY 83

5. DISALLOWING NEAR-MISSES

Unlike the general problem, we can no longer blindly eliminate all rows
and columns that do not contain any nodes from the given set. The reason
is that in this way nodes may be brought in adjacent rows or columns,
which, since near-misses are disallowed, will impose additional restrictions
that did not exist in the original problem configuration. It is crucial to
observe, however, that the exact number of empty rows or columns
between two nodes does not really matter; in other words, we can merge

Ž .any positive number of successive empty rows columns resp. into a single
Ž .empty row column resp. without altering the final optimal solution. We

can, therefore, assume without loss of generality that the given nodes are
Ž .all contained in the rectangle with vertices at the grid points 1, 1 ,

Ž . Ž . Ž .max row, 1 , max row, max col , and 1, max col , where]]]]

max row F 2n y 1 and max col F 2n y 1. 16Ž .]]

Our basic strategy will be the same as that for the general problem; so,
below, we identify the places where near-misses may arise, and appropri-
ately modify the general algorithm to safeguard against them. Interest-
ingly, however, the time and space complexity of the resulting algorithm
matches that of the general algorithm in the asymptotic sense, and we are
able to prove the counterparts of Lemmas 4.1 and 4.3, which imply that

Ž 2 .THEOREM 5.1. Gï en a set S of n nodes in the grid, O n log n time and
Ž 2 .O n space suffice to compute the size of a maximal subset of S such that

each node in the subset can be connected to the boundary of the grid by means
of a line segments parallel to one of the grid axes and no two such line
segments intersect or exhibit near-misses.

5.1. The Preprocessing Phase

First, it is easy to see that, since the connections in each of the
Ž .quadrants of a node do not involve opposite directions see Fig. 3 , no

near-miss can possibly occur in the corresponding optimal solutions.
Therefore, the method of Section 4.1.1 can be applied without modifica-
tions. Moreover, the same applies in the computation of the values of

Ž .w x Ž .w x Ž .w xleft t , right t , and down t as well as the corresponding quantities
Ž .needed for the optimal solutions in L q, p . Finally, the values of the

w x w x w x w xarrays leftmost , rightmost , lowest , and highest depend solely on
the location of the given nodes, and not the allowed directions.

In summary, even if near-misses are disallowed, the methods of Section
4.1 do not change. Note however that the interesting portion of the grid
may have up to twice as many rowsrcolumns as nodes; this implies for

LEONIDAS PALIOS84

instance that the arrays we use are of size 2n and that the value of
w x Ž w x . Žleftmost k lowest k resp. is set equal to 2n if the k-th row column

.resp. does not contain any nodes.

5.2. Vertically Partitioned Connection Patterns

If near-misses are not allowed, it is no longer true that the optimal
connection pattern which is vertically partitioned, say, about column c,
consists of the optimal up]down] left connection pattern in
Ž .R 1, max row; 1, c and the optimal up]down]right connection pattern in]
Ž .R 1, max row; c q 1, max col ; the reason is that these two partial opti-]]

mal solutions may very well exhibit a near-miss in columns c and c q 1.
Ž .We therefore need to compute optimal solutions in R 1, max row; 1, c]

Ž Ž . .and R 1, max row; c q 1, max col resp. under the additional restriction]]
Ž .that no node in column c column c q 1 resp. is connected up or down. In

particular, we use the following notation:

w xl complete k : Optimal up]down]left solution]

in R 1, max row ; 1, k .Ž .]
w xl non-up k : Optimal up]down]left solution]

in R 1, max row ; 1, k ,Ž .]
where no node in column k is connected up.

w xl non-down k : Optimal up]down]left solution]

in R 1, max row ; 1, k ,Ž .]
where no node in column k is connected down.

Similarly

w xr complete k : Optimal up]down]right solution]

in R 1, max row ; k , max col .Ž .]]
w xr non-up k : Optimal up]down]right solution]

in R 1, max row ; k , max col ,Ž .]]
where no node in column k is connected up.

w xr non-down k : Optimal up]down]right solution]

in R 1, max row ; k , max col ,Ž .]]
where no node in column k is connected down.

It turns out that computing the optimal solution over all connection
patterns that are vertically partitioned about column c reduces to consid-
ering the following three cases:
Ž . w x w xi if 1 F highest c - lowest c q 1 - 2n: Then, connecting the

highest node in column c up and the lowest node in column c q 1 down

CONNECTING GRID NODES TO THE BOUNDARY 85

Ž .creates a near-miss see Fig. 18a ; so, these two connections are incompati-
ble, and therefore the optimal solution in this case is

w x w x¨p opt c s max l complete c q r non-down c q 1 ,�Ž .]]]

w x w xl non-up c q r complete c q 1 .4]]

Ž . w x w xii if 1 F highest c q 1 - lowest c - 2n: Similarly to the previous
case, connecting the lowest node in column c down and the highest node

Ž .in columns c q 1 up creates a near-miss see Fig. 18b . The optimal
solution is

w x w x¨p opt c s max l complete c q r non-up c q 1 ,�Ž .]]]

w x w xl non-down c q r complete c q 1 .4]]

Ž .iii Otherwise, no near-miss can possibly exist at columns c and c q 1
Ž . .see Figs. 18c and 18d , and symmetric cases ; therefore,

w x w x¨p opt c s l complete c q r complete c q 1 .Ž .]]]

ŽNote that, if no nodes exist in column c or c q 1, then we end up in
Ž . .case iii , as desired. The above procedure allows us to compute the

Ž .optimal solution ¨p opt c of all vertically partitioned connection patterns]
about a specific column c in constant time, provided that the correspond-
ing complete, non-up, and non-down solutions are available. After this has

Ž .been done for all columns c 1 F c F max col , the optimal solution over]
all vertically partitioned patterns is simply

max ¨p opt c .� 4Ž .]
1Fc-max col]

FIGURE 18

LEONIDAS PALIOS86

w x w xWe show next how to compute the l complete k , l non-up k , and]]
w x Ž .l non-down k solutions for all k such that 1 F k - max col in O n time]]

Ž Ž . . w xand O n space to store the values . Computing the r complete k ,]
w x w x Ž .r non-up k , and r non-down k solutions 1 F k - max col is an easy]]]

extension: the columns are processed in a similar fashion from right to left.
In light of the above discussion and Lemma 4.1, we conclude that:

Ž 2 . Ž .LEMMA 5.1. Gï en a set S of n nodes in the grid, O n time and O n
space suffice to compute the size of a maximal subset of S such that each node
in the subset can be connected to the grid boundary by means of a line segment
parallel to one of the grid axes and these line segments do not intersect or
exhibit near misses and they form a ¨ertically partitioned connection pattern.

w x w x w x5.2.1. Computing the l complete , l non-up , and l non-down]]]
Solutions

Before getting into the details of the method that we use, we prove the
following easy lemma, which helps us simplify the final expressions.

Ž .LEMMA 5.2. For any column k of the grid 1 F k - max col ,]

w x w xl non-up k q 1 G l complete k]]

and

w x w xl non-down k q 1 G l complete k .]]

Similarly,

w x w xr non-up k q 1 G r complete k]]

and

w x w xr non-down k q 1 G r complete k .]]

Proof. We concentrate on the first of the four inequalities. Consider an
Ž .optimal connection pattern in R 1, max row; 1, k that corresponds to]

w xl complete k . If column k does not contain any nodes, or the connection]
pattern does not contain a connection up from the highest node in column
k, then

w x w xl non-up k G l complete k]]

w x w xaccording to the definition of l non-up k ; therefore, l non-up k q 1 G]]
w xl complete k . Otherwise, removing that connection produces a connection]

w xpattern with l complete k y 1 connections, where no node in column k is]
connected up; thus,

w x w xl non-up k G l complete k y 1.]]

CONNECTING GRID NODES TO THE BOUNDARY 87

In general, the approach is to process the columns from left to right,
w x w xcomputing all three solutions l complete , l non-up , and l non-]]]

w xdown for each column before moving to the next one; the reason is that
the value of each of the three solutions for a specific column also involves
the values of the other quantities at the previous column. However, for

w xsimplicity, we present the methods to compute l complete , and l non-]]
w x w xup and l non-down in separate paragraphs.]

w x Ž . ŽComputing the l complete k solution 1 F k - max col . If k s 1 that]]
.is, we consider the nodes in the first column only , all the nodes can be

connected left. Hence,

w xl complete 1 s number of nodes in column 1 .Ž .]

For k) 1, we distinguish the following three cases:
1. If there exist no nodes in column k: Then, the optimal solution in
Ž . Ž .R 1, max row; 1, k is the same as that in R 1, max row; 1, k y 1 , i.e.,]]

w x w xl complete k s l complete k y 1 .]]

2. If there exists exactly 1 node, say ¨ , in column k: Interestingly, if
node ¨ can be connected up or down without restriction, we can always
connect it to the boundary without creating a near-miss; indeed, we

w xconnect ¨ up, if ¨ .row) lowest k y 1 , otherwise we connect it down.
Therefore,

w x w xl complete k s l complete k y 1 q 1.]]

Note that we do not need to consider the case where ¨ is connected
w xleft, since, due to the optimality of l complete k y 1 , the quantity]

w x w xl complete k cannot exceed l complete k y 1 q 1.]]
3. If there exist at least 2 nodes in column k: Then, the connection

pattern either involves a connection left from a node q in column k, or no
such connection exists. In the former case, the connection associated with
q precludes a near-miss, and the corresponding optimal solution is

� 4c opt s max q.a q q.d y 1 ,] 1
q

Žwhere q ranges over all nodes in column k that can be connected left the
term y1 takes care of the fact that q’s connection has been counted both

.in q.a and q.d . In the latter case, nodes in column k can be connected up
or down only, and the pattern is vertically partitioned about column k y 1.
We can therefore apply the rules that we came up with in the beginning of
Section 5.2 to combine partial optimal solutions in order to compute the
optimal solution of a vertically partitioned pattern, where c s k y 1. In

LEONIDAS PALIOS88

this case, the right-hand side portion of the grid contains column k only,
and the nodes can be connected up or down only; since, there are at least
2 nodes in column k,

w x w x w xr complete k s 2 and r non-up k s r non-down k s 1.]]]

Ž . Ž . Ž .Then, cases i , ii , and iii in Section 5.2 translate into the following
three case statements, respectively, where we also used Lemma 5.2 to

� 4eliminate the max operators.

¡ w x w xl non-up k y 1 q 2, if 1 F highest k y 1]
w x- lowest k - 2n;

~ w x w xl non-down k y 1 q 2, if 1 F highest kc opt s]] 2

w x- lowest k y 1 - 2n;¢ w xl complete k y 1 q 2, otherwise.]

Overall, the optimal solution in this case is

w x � 4l complete k s max c opt , c opt .]] 1] 2

w x w x ŽComputing the l non-up k and l non-down k solutions 1 F k -]]
. w xmax col . As in the case of the l complete 1 value,]]

w xl non-up 1 s number of nodes in column 1Ž .]

w xl non-down 1 s number of nodes in column 1Ž .]

since all the nodes can be connected left. For k) 1, we distinguish the
following two cases:

1. If there exist no nodes in column k: Then, clearly,

w x w xl non-up k s l complete k y 1]]

w x w xl non-down k s l complete k y 1 .]]

2. If there exists at least 1 node in column k: Again, either a node in
column k is connected left, or no such connection exists in the connection
pattern. In the former case, and assuming that q is the highest node in
column k connected left, we have that the corresponding l non-up solu-]
tion is

nu opt s max q.a q d q.row q 1, q.column y 1 ,� 4Ž .] 1
q

Ž .where d i, j is equal to the optimal left]up solution in the rectangle
Ž . Ž Ž . .R i, max row; 1, j compare to the definition of a i, j in Section 4.1.1 . In]

CONNECTING GRID NODES TO THE BOUNDARY 89

case no node in column k is connected left, we distinguish two cases. If
w x w xhighest k y 1 G lowest k , we can safely connect the lowest node in col-

umn k down, and the corresponding non-up solution is

w xl complete k y 1 q 1.]

w x w xIf highest k y 1 - lowest k , however, the highest node in column k y 1
and the lowest node in column k would create a near-miss if they are
connected up and down, respectively; so, these connections cannot coexist,
and the optimal solution is

w x w xmax l complete k y 1 , l non-up k y 1 q 1 ,� 4]]

the first term corresponding to a connection pattern where the lowest
node in column k is not connected down, and the second term correspond-
ing to a pattern where the highest node in column k y 1, if any, is not
connected up. According to Lemma 5.2, the above maximum is equal to

w xl non-up k y 1 q 1, and therefore, the optimal solution if no node in]
column k is connected left is

w x w x w xl complete k y 1 q 1, if highest k y 1 G lowest k ;]nu opt s] 2 ½ w xl non-up k y 1 q 1, otherwise.]

Summarizing,

w x � 4l non-up k s max nu opt , nu opt .]] 1] 2

Similarly, for the l non-down solution, we have]

w x � 4l non-down k s max nd opt , nd opt ,]] 1] 2

where

nd opt s max a q.row y 1, q.column y 1 q q.d� 4Ž .] 1
q

over all nodes q in column k that can be connected left, and

w x w x w xl complete k y 1 q 1, if lowest k y 1 F highest k ;]nd opt s] 2 ½ w xl non-down k y 1 q 1, otherwise.]

It should be obvious that computing the optimal solution over all vertically
partitioned patterns while at the same time disallowing near-misses re-

Ž .quires an additional O n space, as opposed to the general algorithm

LEONIDAS PALIOS90

Ž .described in Section 4: we need to store all three partial solutions
w x w x w x Žl complete , l non-up , and l non-down and their right-side coun-]]]

.terparts instead of just one as in Section 4; additionally, for each node
Ž Ž .. Žlocated at the grid vertex r, c , we need to store the values of a r y 1,

. Ž . Ž .c y 1 and d r q 1, c y 1 , and by symmetry the values of b r y 1, c q 1
Ž . Ž w xand c r q 1, c q 1 which will be needed to compute the r non-up c and]

w x .r non-down c solutions . Therefore, according to Lemma 4.1, the total]
Ž .space required at this step is O n .

w xFinally, from a complexity standpoint, computing the l complete k ,]
w x w x Ž . Ž .l non-up k , and l non-down k for all k 1 F k - max col takes O n]]]

time: as shown above, the value of each of the above quantities for column
Ž .k takes O n q 1 time given the corresponding values for column k y 1k

Ž .n is the total number of nodes in column k ; therefore, if we process thek
Ž .columns in increasing order, the overall time will be O n in light of the

Ž .normalization conditions 16 .

5.3. Connection Patterns That Are Not Vertically Partitioned

Unlike Section 5.2, only minor changes need to be introduced in the
algorithm described in Section 4.3, so that no near-misses are present. It is
important to observe that a connection pattern that contains nodes p and
q as shown in Fig. 6, which are connected to the left and right side
respectively, cannot exhibit a vertical near-miss. Horizontal near-misses
may however exist, but they can come up in the following two places only:

1. A near-miss could be formed by the connections of nodes p and q:
To eliminate such a possibility, we need to consider only those among the

Ž .pairs p, q as shown in Fig. 6, where p and q either are on the same
column, or otherwise are at least one row away.

Ž .2. At the rectangle R 1, q.row; 1, max col , while considering the con-]
Ž .figuration of Fig. 17a: Then, in the expression 13 , we need only use the

Ž . Žcorresponding complete solution in R 1, q.row; 1, max col which pre-]
.cludes the existence of near-misses; see Section 5.2 .

Clearly, the above changes do not increase the asymptotic time or space
complexity of the algorithm, and therefore, in light of Lemma 4.3 and the

Ž . Ž .similarity of cases a and b of Fig. 6, we have

Ž 2 .LEMMA 5.3. Gï en a set S of n nodes in the grid, O n log n time and
Ž 2 .O n space suffice to compute the size of a maximal subset of S such that

each node in the subset can be connected to the grid boundary by means of a
line segment parallel to one of the grid axes and these line segments do not
intersect or exhibit near-misses and they form a connection pattern that is not
¨ertically partitioned.

CONNECTING GRID NODES TO THE BOUNDARY 91

6. CONCLUDING REMARKS

In this paper, we considered the problem of connecting nodes in the grid
to the grid boundary by means of nonintersecting line segments along one
of the grid axes; we showed that given a set of n nodes, the size of a
maximal subset containing nodes that can be connected to the boundary of

Ž 2 .the grid by means of such line segments can be computed in O n log n
Ž 2 .time and O n space. Furthermore, we can achieve the same time and

space complexity under the additional constraint that no near-misses are
exhibited in the connection pattern.

Instrumental in the algorithm is a new type of priority search trees; its
key feature is that, given an ordered set S, it allows us to increase or
decrease the priorities of the elements in an inter̈ al of S by the same
amount in time logarithmic in the size of S. In fact, one can achieve time
complexity logarithmic in the size of the interval, provided that we have a
‘‘finger’’ in one of the elements of the interval. This is the case in the
problem we deal with in this paper, since the intervals we consider always
contain the first element of the current set S; however, this observation
does not improve the asymptotic time complexity of the algorithm in the
worst case.

Although we concentrated on finding the maximum number of noninter-
secting connections, the algorithm can be easily modified to yield an
optimal connection pattern as well; we simply need to maintain pointers

Ž .from each optimal solution to the optimal partial solutions that con-
Ž Ž 2 . Ž .tributed to it in this case, we may have to store all O n solutions a i, j

and their counterparts in the remaining three quadrants; see Section
. Ž .4.1.1 . The optimal connection pattern can then be computed in O n time

by tracing back these pointers.
Of course, the immediate open question is whether the time andror

space complexity of the described algorithms can be improved. Note that
speeding up the algorithm to compute the optimal solution over the
connection patterns that are not vertically partitioned will immediately
speed up the entire algorithm.

Finally, as is the case with the near-misses, different restrictions in the
connection pattern yield interesting variants of the problem considered.
An interesting variant requires that the intersections of the interiors of the
line segments that connect nodes to the grid boundary be empty, thus
allowing line segments to abut to each other.

ACKNOWLEDGMENTS

I express my thanks to Bhaskar Dasgupta of the Computer Science Department at the
University of Minnesota for suggesting the problem and for helpful discussions.

LEONIDAS PALIOS92

REFERENCES

1. Y. Birk and J. B. Lotspiech, A Fast Algorithm for Connecting Grid Points to the
Boundary with Nonintersecting Straight Lines,’’ in ‘‘Proc. 2nd Annual Symposium on
Discrete Algorithms,’’ 1991, pp. 465]474.

2. C. Bron and J. Kerbosch, Algorithm 457]Finding all cliques of an undirected graph,
Ž .Comm. ACM 16 1973 , 575]577.

3. J. Bruck and V. P. Roychowdhury, How to play bowling in parallel on the grid, J. Algo-
Ž .rithms 12 1991 , 516]529.

4. K. Hwang and F. A. Briggs, ‘‘Computer Architecture and Parallel Processing,’’ McGraw]

Hill, New York, 1985.
5. S. Y. Kung, S. N. Jean, and C. W. Chang, Fault-tolerant array processors using single-track

Ž .switches, IEEE Trans. Comput. 38 1989 , 501]514.
Ž .6. E. M. McCreight, Priority search trees, SIAM J. Comput. 14 1985 , 257]276.

7. K. Mehlhorn, ‘‘Data Structures and Algorithms,’’ Vol. 3, Springer-Verlag, Berlin, 1984.
8. R. Raghavan, J. Cohoon, and S. Sahni, ‘‘Manhattan and Rectilinear Wiring,’’ Technical

Report 81-5, Computer Science Dept., University of Minnesota, Minneapolis, 1981.
9. V. P. Roychowdhury and J. Bruck, ‘‘On finding non-intersecting paths in grids and its

application in reconfiguring VLSIrWSI arrays,’’ in Proc. 1st Annual Symposium on
Discrete Algorithms, 1990.

10. A. D. Singh, Interstitial redundancy: An area efficient fault tolerance scheme for large
Ž .area VLSI processor arrays, IEEE Trans. Comput. 37 1988 , 1398]1410.

