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Decomposing the Boundary of a
Nonconvex Polyhedron

B. Chazellé and L. Paliod

Abstract. We show that the boundary of a three-dimensional polyhedronrwigfiex angles and arbitrary

genus can be subdivided in@(r) connected pieces, each of which lies on the boundary of its convex hull. A
remarkable feature of this result is that the number of these convex-like pieces is independent of the number of
vertices. Furthermore, it is linear in which contrasts with a quadratic worst-case lower bound in the number

of convex pieces needed to decompose the polyhedron itself. The number of new vertices introduced in the
process i€ (n). The decomposition can be computeddiin + r logr) time.

1. Introduction. Because simple objects usually lead to simpler and faster algorithms,
itis often usefulto preprocess an arbitrary object and express itin terms of simpler compo-
nents. In two dimensions, for example, polygon triangulation is a standard preprocessing
step in many algorithms [1], [5], [7], [10], [15], [16]. Similarly, in three dimensions, a
polyhedron can be expressed as a collection of convex pieces or tetrahedra in particular
(see [2], [4], [6], and [14] for discussions on such decompositions). Of course, the size
of the decomposition is critical for the application that uses it. Unfortunately, a convex
partition of a polyhedron may be of size quadratic in the description size of the polyhe-
dron in the worst case [4], which makes it unattractive from an efficiency point of view.

It would be, therefore, of interest to have partitions into a guaranteed small number of
simple components.

In this paper we consider the problem of subdividing the boundary of a nonconvex
polyhedron of arbitrary genus into a small number of connectedex-likepieces. By
convex-like piece, we mean a polyhedral surface which lies entirely on the boundary of
it convex hull. Our result is that the boundary of a nonconvex polyhedron thatrb#iex
angles can be subdivided into no more than & such pieces. It is interesting to note
that the number of pieces is independent of the number of vertices of the polyhedron, and
itis linear inr. The algorithm proceeds in two phases. In the first phase we disassemble
the boundary of the polyhedron along the polyhedron’s reflex edges and along its “ridges”
and “keels” (i.e., the edges that contribute local extrema with respect to a fixed direction).
This partitioning scheme yields at most 2 2 pieces. The second phase further splits
these pieces into smaller ones that are convex-like by clipping them with planes parallel
to a fixed plane that go through the endpoints of the polyhedron’s reflex edges. The
clipping is carried out in such a way that it introduces o@lgn) new vertices. It is worth
noting that although a convex-like piece may in general be very complex. the convex-
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Fig. 1

like pieces that our algorithm produces are simple in shape and well behaved. The entire
algorithm runs in linear time, provided that the boundary of the given polyhedron has
been triangulated. Boundary triangulation tak®® + r logr) time.

In two dimensions the problem is very simple, and admits a linear-time solution that
produces the minimum number of polygonal curves into which the boundary of a polygon
(possibly with holes) can be cut so that each such curve stays on the boundary of its
convex hull. The algorithm first disconnects the boundary of the polygon at#ss
(the vertices whose incident edges form an interior angle largetthamnd then breaks
each resulting piece in a greedy fashion to enforce the convexity condition. In other
words, we start at one end of such a piece and keep walking along it for as long as each
encountered edge lies on the convex hull of the subpiece traversed so far, disconnecting
it otherwise. The whole process takes linear time. A second algorithm can be obtained
by taking the two-dimensional equivalent of the first phase of our algorithm as outlined
above. The boundary of the polygon is disassembled at the cusps and at the local extrema
with respect to some fixed direction, say, the vertical direcidRigure 1). It can be
proven by induction that a polygon ofcusps has at most+ 2 local extrema, which
implies that the total number of pieces produced cannot exaegd2 This is almost
optimal in the worst case, since for anyhere is a polygon af cusps whose boundary
cannot be disassembled into fewer thant21 pieces each lying on the boundary of its
convex hull (Figure 2).

The paper is structured as follows. In Section 2 we introduce our notation and prove
a lemma to facilitate the analysis of our algorithm. The algorithm and its complexity
analysis are presented in Section 3. Finally, in Section 4 we summarize our results and
discuss some open questions.

Fig. 2



Decomposing the Boundary of a Nonconvex Polyhedron 247

degeneracy

v,

Fig. 3. Nota polyhedron.

2. A Geometric Framework. A polyhedron in%R® is a connected piecewise-linear
3-manifold with boundary; its boundary is connected and consists of a finite collection
of relatively open sets, thiacesof the polyhedron, which are callegrtices edgesor
facets if their affine closures have dimension 0, 1, or 2, respectively. By virtue of the
definition of a polyhedron, no faces can be self-intersecting, dangling, or abutting, and
no degeneracies like the one shown in Figure 3 are allowed. Anesafgepolyhedron is

said to baeflexif the (interior) dihedral angle formed by its two incident facets exceeds
7. By extension, we say that a vertexréflexif it is incident upon at least one reflex
edge.

A patchof a polyhedrorP is a collection of facets or subsets of facet$okith their
adjoining edges and vertices. The edges of a patch that do not lie on its relative boundary
are calledinternal. We try to extend to patches some of the definitions pertaining to
polygons. A patch is said to lmnnectedf its dual graph is connected; the dual graph
of a patcho has one node for each facet®fand an edge between a pair of nodes if
the corresponding facets ef are incident on a common edge. Under this definition,
neither of the two patches of Figure 4 is considered connected. Unless it consists of a
single facet, a connected patch has at least one internal edge. A connected patch is said
to besimpleif it is bounded by a single nonintersecting closed curve; i.e., it does not
contain any holes. A patch is calledonotonewith respect to a plane if no two distinct
points of the patch project normally to the same point of the plane. Finally, a patch
convex-likef it lies on the boundary of the convex hidl, of its vertices and the interiors
of both P andH, lie on the same side with respect to each of the facets @he latter

TANRVAN
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condition implies that none of the internal edges of a convex-like patch is a reflex edge
of the given polyhedron. The following lemma presents sufficient conditions for a patch
to be convex-like.

LEMMA 2.1. Leto be a patch of a polyhedron P such that none of the internal edges
of o are reflex edges of Rf ¢ is simple and monotone with respect to a pldhento
which it projects into a convex polygptieno is convex-like

ProOOF (The lemma trivially holds if all the facets of are coplanar.) We consider the
unbounded cylinder whose axis is normalt@and whose base is the projectiorsodnto

I1; because’s projection ontdll is a convex polygon, the cylinder is a convex object.
The monotonicity of with respect td1 implies that the projection of the boundarycof
ontoTl coincides with the boundary of the projectionrcafHence, the relative boundary

of o lies on the boundary of the cylinder. Moreover, since the patdb simple, it
separates the cylinder into two unbounded polyhedra, with respect to one of which, say
T, the internal edges af are nonreflex. Then the interiors BfandT lie on the same

side with respect to each of the facetsoofWe need, therefore, only show thaties
entirely on the boundary of its convex hull, or equivalently tfiatoincides with its
convex hull. The latter can be easily established as follows. Suppose, for contradiction,
thatT and its convex hull do not coincide. Then there exists an edge of the convex hull
of T that lies in the complement &f; let u andv be the vertices of incident on this
edge. Consider the plane that is normalt@nd goes through andv; we denote it by

E. Sinceo is simple and none of its edges is a reflex edge ahe intersection o and

o is a connected convex chain that goes throwghdv. Thus, the intersection & and

T is a convex polygon witlu andv as vertices; it therefore contains the line segment
connectingu andv, which contradicts the assumption that the edge (of the convex hull
of T) connectingu andv lies in the complement of . O

Finally, we introduce the notion of extrema. A poiptof a d-dimensional se§ of
points is called aextremunof Swith respect to an oriented lirg or ar-extremunfor
short, if Ss intersection with a small enoughball centered ap lies entirely in one of
the two closed half-spaces defined by the hyperplane norniathat passes through
p. The extrema can be characterizechagativeor positivedepending on whether the
above intersection lies in the nonnegative or nonpositive half-space, respectively. For
the polygon of Figure 5, for instance, the vertiee®, ¢, andd are negative.-extrema,
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while r ands are positive ones. The vertex is not a A-extremum (in fact, it is not a
A'-extremum for any’). Clearly, if no edge of a polygon or polyhedron is normal.to
only vertices can be extrema.

Very often in the following, we consider the intersection of the polyhedron with a
plane normal to th&-axis. The intersection consists of several polygons (possibly with
holes), and it is referred to asya-cross-sectionf the polyhedron.

3. The Decomposition Algorithm. Our goal is to subdivide the boundary of a non-
convex polyhedrorP of n vertices anda reflex edges int@(r) connected convex-like
patches. The polyhedronis given in any one of the standard representations, e.g., winged-
edge [3], doubly-connected-edge-list [12], quad-edge [8], so that all the face incidences
either are explicitly stored or can be found in linear time. To simplify the description of
the algorithm, we assume that no facefoif perpendicular to the-axis, and no edge is
normal to thex-axis. These assumptions are not restrictive; they can be checked in linear
time, and, if necessary, enforced by rotating the system of reference. We also assume
that the boundary of the polyhedrdhis triangulated. Boundary triangulation can be
achieved inO(n + r logr) time by employing the polygon triangulation algorithm of
Hertel and Mehlhorn [9] on each nontriangular facePof

The algorithm consists of two phases; in either phase, patches are split into smaller
pieces, starting with the entire boundaryR®fwhich is the initial patch we work on. In
the first phase we disassemble the boundark @fito a number of patches by cutting
along some of the edges &f; as a result, we get patches whose internal edges are
not reflex edges oP, and whose intersection with any plane normal toxkeis is a
collection of chains monotone with respect to thaxis. In the second phase we further
split these patches by clipping them with planes normal toxtagis that go through
the reflex vertices oP. This guarantees that the patches that are finally produced are
simple, monotone with respect to the-plane, and their projections onto this plane are
convex polygons; they are therefore convex-like, by virtue of Lemma 2.1.

Note that throughout the algorithm the patches are orientable; they are subsets of the
boundary of the polyhedron, a 2-manifold without boundary, which is orientable.

3.1. The First Phase As mentioned earlier, no internal edge of a convex-like patch
can be a reflex edges &f. Therefore, we need to cut along each reflex edge, where
cutting along an edge has the effect that its incident facets are no longer considered
adjacent. (Note, however, that the internal edges of a patch can all be nonreflex edges
of P, and still the patch may not be convex-like. Think of a patch spiraling around
several times.) We may then be tempted to embark on the second phase of the algorithm
and clip the resulting patches as outlined in the previous paragraph. This, however, will
not necessarily produce the desired partition. Consider, for instance, the polyhedron of
Figure 6, which is constructed by gluing two tetrahedra along a commonfassethere

u andv are the vertices with the smallest and largesibordinates. Cutting along the
reflex edges introduces a cut along the single reflex edgehile clipping with planes
normal to thex-axis that go through the reflex verticesandv leads to no additional

cut; the boundary of the polyhedron will therefore still form a connected patch, which
clearly is not convex-like.



250 B. Chazelle and L. Palios

Fig. 6

To rule out such cases, we disassemble the boundary of the polyhedriomg the
z-extrema of theyz-cross-sections dP. Since no edge dP is normal to thex-axis and
no facet ofP is normal to thez-axis, thez-extrema in any z-cross-section are vertices,
the intersections of edges & with the slicing plane that defines the cross-section.
(Figure 14 depicts a typicalz-cross-section of the polyhedron after all the cuts have
been introduced.) For the polyhedron of Figure 6, this approach will produce cuts along
the edgesiw andwv, up and pv, anduq andqv, which in addition to the cut along the
reflex edgeuv will disassemble the polyhedron’s boundary into four patches.

Summarizing, in this phase we cut along the reflex edges of the polyh&jrand
along the edges that contributeextrema in ay z-cross-section oP. It is important to
observe that determining whether an edge is a reflex edBeoofvhether it contributes
z-extrema in ayz-cross-section requires only information local to the edge, namely the
relative position of its two incident facets. We therefore process the edges in any order; if
we need to cut along an edgeve simply marke as “cut,” and from then on we consider
thate’s incident facets are no longer adjacent. This procedure ensures that any patch
o in the partition of the boundary d® induced by the generated cuts is such that no
internal edge oé is a reflex edge oP, while o’s intersection with any plane normal to
the x-axis consists of a number @afmonotone polygonal lines. The entire phase takes
time linear in the number of edges, while no more than linear space is needed.

Before estimating the total number of patches produced at the end of this phase, we
prove the following lemma.

LEMMA 3.1. Leto be a patch at the end of the first phasdose projection onto the
xz-plane is a polygon which we denotedyy. Then if v is a nonreflex vertex of the
polyhedron that projects into a point g on the boundarygf, q is not a cusp 0byg,
i.e, g is a vertex oby, such that thinterior) angle formed by the two edges incident
on q does not exceed

PrROOF Sincev is a nonreflex vertex of the polyhedron, the intersectignof the
polyhedron with a small enough ball centerecdvds a convex object. It is clear that

the projection of a convex object onto a plane is also convex; therefore, the projection
of N, onto thexzplane is a convex set containiigg which implies thaig cannot be

a cusp. O
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Number of Patches ProducedWe prove next that the number of patches that are pro-
duced at the end of this phase is no more thar-2. The key observation is that each
patch has at least one vertex such that its adjacent vertices that belong to the patch all
have largex-coordinates; the vertex of the patch with the smabkesbordinate will do,
if we take into account the assumption that no edge of the polyhedron is parallel to the
yz-plane. In fact, all the negativwe-extrema of the patch will do. Similarly, each patch
has at least one vertex whose adjacent vertices that belong to the patch all have smaller
x-coordinates; any positive-extremum of the patch satisfies this condition. Therefore,
if we compute the number of patches to which a vertex of the polyhedron contributes
positive or negativex-extrema, add these numbers over all vertices, and divide by two,
we obtain an upper bound in the number of patches that are produced.

The way to compute the number of patches to which a verteontributes positive
or negativex-extrema can be more easily understood if we consjadesross-sections
of the polyhedron. First, we consider tig-cross-sectiody,(v) of the polyhedron at;
recall thatCy,(v) is the intersection of the polyhedron with a slicing plane that is normal
to thex-axis and goes through In Cy,(v), v is incident on a number of line segments,
each being the intersection of the slicing plane with a single polyhedron’s facet incident
on v (recall the assumption that no edge of the polyhedron is normal ta-toes);
therefore, these line segments correspond to a collegliohfacets of the polyhedron
and ultimately to a collectiof® of patches that contain these facets. Next, we consider
theyz—cross—sectioﬁjz(v) infinitesimally away fromv toward increasing-coordinates,
and we concentrate on the line segments in this cross-section that correspond to facets
incident upon; if these facets form the s@t™, thenF* containsF due to the continuity
of the polyhedron’s boundary and the assumption that no edge is normalsteatkis.
LetP* denote the set of patches that contain the facefsinThen the patches iR\ P
are precisely the patches to whielecontributes negative-extrema; clearly, the number
of such patches does not exceed the number of disconnected polygonal ckig“y@s)in
(at the end of the first phase) to which the line segments corresponding to the facets in
FT\F belong. For example, in each of the four cases shown in Figure 7, the left-hand
side depicts a neighborhodd of a vertexv at the cross-sectia®y,(v), while the right-

hand side depicts what, evolvesinto ircyz; the shaded area indicates the interior of the

Gy (v) Ctv)

Gz (v)

Fig. 7. (a) at most two “new” patches; (b) zero “new” patches; (c), (d) at most one “new” patch.
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polyhedron, and the partition of the polyhedron’s boundary into patches is exhibited by
the openings of the boundary of the shaded area. In Figure 7(a) in particular, the three new
line segments that appeaidy,(v) form two disconnected chains, which correspond to at
most two patches; therefore, in this cassontributes negative-extrema to at most two
patches. A similar argument applies to §ecross-sectiod,,(v) infinitesimally away
from v toward decreasing-coordinates: the number of patches to whictontributes
positive x-extrema does not exceed the number of disconnected polygonal chains in
Cy,(v) (at the end of the first phase) that correspond to facets incidentexcluding
those inF.

It should be expected that the number of patches to which a vertontributes
positive or negativex-extrema depends on the numibgiof reflex edges incident upon
v. More specifically, if the number of reflex edges connecting vertices with smaller
(resp. largerk-coordinates is denoted Ioy (resp.r;"), the number of patches to which
v contributes negative-extrema should depend ofi, while the number of patches to
which v contributes positives-extrema should depend ofi. Figure 7 provides some
intuition, by depicting details ofy.(v) and C;;Z(v) for a vertexv with rf = 1; the
single reflex vertex at the right-hand side figure in each of the four cases shown is the
intersection of the reflex edge with the slicing plane. It turns out that one reflex edge
may account for no more than two patches havirag anx-extremum, so that a vertex
v incident uporr, reflex edges contributes (positive or negatixegxtrema to at most
2r, + c patches, for some appropriate integethat depends on the geometry of the
neighborhood ob in Cy,(v). We consider the following cases:

1. The vertew is of degreed in Cy,(v) and is a point-polygon ofy.(v). In agreement
with the definition of a polyhedron; is anx-extremum of the polyhedron. If is
a negativex-extremum, then, as Figure 8 suggests, it may contribute negetive
extrema to no more tharr 2 + 2 patches. Moreover, the definition of a negative
x-extremum of a polyhedron implies thatcannot possibly contribute positive
extrema to any patch, as well as that=r,". Hence,v contributesx-extrema to at
most 2, 4+ 2 patches. In a similar fashion we find thatyifs a positivex-extremum
of the polyhedron, it contributes-extrema to at mostr2 + 2 patches as well (the
picture in this case is the same as Figure 8 where the picturé,’%*zf(mj andCy,(v)
have been interchanged).

2. The vertexv is of degree0 in Cy,(v) and is a point-hole in a polygon ay,(v).
Figure 9 depicts one of the two basic cases that may arise; the other one stems from
Figure 9 after the pictures f(ﬂyz(v) andC;Z(v) have been interchanged. In either
casefr, > 3, andv contributesx-extrema to no more tham2— 2 patches.

3. The vertex is of degreein Cy,(v). We consideC;fZ(v) first. If rt = 0O, the two-edge

Gz(v) G.(v) Gi(v)
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Fig. 9

chain incident orv in Cy,(v) (this is the intersection of the polyhedron’s boundary
incident onv with the slicing plane) evolves into a convex chairﬂg}(v), which
implies that no new patches are intersected by the slicing plaﬁgdn). Thus, no
patch haw as a negative-extremum. If, however,! is positive, the number of such
patches does not exceed!2 (Figure 10 depicts the four basic casesrpr= 2,
where the two cusps at the right-hand side figure of each case are the intersections
of the two reflex edges with the slicing plane; compare Figures 7 and 10 to see how
cases with larger;” can be produced. In general, for the cases (a)—(d), the bounds
are2f, rf—2,2" -1, and 2] — 1, respectively.) So, for ailf, the number of
patches to whiclw contributes negative-extrema does not exceed2
The above arguments apply without change when we conéiger) implying

that the number of patches to whiettontributes positivex-extrema is at mostr?".
The combination of these results yields an upper bound pf-22r~ — 2r, in the
number of patches to whichcontributesx-extrema.

4. The vertew is of degree larger tha@in Cy,(v). In this case the neighborhoodwin
Cyz(v) consists of a number of wedges touching aet this number bev, (w, = 4
in Figure 11). (Note that since the degreaa$ larger than 2 i€y,(v), w, is always
larger than 1.) In general, the situation is a combination of the two cases shown in
Figure 12, as well as those obtained from Figure 12 with the pictures corresponding to
Cy,(v) ande;Z(v) interchanged (the dashed curves indicate that some of the wedges
may belong to the same polygon@f,(v)). These wedges may either merge with or
get detached from neighboring wedgeéyg(v) andCy,(v). InFigure 11 for instance,

Gy (v) Cyf v) Cyz(v) G v)

C))

Fig. 10.At most four, two, three and three “new” patches in the cases (a)—(d), respectively,nyherg.
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Gz(v) Gz(v)

Fig. 11

asCy,(v) evolves intoc;fz(v), the three bottom wedges merge into a single wedge
cluster, while the top wedge forms a wedge cluster by itself.ui;etandk; (resp.

w, andk;’) denote the number of such wedge clusters and the number of polygons
containing these clusters ([@*Z(v) (resp.Cy,(v)) respectively (in Figure 11, we have

w, =3, wS =2,andk; =kt = 2). Since several wedges may merge into a single
wedge cluster and several wedge clusters may belong to the same polygon, then

(1) w, >wf >k and w,>w, >k .

Moreover, the definition of a polyhedron (see Section 2) implies that the intersection of
a small enough neighborhoodwénd the interior of the polyhedrdnis a connected

set; otherwise, we end up with degeneracies like the one exhibited at the object shown
in Figure 3. Therefore, the sum of the numbers of wedges that me(gg(in and

Cy,(v) must be at least equal to, — 1; in terms ofw,, w,’, andw;, this can be
expressed as follows:

2 (wy —w,)+w, —wH>w,—1 & w, +w <w,+1

(In fact, itis true thaw,” + w;" = w, + 1, this can be proved if we take into account
that the closure of the complement of a polyhedron is also a polyhedron.)

Finally, if v is incident uporw, wedges irCy,(v), then it is incident upon at least
w, — 1 reflex edges: recall that the neighborhood @f Cy,(v) is a combination of
the cases in Figure 12 (or their right-to-left counterparts); in either case shown no
new line segments appear diy,(v) or C;;Z(v), implying thatv does not contribute
x-extremato any of the patches, and y&t incident upon one reflex edge. Of course,
it may be incident upon more such reflex edges, each of which leads to at most two
patches to which contributes anx-extremum, so that such a vertexaccounts for
no more than @&, — (w, — 1)) patches (see Figure 11).

Gv)  Gv  Giv) Gav) Gelv) Giv)
v
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If we sum all the contributions, we obtain the following bound in the numbeosf
patches, wher¥1, Vs, V3, andV, denote the sets of vertices falling in cases 1, 2, 3, and
4, respectively.

@) m< 1 (Z(er ++ Y (@, =2+ 2+ Y 2, — (wy - 1)))
U€V1 U€V2 v€V3 U€V4
< DA+ = ) (w1
velV; veVy
<24 Vi =) (w, - D),
U€V4

sinced .oy v = 2_, Iy = 2r. In light of the following lemma, inequality (3) implies
that the numbem of patches produced at the end of the first phase satisfies the inequality
m<2r+2.

LEMMA 3.2. The total numbe}jV,| of positive and negative x-extrema of a polyhedron
does not exceeEveVA(wu —1)+2,where \, V4, andw, are as defined in the previous
paragraphs

PROOF We construct a graph that records the events that mark the history p#the
cross-section of the polyhedron. Namely, we sweep the polyhedron with a plane normal
to thex-axis, and whenever the number of polygons in the cross-section changes (as is
the case when positive or negatixeextrema of the polyhedron and verticesvipare
encountered), we record the change appropriately (for completeness, we make sure to
record all the vertices in V4 even those for whick; = k). Note that events where

the number of holes in a polygon ofye-cross-section increases or decreases are not
recorded. In particular:

1. At a negativex-extremum (vertex itv;), we add to the graph two new nodeghich
we connect by an edge; the first node corresponds to the negadixteemum, while
the second one is polygon-nodeand corresponds to the series of polygons in the
yz-cross-sections to which the negatik«extremum evolves.

2. At a positivex-extremum (vertex in/;), we add one new node that corresponds to
the positivex-extremum and we connect it to the polygon-node that represents the
series of polygons in thgz-cross-sections which reduced to this positivextremum
during the sweeping.

3. Atavertexv in V4, we add one new node that correspondsdad edges connecting it
to the representatives of the polygons inC(v). Moreoverk: polygon-nodes are
added, one for each of the polygons inc;fz(v), and edges are introduced between
them and the node correspondingto

Since we are dealing with a single polyhedron, the resulting graph is connected.
Figure 13(b) shows the graph that corresponds to the polyhedron of Figure 13(a). The

3 We use the termodesof a graph instead of vertices to avoid confusion with the vertices of the polyhedron.
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2 2
3 3
z =
3 3
1 1
©)
Fig. 13

numbers 1, 2, and 3 denote negative and poskiegtrema, and vertices i, respec-

tively (according to the cases above), while the leRedenotes polygon-nodes. Note

that all polygon-nodes are of degree 2, and no two of them are adjacent, while the nodes
corresponding to the negative and positivextrema of the polyhedron are of degree 1.

To simplify matters, we remove from the graph all polygon-nodes by coalescing their
incident edges into a single edge; the resulting graph is a connected multigraph (see
Figure 13(c)), whose node set is in one-to-one correspondence with the unipard
V. If we denote by the total number of edges of the multigraph, we have

) 26=)" degregv) = > 1+ > (ky +kH) < [Vi|+ D (w, + 1),

nodev veVy veVy veVy

since, for any vertex € V, inequalities (1) and (2) imply th&t, + k' < w; +w;F <

w, + 1. Connectivity, on the other hand, implies that the number of edges is at least equal
to one less than the number of nodes of the graph, thatis,|V1| + |V4| — 1, which
combined with (4) yields

2Vil + Vel =) < Vil + Y (w,+D) = Vil<2+) (w,—1. O

U€V4 UEV4

3.2. The Second Phase The first phase produces patches that are not necessarily simple
and may form spirals around theaxis. Moreover, although the intersection of such a
patch with any plane normal to thxeaxis consists of a number efmonotone polygonal

lines, this is not sufficient to ensure that the patch is monotone with respectxa-the
plane; patch monotonicity is guaranteed only if the patch is decomposed into subpatches
so that each of thesemonotone polygonal lines belongs to a different subpatch. This
will be our goal in this phase, i.e., to decompose each of the patches produced in the
previous phase into subpatches, the intersection of each of which with any plane normal
tothex-axisis a single-monotone polygonal line. Then, making sure that the projections
of the subpatches on thxe-plane are convex polygons implies that the final patches are
convex-like (Lemma 2.1).

The method that we use in order to achieve the desired decomposition parallels the
way a honconvex polygon (that may contain holes) is partitioned into convex pieces by
using cuts parallel to a chosen direction to resolve the polygon’s cusps. In very general
terms, our basic strategy involves splitting each patch by clipping it with planes normal
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down-chains
of v

Fig. 14

to thex-axis that pass through the reflex vertices of the given polyhedron. Before giving
more details, we introduce the notions of the up-chains and down-chains of a reflex
vertex.

We consider the/z-cross-section of the polyhedron at a reflex vertefter the end
of the first phase. Since during the first phase we cut along all the reflex edges and
is incident upon a reflex edge, the boundary of the polyhedron has beenwcutnat
general, due to the first phase cuts, the boundaries of the polygons of the cross-section
are decomposed intemonotone polygonal chains. Unlesss a point-hole in one of
these polygons or a polygon reduced to a pains an endpoint of at least two such
chains (Figure 14). It is the endpoint of a chain with the smallestoordinate among
the chain’s vertices, we refer to the chain asugnachainof v; if v is the endpoint of a
chain with the largest-coordinate among the chain’s vertices, we refer to the chain as
adown-chairnof v.

Note that ifw wedges touch at in the corresponding z-cross-section, then is
incident upon 2 up- or down-chains and at least— 1 reflex edges. In other words,
if v is incident upomr, reflex edges, it is incident upon at most 2+ 1) chains. Then,
if the number of reflex edges of the polyhedrom ishe total number of reflex vertices
does not exceedrzand)_, r, = 2r; therefore, the number of up- and down-chains of
all reflex vertices is at most R (2r + 2r) = 8r. This leads to the following lemma:

LEmmA 3.3. If the number of reflex edges of a polyhedron,ighe total number of the
up- and down-chains of all the reflex vertices of the polyhedron does not é3rceed

In terms of the up- and down-chains, our basic strategy can be expressed as follows:
cut along the up- and down-chains of all the reflex vertices of the polyhedron. To simplify
matters, we cut along the up- and down-chains in separate passes.

We concentrate on the first pass where we generate cuts along the up-chains of the
reflex vertices. Observe that a brute-force approach may cut on the ordkacets every
time we process areflex vertex, which would produce a decomposition of an unacceptably
large2 (nr) size. To avoid that, we advance the cuts along the up-chains from facet to
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Fig. 15

facet and discontinue some of the cuts that might slice too many facets. The key idea is
illustrated in Figure 15. (The facet shown is a triangle, because as previously mentioned
the boundary of the polyhedron has been triangulated at a preprocessing step before the
first phase of our algorithm.) Assume that we advance four cuts upward through facet
f. The plan is to extend only the leftmost and rightmost ones through adjacent facets
upward pastf; we stop the remaining two cuts at the edge incident upomith the
largestx-extent, and we generate a cut (along that very edge) extending between the
intersections of the edge with the rightmost and leftmost cuts. Thus, we maintain the
following invariant:

CUT-INVARIANT. An edge of the polyhedron is crossed by at most two cuts which
propagate through a facet to an adjacent one.

To enforce the invariant, we process a facet of a patch after its adjacent facet(s) below
it (in terms ofz-coordinates) in the patch have been processed. Note that, thanks to the
first phase cuts along theextrema, every patch contains at least one facet without any
adjacent facets below it (recall that if a cut has been generated along an edge during
the first phase, the two facets incident upon the edge are no longer considered adjacent,
although they may still belong to the same patch). Therefore, every patch contains at
least one facet that can be processed right away. Figure 16 depicts a patch with these
facets shown highlighted.

patch facets ready

l:l patch facets to be processed

Fig. 16
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Here is our method to cut along the up-chains of the reflex vertices in more detalil.
We process each patch in turn. We start by collecting the facets that can be processed
immediately, and we insert them in a queQethe purpose of this queue is precisely
always to store the facets of the patches that are ready to be processed. Initially, our
cut-invariant holds trivially. Then, for each facein Q, we iterate on the following
procedure: depending on whethés as shown in Figure 17(1) or 17(2), we execute step
1 or step 2 respectively:

1. The triangular facet is as shown in Figure 17(1), i.e., the edgencident uport
with the largesix-extent is “above” the other two edgesand €’ incident upont.
Cuts may be propagating inthrough the edges and €, while an additional cut
may emanate from the vertex incident to bethnde€'. If the total number of cuts
proceeding throughis no more than two, then the cuts are simply extended all the
way throught and are attached & ready to advance upward to adjacent facets of the
patch. If, however, the number of cuts is larger than two, we apply the idea illustrated
in Figure 15. We extend only the leftmost and rightmost cuts all the way thrgugh
and attach them te;. All remaining cuts are extended updpand are stopped there,
while a cut is generated aloegbetween the intersection pointseafand the leftmost
and rightmost cuts. So, our cut-invariant is maintained in this way. Finally, if no cut
was made along; during the first phase, we check whether the fagetvhich in
addition tot is incident uporey, is a candidate for the que@ Namely, ift; is as in
Figure 18(a), then it is inserted @; otherwiset; as in Figure 18(b) and is inserted
in Q only if either a cut has been generated during the first phase along thé,edge
or the facet, which in addition tq is incident uporg, has already been processed.

2. The triangular facet is as shown in Figure 17(2), i.e., the edgecident upont
with the largesix-extent is “below” the other two edge&s ande, incident uport.
If cuts are propagating through we extend them throughand we attach them to
e; or e depending on which edge they intersect. By induction, our cut-invariant is
maintained. Next, we test the facdéisandt,, which in addition tot are incident
upone; ande,, respectively, as candidates for the qu€uegNote that either one or
botht; andt, may not exist as cuts alors or e, during the first phase may have
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Fig. 18

disconnected the patch at these edges.) The procedure is the same as that iivolving
in the previous case. Specificallytifis as shown in Figure 18(a), i.ey, is the edge
incident uport; with the largesk-extent, we insetty in Q; if not, in which case; is

as in Figure 18(b), we insett in Q only if either we have generated a cut along the
edgeé during the first phase, or the facet, which in additiomte incident uporg,

has already been processed. The same test is also applied the facett, exists.

Thent is removed fronQ and we proceed with the next facet@

Figure 19 shows a snapshot as the procedure is applied to the patch of Figure 16. It
is easy to see that eventually all the facets of the patch enter the Qesgethat when
Q finally empties, cuts along all the up-chains of the patch’s reflex vertices have been
created. Furthermore, our cut-invariant ensures that at most two cuts are crossing an edge
cutting both its incident facets.

This completes the first pass that generates cuts along the up-chains. Next we apply the
same procedure with respect to the down-chains. Note that we take into consideration the
cuts generated during the previous pass involving the up-chains. Consider, for instance,
Figure 20. If a cut; along a down-chain reaches an edge along which we generated a cut
during the previous pass, then the cut is stopped there and its processing is considered
completed. Moreover, if two cuts, andc; along two down-chains reach an edge
that has been cut by an up-chain claindc; is betweerc’ andcs (with respect to the
x-axis), thenc, is stopped there, and a cut between the intersectioasvith ¢’ andcs
is generated along This establishes our cut-invariant for cuts along down-chains.

D unprocessed
patch facets

patch facets
In queve Q

. processed
patch facets
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At the end, pieces of a single facet of the polyhedron may belong to several different
patches. Interestingly, however, due to our cut-invariant, no more than four cuts through
any given facet proceed to adjacent facets both up and down. These would be the leftmost
and rightmost cuts through the facet along both up- and down-chains. Any other cuts
stop at the edge with the largesextent incident upon the facet. The total time spent in
this phase is linear in the number of facets of the polyhedron plus a constant overhead
per segment of each cut. As the total number of these segments is proven in Section 3.3
to be linear in the size of polyhedron, so is the total time required for this second phase.

3.3. Description of the Patches ProducedEach of the patches that the algorithm pro-
duces consists of a portion of the boundary of the polyhedron that is clipped from left
and right by two planes normal to tixeaxis (cuts along up- or down-chains), and at the
top and bottom by either an edge of the polyhedron (a reflex edge, for instance), or a
polygonal line consisting of edges that contribatextrema iny z-cross-sections of the
polyhedron. The following lemma helps us establish that these patches are simple and
monotone with respect to thez-plane.

LEMMA 3.4. The intersection of any patch after the end of the second phase with a
plane normal to the x-axis is a single polygonal line monotone with respect to the.z-axis

PROOFE  Since the intersection of any patch that results from the first phase with any
plane normal to the-axis consists of one or moemonotone polygonal lines, then
so does any patch after the end of the second phase; recall that in the second phase we
simply clip the first phase patches.

Suppose, for contradiction, that a plane normal toxttexis intersects a patch after
the end of the second phase into more than one such polygonal line. Then, since the patch
is connected, there exists a connected subsdthe patch with the following property:
there exist pointg andq of o that have equat-coordinates, and are such that a plane
normal to thex-axis passing through them intersettis a single polygonal line, whereas
it intersectss into two disconnected polygonal lines if it is translated slightly either to
the left or to the right along thg-axis (to the right, in the case shown in Figure 21).
(Note that the point® andqg may coincide.) There exist therefore line segmenisnd
& incident uponp andq, respectively, along which cuts have been generatednde,
may coincide ifp andq coincide).
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Fig. 21

These cuts do not proceed along up- or down-chains of vertices, anel tinde; lie
on edges of the polyhedron. Moreover, as the projections of patches onte-hane
exhibit internal angles at most equalstaat the projections of new vertices introduced
in the second phase because of the clipping (see FigurepZdl)dq must be vertices
of the polyhedron. In fact, neithgr norq may be reflex vertices, otherwise a cut along
the up-chain ofp or the down-chain of] would have split>. Therefore, bothp and
g are nonreflex vertices, ared ande, contributez-extrema at the correspondinyg-
cross-sections. This is impossible, however, because the continuity of the polyhedron’s
boundary implies that there would have been an edgeident onp such thae ande;
would form anx-monotone polygonal line arg like e;, would contributez-extrema at
the correspondingz-cross-sections; but then a cut would have been generatedealong
ando would have been split. O

Lemma 3.4 directly implies that any patch at the end of the second phase is monotone
with respect to thexz-plane. Moreover, it implies that any such patch is also simple; if
the patch had a hole, the intersection of the patch with a plane normal teakis that
intersects the hole would either be nonmonotone with respect wdRes or consist of
at least two disconnected pieces. Therefore,

COROLLARY 3.1. Any patch after the end of the second phase is simple and monotone
with respect to the xz-plane

In light of Lemma 2.1, Corollary 3.1 and the following lemma establish that the
patches produced are convex-like.

LEMMA 3.5. The projection of any patch on the xz-plane is a convex polygon

PROOF  Since the patchis simple, its projection on geeplane is a simple polygon too.

We now prove that the projection is indeed a convex polygon. Suppose, for contradiction,
that there exists a cusp, i.e., a vertex of the polygon such that the (interior) angle formed
by its two incident edges exceefls The monotonicity of the patch with respect to the
xz-plane implies that the cusp is the projection of some vertex the boundary of the
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patch. Since the second phase cuts contribute vertices that are intersections of edges of
the polyhedron with the “clipping” planes, no such vertex can project into a cusp on the
xz-plane. This implies that lies on a first phase cut, and in fact it is a nonreflex vertex

of the polyhedron. However, then it cannot project into a cusp, according to Lemma 3.1,
which leads to contradiction. O

Description Size and Total Number of Patche€onsider a polyhedroR of f facets

ande edgesy of which are reflex. We compute the total number of edges of all the
patches, where the edges along the cuts are counted twice. The analysis proceeds in an
incremental way by taking into account the new edges that each step of our algorithm
introduces. The triangulation of the boundaryrofloes not affect the order of magnitude

of the number of edges, so that this numbe0ig) before the beginning of the first
phase. As the cuts of the first phase proceed along edgestbe number of edges of

all the patches at the end of the phase is at most twice their number after the boundary
triangulation. During the second phase, several new edges are introduced in the following
three ways: (i) an edge is split into two when a cut crosses it, (ii) a new edge is introduced
by cutting through a facet, or (iii) a new edge is introduced along a portion of an edge
that is about to be crossed by more than two cuts. We claim that the total number of these
new edges does not exceedflf 40r; the claim implies that the total number of edges

of all the patches after the end of the second pha€gé + 16f + 40r, which is linear

in the size of the input.

To prove our claim, we charge the new edges created in the second phase to the facets
of the polyhedron and the cuts generated in the second phase as follows: each facet is
charged with the number of new edges that result from cuts traversing it and advancing to
adjacent facets, while each cut is charged with the number of new edges that its traversal
through the very last facet causes; in this way, all the new edges are accounted for. We
observe that a cut that traverses a facet and advances to adjacent ones leads to the creation
of four new edges, some of them shared with other facets; see Figure 22(a). Since at
most two such cuts are allowed per facet for each of the two passes of the second phase
(cut-invariant), each facet is charged withk42 x 2 = 16 units. In a similar fashion,
each cut leads to the creation of four or five new edges in the facet that the cut traverses
last; the latter case corresponds to a cut that is stopped while enforcing the cut-invariant
at a facet that is traversed by more than two cuts (see pdgeFigure 22(b)). Since the
cuts of the second phase are generated along up- or down-chains and the total number
of such chains does not excead(8ee Lemma 3.3), the total number of new edges in
the second phase does not exceefl 365 x 8r as claimed.

N

(@ (b)

Fig. 22
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Next, we estimate the number of patches that are finally produced. As mentioned
already, the first phase produces no more than-2 patches. We partition the set of
cuts generated during the second phase into two classes:

(i) those that extend all the way to the boundary of the corresponding patch produced
during the first phase, and

(i) the remaining ones, that is, those that were stopped at an edge that had been cut at
least twice (Figure 22(b)).

Each cut in class (i) increases the number of patches by at most one, whereas each cut
in class (ii) increases the number of patches by at most two (see Figure 22). As the total
number of cuts is no more than,&nd the number of cuts in class (ii) is bounded above by

8r —4, the total number of patches produced cannot exce¢@2 8r +8r —4 = 18 —2.

4. Conclusions. Our results are summarized in the following theorem.

THEOREM. The boundary of a nonconvex polyhedron of n vertices and r reflex edges
can be subdivided inth8 — 2 patcheseach of which lies on the boundary of its convex
hull. The decomposition can be carried out irO+ r logr) time and Qn) space

Unfortunately, the cuts performed may pass through face®s thiis has the disadvan-
tage of introducing new vertices into the resulting decomposition. It would be of interest,
instead, to achieve a boundary decomposition into a small number of convex-like pieces
by means of cuts along edges of the given polyhedron only.

A different question is to find an algorithm that produces the minimum number of
convex-like pieces. Is this problem NP-complete, as are many optimization questions in
partitions and coverings [11], [13]?
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