
CEC: Continuous Eventual Checkpointing for Data Stream Processing Operators

Zoe Sebepou and Kostas Magoutis
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)
Heraklion GR-70013, Crete, Greece

e-mail: {sebepou,magoutis}@ics.forth.gr

Abstract— The checkpoint roll-backward methodology is the
underlying technology of several fault-tolerance solutions for
continuous stream processing systems today, implemented
either using the memories of replica nodes or a distributed file
system. In this scheme the recovering node loads its most
recent checkpoint and requests log replay to reach a consistent
pre-failure state. Challenges with that technique include its
complexity (typically implemented via copy-on-write), the
associated overhead (exception handling under state updates),
and limits to the frequency of checkpointing. The latter limit
affects the amount of information that needs to be replayed
leading to long recovery times. In this work we introduce
continuous eventual checkpointing (CEC), a novel mechanism
to provide fault-tolerance guarantees by taking continuous
incremental state checkpoints with minimal pausing of
operator processing. We achieve this by separating operator
state into independent parts and producing frequent
independent partial checkpoints of them. Our results show that
our method can achieve low overhead fault-tolerance with
adjustable checkpoint intensity, trading off recovery time with
performance.

Keywords; Continuous Stream Processing; Fault-Tolerance;

I. INTRODUCTION
Sources of continuously-flowing information today are

growing in both number and data rates produced [1][9].
Consider for example the streams of call-detail records
(CDRs) produced by mobile telephony base stations; credit-
card transaction authorizations; stock-price feeds from
financial markets; and camera video streams used for
surveillance. The need for online processing of such
information streams has led to the design of complex event
processing systems supporting continuous queries expressed
in stream-oriented query languages [4][5]. The data operated
on (often referred to as tuples) are associated with a
monotonically increasing timestamp, forming a time series.
A continuous stream processing query is composed of one or
more interconnected operators, each computing a function on
incoming tuples. Operators that accumulate state by
computing a function over sets (also known as windows) of
tuples are known as stateful operators.

An important concern, especially in the case of stateful
operators is that a failure in the underlying infrastructure
may lead to long recovery times and/or irrecoverable loss of
operator state. These risks are not acceptable in many
application domains with stringent response time and data
reliability requirements. Several fault tolerance solutions

have been proposed in the past [6][10][11][19] to address
this challenge most of them relying on replicating operator
state either in the memories of different nodes or on disk
(Section VI provides an overview of these solutions).

A prominent fault-tolerance solution used today is the
checkpointing and roll-backward methodology [10],
hereafter referred to as CRB. In CRB the recovering node
loads the more recent checkpoint and replays events that
postdate the checkpoint to reach the pre-failure state.
Efficient implementations of CRB use copy-on-write
[10][17] mechanisms to reduce the amount of time an
operator freezes processing while saving the checkpoint to
stable store. Challenges with CRB include its complexity
(such as in the implementation of copy-on-write), the
associated overhead (exception handling during state
updates), startup overhead (one needs to compute what needs
to be checkpointed, especially if incremental checkpoints are
being used) and limits to the frequency of checkpointing
(one cannot start a new checkpoint while the previous one is
still in progress). The latter limit affects the amount of
information that needs to be replayed during recovery
leading to potentially long unavailability periods.

Straightforward applications of CRB to stream
processing systems [17] consider the entire operator state
when constructing checkpoints (namely all windows that
have changed since the previous checkpoint). As such,
operators accumulating large amounts of state (that is,
several GBs in today’s systems) require inter-checkpoint
intervals in the order of tens of seconds (for example, a 4GB
state can take at least 40 seconds to checkpoint over a
1Gbit/s line, assuming stable storage can sustain the same
rate). Incremental checkpoints do not seem to help much in
that aspect when state changes between checkpoints are
spread across the majority of operator’s windows.

One way to improve CRB in stream processing systems
is to take advantage of the observation that certain window
state transitions (such as the closure of a window) are leaving
a “footprint” in the operator’s output stream (an output
tuple). This “footprint” can also serve as a recovery point for
that window in case of operator failure. Intuitively speaking,
it contains the information that the state of the window was
closed as of the time the output tuple was produced. We can
build on this observation by creating other types of window
state “footprints” by inserting special output tuples in the
operator’s output stream, such as when a window opens or
the state at an arbitrary point in time. A recovery mechanism
can examine the operator’s output stream to find the most

recent “footprints” of all windows that comprised the
operator state at some point in time. In this paper we
formalize the above observations into a novel checkpointing
mechanism that we term continuous eventual checkpointing
(CEC).

CEC splits operator state into parts that can be
checkpointed independently and in an as-needed basis. In
contrast to conventional approaches where a checkpoint is
statically constructed at checkpoint-capture time, in CEC the
checkpoint is an evolving entity that is continuously and
incrementally updated by adding partial checkpoints to it.
Partial checkpoints take the form of control tuples containing
window state and intermixing with actual data-carrying
tuples (preserving time order) in the operator’s output
stream. To ensure that the checkpoint is recoverable in the
event of a node failure, CEC requires that the output stream
be written to stable storage. The interleaving between control
and regular output tuples means that the checkpoint is spread
over the persistent representation of the operator’s output
stream, rather than being a single cohesive entity at a single
location in stable storage. As such, the CEC checkpoint is
not immediately available for recovery but must be
reconstructed through a process described in detail in this
paper.

Since checkpoints can be performed asynchronously at
the pace of the operator’s choosing, the operator can exploit
a tradeoff between overhead and recovery speed (i.e., how
often to write control tuples to stable storage vs. how far
back to seek into the output queue to reconstruct the CEC
checkpoint vs. how far back to replay from upstream output
queues). By mixing control and regular output tuples in the
output stream, CEC can leverage an existing persistence
mechanism (originally developed for persisting the
operator’s output queue [20]) to also persist its evolving
checkpoint. Besides being straightforward in its
implementation, such a scheme enjoys I/O efficiencies due to
the sequential access pattern involved. These characteristics
make CEC an efficient CRB methodology for streaming
operators that can provide rapid recovery with adjustable
overhead characteristics.

Our contributions in this paper include:

• A novel state checkpointing technique for window-

based streaming operators that takes independent
checkpoints of parts of the operator state in the form
of control tuples integrated with regular tuples at the
operator’s output queue.

• Implementation of the technique (including both
failure-free and recovery paths) in the context of the
Borealis [8] open-source streaming middleware.

• Evaluation of the prototype system under a variety
of scenarios.

The remainder of paper is structured as follows. In
Section II we describe the detailed design of the CEC
mechanism and in Section III our prototype implementation.
In Section IV we present the experimental evaluation of CEC
and in Section VI we present related work on fault-tolerant
streaming. Finally we draw our conclusions in Section VII.

II. DESIGN
In this paper we assume a fairly general continuous

stream processing model in which a continuous query is
expressed as a graph of operators interconnected via streams
between input and output queues. As shown in Figure 1
operators receive tuples in their input queues (1), process
those tuples (2), and preserve results in their output queues
(3) until receiving an acknowledgment from all downstream
nodes. Each stream is associated with an information schema
describing the tuples that flow through it. Each operator
implements a function such as filter, union, aggregate, join,
etc. and may or may not be accumulating state over time.
The latter distinction separates operators into stateless (such
as filter, union) and stateful (such as aggregate, join) ones.
Operators are executing in stream-processing engines (SPEs)
that are distributed and communicating over the network.

Figure 1. Checkpoint roll-backward (CRB).

In explaining the CEC technique we will use as a

canonical example of a stateful operator the aggregate
operator. The aggregate operator computes a function (such
as count, minimum, maximum, sum, or average) on a
specific tuple field over windows of eligible tuples (defined
through another field). A typical example would be a query
stating “Compute the average talk time of all telephone calls
(described by CDRs) originating from a specific phone
number over a window of 1 hour, grouped by phone
number”. The duration that a window remains open (and
thus accumulates state) can either be time-based, as in the
previous example, or count-based (remains open for a fixed
number of tuples). The specification of the aggregate
operator allows overlap between successive incarnations of a
window (i.e., advancing the window for less than its size)
taking tuples from the previous incarnation into account
when computing the next result. In practical implementations
(as for example in Borealis [3][8]) such windows are
implemented as two separate physical windows, both
accumulating tuples during the overlap period, and thus do
not present additional challenges compared to non-
overlapping windows.

In what follows we briefly describe the general principles
of the checkpoint roll-backward technique in Section II.A
and then move into the details of the CEC methodology in
Section II.B. A brief description of the stream persistence
architecture that we developed for logging output tuples and
CEC checkpoints to storage appears in Section IX (see [20]
for a full paper).

A. Checkpoint roll-backward
Figure 1 provides an abstract view of the checkpointing

procedure in CRB. Downstream operators are taking
checkpoints of their state (b) and send acknowledgments to
upstream queues that they no longer depend on the
corresponding input tuples to reconstruct it. In the standard
implementation of CRB the operator state is a point-in-time
consistent view of all open windows at checkpoint-capture
time. The full checkpoint includes the state of the operator
itself and its input and output queues. We call this an instant
checkpoint of the operator. For the rest of the paper we
assume without loss of generality that only output queues
need to be persisted while input queues can be rebuilt by
fetching tuples from the upstream operators’ output queues.
Checkpoints are preserved in stable store (another node’s
main memory or a storage device).

The recovery procedure for a streaming node has two
parts. First, one has to decide what the most recent
checkpoint is; then ask upstream nodes to replay tuples from
that point forward. If a node is asked to replay tuples that it
has to reconstruct (perhaps because it also has failed and lost
recent state), then upstream nodes have to go through the
recovery process themselves. Note that the operator’s
internal state (open windows before failure) has to be
checkpointed in-sync with its output queue.

B. Continuous eventual checkpoints
CEC departs from the standard implementation of CRB

by breaking the overall operator state into independent
components corresponding to the different open windows wi
and performing checkpoints of each of them asynchronously
at different times ti. Figure 2 depicts an example of an
aggregate operator with N open windows at time tc. The time
is defined by the timestamp of the last tuple that entered the
operator and affected its state by either updating an existing
window, or opening a new window, or closing a window and
emitting an output tuple.

Window checkpoints are expressed as control tuples
containing the partial state S accumulated by the operator for
a given window up to time t. Each window checkpoint
additionally contains the following parameters:

1. Type of checkpoint (Gcheck or Gopen):

- Gcheck is the type of checkpoint produced for an existing

window. For a Gcheck checkpoint, S is equal to the partial
result accumulated by the window up to time t.

- Gopen is the type of checkpoint produced when a window
opens. For a Gopen checkpoint, S is equal to the state of
the window after taking into account the tuple that

opened it. Tuples of type Gopen are necessary to ensure
we have a guaranteed known state for a window at time
tc to roll back to in case a Gcheck has not been produced
for it yet.

2. Total number of open windows (N) at checkpoint time t.

Figure 2 depicts the time evolution of an operator from
time tk to tc with checkpoints for windows wk, wi, wj, wc.
Standard data-carrying tuples produced when a window
closes are abbreviated as R (result). Gcheck

k and Rk refer to a
checkpoint and a data-carrying tuple for window wk.

Figure 2. Continuous eventual checkpointing (CEC).

Window checkpoint tuples are logged at the operator’s
output queue along with regular output tuples in timestamp
order. Thus Gcheck

k is emitted and stored in the log before the
subsequent Rk produced when wk closes (Figure 2). If a
persistence mechanism is used to write the output queue to
stable storage it should preserve timestamp order for all
tuples produced by the operator.

In CEC the operator checkpoint is not a single, cohesive
entity as in traditional CRB schemes. Instead, CEC
maintains an eventual checkpoint (EC) at time tc as a set of
window checkpoints W = {(wi, ti): ti ≤ tc} that can be used to
bring the operator to a consistent state, i.e., a state the
operator went through in the actual execution, at time tc. This
state includes all windows that were open at time tc and for
which, their most recent persisted “footprint” (i.e., partial
checkpoint) was written to stable storage prior to tc. Once we
determine the oldest “footprint” of any window that is open
at tc (and call its timestamp T, T = mini (ti) for all ti ≤ tc)
CEC loads onto the operator the state of all open windows
wi. This state corresponds to different times ti and is thus not
immediately consistent. To achieve consistency, the operator
must contact its upstream node and request replay of input
tuples with timestamps t > T. Since T is the earliest among
all ti's whereas the state of all (except one) windows reflects
a later time, the operator will unavoidably see tuples that it
has already seen in the past. To ensure that we reach the
correct pre-failure state, the operator must ensure that
window wi ignores tuples with timestamps t < ti.

Constructing an EC
A key challenge when constructing an eventual

checkpoint from the persisted output queue is finding out
how far to roll back into the log looking for window
checkpoints (Gopen, Gcheck). We solve this problem by storing
along with each checkpoint the number N of open windows
at that time, which turns out to be the number of different
window “footprints” we need to look for when rolling back
the log. For example Figure 2 shows that the checkpoint of
wc at time tc records the total number of open windows N at
that time. It is important to ensure that the entire checkpoint
record (S, G{check|open}, N, and t) is atomically written to stable
storage. We ensure this by using a fingerprint to detect
partial I/O errors and in that case discard the record.

During failure-free operation, CEC increases N when a
window opens and decreases it when a window closes. By
CEC rules, at time tc all open windows must have produced a
Gopen and possibly Gcheck checkpoints in the output queue.
During reconstruction it is important to skip Gopen or Gcheck
tuples for windows that are known to have closed prior to tc.
If a window closed prior to tc (as for example is the case for
window wk in Figure 2), its R tuple will be encountered prior
to any checkpoints for that window and therefore it will be
excluded from the EC.

Extent of an EC

Our system evolves the eventual checkpoint continuously
over time as new control and regular output tuples are being
produced. Recall that for an eventual checkpoint W = {(wi,
ti): ti ≤ tc}, T is the earliest timestamp of any open window
among the wi in W. We define as the extent of W (henceforth
referred to simply as the extent) to be the set of tuples (of
any type, Gopen, Gcheck, or R) in the output queue that
recovery needs to go through when rolling-back to reach the
tuple with timestamp T.

The extent is an important parameter in constructing the
EC since the time to complete the construction is
proportional to its size. Intuitively the rate of growth of the
extent is inversely proportional to the rate of progression of
T. T may be lagging behind in the past when the window it
corresponds may have had no Gcheck tuple produced for it
since the last Gcheck or Gopen tuple produced for the same
window. Besides increasing EC reconstruction time, a large
T means that we will need to replay a large amount of tuples
from upstream queues to bring the operator to a fully
consistent state.

Controlling the extent

Windows can remain open for a long time mainly due to
two reasons: (1) the stream tuple distribution favors some
windows over others; (2) the window specification allows
for a large accumulation of tuples before closing and
computing a result, either via the tuple count or time
parameters. We refer to windows that are staying open for
long periods of time (due to (1), (2) or both) as slow and
those that close and re-open frequently as fast. Note that
depending on the characteristics of the incoming stream a

fast window may turn into a slow one over time and vice
versa.

The existence of slow windows in the operator state is a
key factor leading to a growing extent size. Our goal in CEC
is to produce Gcheck checkpoints more aggressively –as far as
performance and recovery-time objectives allow— for the
slowest windows in order to advance T and reduce the size
of the extent.

CEC benefits

A benefit of performing individual window checkpoints
is that we avoid freezing the operator for long checkpoint-
capture time intervals typical of traditional CRB approaches.
CEC still needs to devote time to individual window
checkpoints, but this time is smaller, spread over a longer
time period, and adjustable to application needs.
Additionally we do not require any operating system support
for copy-on-write or other memory-protection schemes that
are typically used in traditional implementations of CRB, nor
incur the overhead of protection violation exceptions in these
schemes.

CEC enables a performance vs. recovery time tradeoff by
parameterizing how frequently it produces checkpoints as
well as the set of windows the checkpointing effort focuses
on. As described, CEC focuses on checkpointing of slow
windows. However the degree of intensity at which CEC is
producing checkpoints may impact performance. The CEC
performance vs. recovery time tradeoff is thus enabled
through explicit control of the following parameters: (1) how
much time to devote (out of the overall execution time) to
checkpointing; (2) when is checkpointing necessary for the
slowest windows. Section III provides details into the
specific choices we have made in our implementation when
tuning those parameters.

Finally, another benefit of CEC is that by integrating
checkpoints into standard operator output it can leverage a
single persistence architecture and stable storage structure
for both operator and output-queue states. Note that although
control tuples mix with data-carrying tuples in the stable
storage abstraction, they do not complicate processing in
downstream SPEs as the SPEs are able to recognize them in
their input streams and disregard them during operator
processing.

CEC challenges

Constructing an EC requires reading the output queue log
sequentially looking for all window checkpoints that
comprise the EC. This is a sequential process that can be
sped up by reading large chunks (currently 256KB) of the
log into memory to avoid the penalty of small I/Os. A factor
that affects performance has to do with the way tuples are
grouped in the output stream. The degree of grouping tuples
into a structure called a stream event [8] before storing them
in the distributed file system is proportional to the operator’s
output rate: operators with low output rate are expected to
feature a smaller degree of grouping (in some cases, each
tuple occupies a separate stream-event). In such cases a
larger number of stream events to process in the recovery
path will lead to a longer time to reconstruct the EC.

Gopen checkpoints required by CEC on every window
opening are expected to increase the amount of tuples
produced by the operator per window from one to two (Gopen
at open and R on close), a fact that becomes more important
when the application features a large number of fast
windows. However this is not expected to be an issue in
practice in most real deployments as stateful operators
typically have low output tuple rates and consequently are
much less I/O-intensive compared to stateless operators (a
filter or a map) that produce an output tuple for each input
tuple that they receive.

III. IMPLEMENTATION
In this section we describe the implementation of CEC

using the aggregate operator as a case study. We use the
Borealis [8] implementation of the operator as a reference
but our principles are more general and can apply equally
well to other continuous-query data stream processing
systems.

First we describe the state maintained by the streaming
operator. This state includes (a) the set of all currently open
windows; (b) the state of each window: open or closed;
accumulated state so far; and two timestamps τ1 and τ2, τ1
corresponding to the input tuple that created the window and
τ2 corresponding to the last checkpoint (Gopen or Gcheck)
produced for the window; and (c) an ordering of all open
windows by their τ2 timestamp. The objective of this
ordering is to always be able to start from the window with
the least-recent checkpoint when checkpointing with the
objective to reduce the size of the extent.

CEC requires minimal changes to the standard Borealis
tuple header to store its own information. It uses the existing
type attribute to indicate tuple type (Gopen, Gcheck or R). The
existing timestamp attribute is used to store the timestamp
of the tuple that was last processed by the operator (tnow).
Finally, CEC introduces a count field to indicate the number
of active windows at tuple production time. These
modifications work for both stateful and stateless operators
since the later can be thought of as a special case of the
former with window count 0.

In terms of execution paths we distinguish between
foreground, background, and recovery. All processing is
performed in the main thread of the operator because a
separate thread would result in unnecessary complexity and
locking overhead. The foreground path focuses on
processing the tuples entering the operator through the input
stream. The last tuple that entered the operator may be either
(1) opening a new window; (2) contributing to an existing
window; (3) contributing to an existing window and causing
its closure. In case (1) we increase the counter of active
windows N, set τ1 and τ2 to tnow and produce a Gopen tuple
into the output stream. The Gopen tuple carries the number N,
the current state of the window, and the timestamp tnow. In
case (2), the tuple updates the state of a window; τ2 is not
updated until the first Gcheck emitted for that window. The
number of active windows remains unchanged. In case (3)
the counter of active windows is decreased, an R tuple is

produced, and the just-closed window is erased from the
ordered list of open windows of point (c) above.

In the background path the operator periodically
checkpoints slow windows via the production of Gcheck
tuples. The Gcheck tuples are marked with the tnow timestamp
of the tuple entering the operator at the time of Gcheck
production. Simultaneously the τ2 timestamp for the
corresponding window changes to tnow. The number of
windows eligible for checkpointing at any time (we call this
the intensity of checkpointing) is decided based on recovery-
time objectives expressed by two parameters Q, U described
in Section III.A. To avoid the impact of uncontrolled
checkpointing on response time we limit checkpointing only
to specific time intervals. We use two parameters to denote
the amount of time we devote to checkpointing (checkpoint
interval, CI) and the time between checkpointing intervals
(checkpoint period, CP). The combination of Q, U and
CI/CP can be used to adjust to a desirable performance vs.
recovery speed operating point as we demonstrate in our
evaluation section. Note that the choice of these parameters
does not affect correctness because even if we delay
checkpointing, a window will roll-back to an older Gcheck for
that window or –in the worst case— to the Gopen tuple for
that window. at the expense of longer recovery time.

During the recovery path, CEC reconstructs the eventual
checkpoint by sequentially rolling back on the output queue
log as described in Section III.B. Following EC
reconstruction, the EC must be loaded onto the operator to
form its new state prior to asking upstream nodes for tuple
replay. To load the EC onto the operator in an as simple
manner as possible we created a special input stream (in
addition to the standard input stream of the operator) through
which we feed the EC into the operator. We call this new
stream the “EC-load” stream. A complication we had to
address with “EC-load” is that although it is created as an
output stream (following the output tuple schema) it must be
fed to the operator through an input stream. We further
modified the operator threads to be aware that tuples coming
from “EC-load” can only be part of the EC for the purpose of
recovery. The implementation of the recovery code uses
support provided by our persistence architecture described
briefly in the Appendix and in [20]. The communication
protocol between a recovering node and its upstream and
downstream nodes (synchronization with upstream to request
replay from given timestamp, synchronization with
downstream to find out what it wants to have replayed)
builds on the RPC message exchange framework provided
by Borealis.

A. Policies for producing Gcheck tuples
Recall that CEC maintains an ordered list of open

windows by their τ2 time of last checkpoint (Gnew or Gcheck),
keeping the window with the oldest checkpoint at the top.
This checkpoint is by definition at the end of the extent and
thus the corresponding window (wk in the example of Figure
3) is the prime candidate to produce a new checkpoint for
(thus decreasing the size of the extent). To maintain an
accurate estimate of the current size of the EC extent as well
the amount of tuples that need to replayed by upstream

operators during recovery, we maintain the following state:
For each window wi in the open-window list we store (a) the
number of tuples emitted by the operator between wi and the
previously checkpointed window; and (b) the number of
input tuples processed by the operator between producing
checkpoints for these windows. Effectively, (a) provides a
measure of the size of the extent, which we call q, and (b)
provides a measure of the number of tuples u we need to
replay where a crash to occur at this point in time. We have
devised two methods to determine when it makes sense to
produce a checkpoint for the oldest window: a method based
on a cost-benefit analysis and another based on explicitly
setting targets for q, u.

The first method considers the costs and benefits of
checkpointing: First, taking a Gcheck has the benefits of
reducing the size of the extent (and thus the cost of
eventually constructing the EC); second, a Gcheck brings
forward the timestamp of the first tuple to replay, thus
reducing the cost of replay. On the other hand, taking a Gcheck
has two costs: First, it adds another tuple to the extent,
increasing its size by one; second, it incurs the overhead
(CPU and I/O) of producing the Gcheck. Based on the above it
is reasonable to only perform a Gcheck when the benefits
outweigh the costs. It is straightforward to derive an
analytical cost-benefit formula based on the above principles
but one needs to calibrate it for a given platform by including
a number of empirically-measured parameters. The full
implementation and evaluation of this method is an area of
ongoing work.

The second method (which is used in our experiments)
takes the approach of explicitly setting appropriate
empirically-derived targets for q and u. For example the
policy “produce a Gcheck if q > Q or u > U or both, where Q =
1,000 and U = 1,000,000” means that if the extent or the
number of tuples to replay exceeds Q, U respectively, then
try to decrease them by taking checkpoints starting from the
older end of the extent (wk in Figure 3). Notice that values of
Q should typically be smaller than values of U reflecting the
fact that a tuple carries a heavier weight when considered in
the context of EC reconstruction than in stream replay (to say
it simply, a tuple costs much more to process in EC
reconstruction than in stream replay).

B. Implementation complexity
The overall modifications to Borealis to support CEC are

about 700 lines of code in our persistence and recovery
mechanisms and about 30 lines of new code in the
implementation of the aggregate operator. We have also
added minor modifications to the Borealis SPE and
consumer application code to drop Gopen and Gcheck tuples
upon reception. We disable this feature in our experiments in
order to be able to measure the number of checkpoint tuples
produced as well as the aggregate throughput (control plus
data) observed by the final receiver.

IV. EVALUATION
Our experimental evaluation of CEC focuses on three

key areas: (1) The impact of CEC on streaming performance
when operating under minimum recovery-time guarantees
(henceforth referred to as baseline performance); (2) the
impact of a range of Q, U values to operator recovery time;
and (3) the response time vs. recovery time tradeoff with
varying CI/CP. Our experimental setup consists of three
servers as shown in Figure 4. All servers are quad-core Intel
Xeon X3220 machines with 8GB of RAM connected via a
1Gb/s Ethernet switch.

Figure 4. Experimental setup.

The first server hosts the tuple-producing engine (or

source). The tuples produced consist of three fields: item_id,
item_price, and item_time, where item_id is an integer
identifying the item (e.g., an SKU), item_price is an integer
indicating the item’s price, and item_time represents the time
of purchase of the item. The tuple size is 100 bytes. The
second server hosts an aggregate operator computing the
average purchase price of items grouped by item_id (in other
words the operator will maintain a separate window per
item_id computing the average over a number of tuples equal

Figure 3. Extent size (q), number of upstream tuples to replay
for given extent (u), and corresponding targets (Q, U).

to the window size). The third server hosts the tuple
consumer (or sink).

The window size of the aggregate operator in all
experiments is defined based on number of tuples received
(count-based windows). We chose to evaluate CEC with
count-based windows rather than time-based ones due to the
special challenges posed by the former. The amount of time
count-based windows remain open depends strongly on the
distribution of input tuples and can be indefinite. Our results
hold for time-based windows as well as for other stateful
operators. Finally, we use a distributed file system (PVFS
[18]) to persist the output queue of the aggregate operator.

A. CEC baseline impact
We first highlight the impact of CEC while operating

under minimum recovery-time guarantees. In this case CEC
produces Gopen tuples (necessary for correctness) but no
Gcheck tuples (necessary to reduce the extent). We configure
the aggregate operator for two different workloads: fast-
windows and slow-windows. The fast-windows workload
uses a window size of 1. Each input tuple entering the
operator forces the creation of a new window and its instant
closure, emitting an R tuple. The slow-windows workload
uses a window size of 1000. In both cases the source
produces tuples randomly distributed across two item_ids. In
all experiments the rate at which the tuple-generator injects
tuples to the network is limited by its CPU or by network
flow control.

Figure 5 illustrates the performance impact of CEC on
streaming throughput under the two workloads described
above. The results are compared against those of native
Borealis in the same setups. Other configurations depicted in
Figure 5 include: Gopen/Net, which is the CEC setup where
the aggregate operator forwards Gopen tuples to the network
but does not persist them at its output log; and Gopen/Disk,
which includes the additional overhead of persisting Gopen
tuples. Gopen/Net and Gopen/Disk are measured at the sink
after dropping control tuples. The Real bar represents the real
throughput that our receiver observes including both normal
(R) and control (Gopen) tuples.

A key observation is that order-of-magnitude differences
in output rate across workloads are mainly due to different
operator specifications (higher window counts result in lower
output rates). Performance of the Gopen/Net configuration
drops by less than 10% versus native performance across all
workloads. This decrease can be attributed to the ratio of
Gopen vs. R tuples injected to the output stream: wider-spaced

R tuples translate into lower R-tuple rate at the sink.
Performance of the Gopen/Disk configuration is nearly
identical to Gopen/Net, indicating that the I/O path has
minimal impact on throughput, especially on lower output
rates. The Real bar shows that the actual throughput seen by
the receiver is twice the throughput of data tuples alone.

In terms of CPU usage, native Borealis consumes about
150% (fast-windows) and 130% (slow-windows) out of a
total capacity of 400%. With CEC (Gopen tuples only) the
CPU utilization remains the same for the Gopen/Net
configuration and increases in the Gopen/Disk setup to 200%
for the fast-windows workload. This increase can be
attributed to the overhead of the I/O path. Throughout these
experiments we did not saturate the CPU or the network at
the server hosting the aggregate operator. The main factor
limiting performance is the degree of parallelism available at
the tuple source (Borealis does not allow us to drive a single
aggregate operator by more than one source instances).

B. CEC recovery time
Next we focus on CEC recovery time using a range of Q

and U values. Recall that Q represents the extent size to
exceed before checkpointing the oldest window, whereas U
represents the number of upstream tuples (to replay) to
exceed before checkpointing the oldest window. In all cases
the source produces tuples randomly distributed across
100,000 item_ids. The aggregate operator uses a window
size of 10 tuples. To isolate the impact of each of Q, U on
recovery time we set up two separate experiments with a
different parameter regulating recovery time in each case.
The extent size is measured at a time of crash in the middle
of each run. Our operator graph in this experiment differs
from that depicted in Figure 4 in that we interpose a filter
operator between the source and the aggregate to be able to
persist and replay the filter’s logged output tuples during
recovery. The CI parameter is set to 5ms and the CP to
100ms in all cases.

Figure 6 depicts the effects of varying Q from 1 to 8
times the number of open windows (openwins) on two
recovery-time metrics: eventual checkpoint (EC)-load time;
bytes replayed by upstream source; and two CEC-internal
metrics: extent size; and number of Gchecks emitted. The
average value of openwins in the operator is measured to be
around 90,000. Our smallest Q value (1*openwins)
represents the extent size that the operator would have
produced by just emitting Gnew tuples. This is the smallest
possible extent for that number of windows. Setting Q to
anything less than that would be setting an unattainable
target, resulting in unnecessary overhead.

Figure 6 (upper left) depicts the number of Gcheck tuples
produced as the extent is allowed to grow larger. An
observation from this graph is that the number of Gchecks
drops sharply for Q > 2*openwins, evidence that the extent
in these cases nearly always stays below target. Figure 6
(upper right) depicts the extent size with growing Q. CEC
cannot achieve the target of Q = 1*openwins due to the
stringency of that goal but manages to achieve it in the Q=2,
4*openwins cases. The extent size for Q = 8*openwins
(500,000) is lower than its targeted goal (720,000) due to the

Figure 5. CEC baseline impact (Gopen tuples only).

fact that 500,000 is the maximum extent size reachable in
this operator configuration.

Figure 6 (lower left) depicts the increase in EC-load time
with growing Q due to the operator having to read and
process a progressively larger extent to reach its pre-failure
state. We observe that for a smaller extent (120,000 and
180,000 tuples) the time to read and load it into the operator
varies from 3.5 to 5 seconds. A larger extent leads to EC-
load times of between 14 and 27 seconds. Figure 6 (lower
right) depicts the number of bytes to replay from the
upstream node after the operator has loaded the EC. Our
results here exhibit the same trends as in EC-load. Lower Q
values correspond to replaying 25MB to 50MB of tuples,
whereas higher Q values correspond to replaying more than
200MB of tuples. The CPU performing the EC-load
operation was always 100% busy. CPU overhead due to
CEC during failure-free operation is minimal.

In the U experiment we vary the values of U between
125,000 and 106 tuples. Figure 7 illustrates the impact of U
on the same four metrics. Figure 7 (upper left) shows that
relaxing the U target leads to fewer Gcheck tuples produced,
consistent with our expectations. The drop is not as sharp as
in the Q experiment, evidence that our large Q values lead to
more relaxed policies compared to large U values in this
experiment. Figure 7 (bottom right) shows that higher values
of U result to between 20MB (200,000 tuples) and 90MB
(900,000 tuples) of upstream input replayed during recovery.

Figure 7 (upper right) shows that the extent size increases
from 120,000 tuples to 230,000 tuples. This increase can be
explained by the lower production of Gcheck tuples with
growing U. Consistent with having to handle longer extents,
EC-load time (bottom left) increases from 2.5s to 6.7s. The
EC-load times measured for different extent sizes are in
agreement with our results in the Q experiment.

C. Impact of checkpointing period
Next we evaluate the impact of different values of CI/CP

to operator response and recovery time. In this experiment
we vary CP between 25ms and 250ms while maintaining CI
fixed at 10ms. All runs use the aggregate operator configured
as described in the previous section. Q is fixed and equals the
number of open windows (whose average was measured to
be about 90,000), a very aggressive target that ensures there
always exist windows that are candidates for checkpointing.

Figure 8 depicts the response time of the aggregate
operator measured as the difference between the opening and
closure time of a window, reported as per-second averages.
Operator response time ranges from 16.5s (without CEC), to
18.5ms, 21.5ms, and 32.5s (CEC with CP = 100ms, 50ms,
25ms, respectively) reflecting the fraction of operator time
spent on checkpointing. For CP = 250ms (not shown in
Figure 8) CEC response time approximates that of native (no
CEC). To highlight the tradeoff between response time and
recovery time, in Figure 9 we report the extent size as a
function of CP. Longer CP values result in longer extent
sizes and consequently longer recovery times. Based on our
results from the Q, U experiments we estimate that varying
CP from 25ms to 250ms increases EC-load time from 2s to
5s. Given the higher impact of other factors such as failure
detection, RPC communication, etc. in overall recovery time
it is preferable in this particular setup to choose the most
relaxed checkpoint period (e.g., CP = 250ms) achieving
response time close to that of performing no checkpointing at
all.

V. DISCUSSION
Although we have demonstrated CEC primarily for the

case of an aggregate operator, we believe that CEC can be
also applied to other stateful operators such as join. Join [3]
has two input streams and for every pair of input tuples
applies a predicate over the tuple attributes. When the

Figure 7. Effect of U. Figure 6. Effect of Q.

predicate is satisfied, join concatenates the two tuples and
forwards the resulting tuple on its output stream. The stream-
based join operator matches only tuples than fall within the
same window. For example assume two input streams, R and
S, both with a time attribute, and a window size, w. Join
matches tuples that satisfy t.time -s.time ≤ w, although other
window specifications are possible. Tuples produced by
operators in most cases maintain timestamp ordering or else
ordering can be applied using sort operators during insertion.
If output queues are persistent, then the timestamp of the
result tuple can be changed to resemble the timestamp of the
concatenated tuples. This way, in case of failure, the operator
knows from which point in time to ask replay from both
input streams. In addition, in join operator we have to
remember the relevant position inside the input streams from
which concatenation takes place. CEC will periodically
produce Gcheck tuples indicating the relevant position of the
two windows at any point in time.

VI. RELATED WORK
General fault-tolerance methods typically rely on

replication to protect against failures. The main replication
mechanisms for high-availability in distributed systems
include state machine [19], process-pairs [11], and rollback
recovery [10] methodologies. In the state-machine approach,
the state of a processing node is replicated on k independent
nodes. All replicas process data in parallel and the
coordination between them is achieved by sending the same
input to all replicas in the same order. The process-pairs
model is a related approach in which replicas are coordinated
using a primary/secondary relationship. In this approach a
primary node acts as leader forwarding all of its input to a
secondary, maintaining order and operating in lock-step with
the primary node. In rollback recovery, nodes periodically
send snapshots (typically called checkpoints) of their state to
other nodes or to stable storage devices. Upon recovery, the
state is reconstructed from the most recent checkpoint and
upstream nodes replay logged input tuples to reach the pre-
failure state. All of the above methodologies have in the past
been adapted to operate in the context of continuous-query
distributed stream processing systems.

Two examples of the state machine approach adapted for
stream processing are active-replicas [6] and Flux [21]. Both

systems replicate the producer and the consumer operators in
a stream dataflow graph in a symmetric fashion. Each
consumer replica receives tuples from one of the producer
replicas and, in case of producer failure, the consumer
switches to another functioning producer replica. Strict
coordination is not required since consistency is eventually
maintained by the replicas simultaneously processing the
same input and forwarding the same output. All operators
preserve their output queues, truncating them based on
acknowledgements periodically sent by consumers. In case
of failure, all upstream replica nodes are up-to-date and can
start serving their downstream nodes as soon as the failure is
detected, minimizing recovery time.

The work of Hwang et al. [14] extends the active-replicas
approach so that all upstream replicas send their output to all
downstream replicas and the latter being allowed to use
whichever data arrives first. Since the downstream nodes
receive data from many upstreams, the input stream received
might be unordered or/and contain duplicate tuples. Despite
the above complications their system manages to deliver the
same result as it would produce without failures. To achieve
this, operators are enhanced with extra non-blocking filters
(one filter per input stream) that eliminate duplicates based
on periodically exchanged timestamp messages t. All tuples
with timestamp lower than t are considered duplicates and
dropped.

Another fault-tolerance methodology that combines the
active-replicas and process-pair approaches is active standby
[13]. In active-standby, secondary nodes work in parallel
with the primary nodes and receive tuples directly from
upstream operators. In contrast to active-replicas, in active-
standby secondary nodes log result tuples in their output
queues but do not forward tuples to secondary downstream
neighbors. Challenges with this approach include output
preservation due to non-deterministic nature of operators and
bounding the log of each secondary.

Instances of the rollback recovery (also known as
checkpoint-rollback or CRB) methodology [10] are the so-
called passive-replicas approaches, comprising passive-
standby and upstream-backup [6][13]. In passive-standby,
the primary replica periodically produces checkpoints of its
state and copies it to the backup replica. The state includes
the data located inside the operators, along with the input and
output queues. The secondary node acknowledges the state

Figure 8. Operator response time for different checkpoint
periods.

Figure 9. Extent size for different checkpoint periods.

already received with the primary upstream so as to drop
tuples from the latter's output queue. In case of failure, the
backup node takes over by loading the most recent
checkpoint to its current state. A variant of passive-standby
that allows independent checkpointing of fragments (sub-
graphs) of the entire query graph has been shown [15] to
reduce the latency introduced by checkpointing. However
checkpoint granularity with this methodology is still at the
level of entire operators and stream processing freezes while
storing a fragment checkpoint to a remote server memory.

The upstream-backup [13] model was proposed for
operators whose internal state depends on a small amount of
input. In this approach, the upstream nodes act as backups
for the downstream nodes by logging tuples in their output
queues until all downstream nodes completely process their
tuples. The upstream log is trimmed periodically using
acknowledgments sent by the downstream primaries. In case
of failure, the upstream primaries replay their logs and the
secondary nodes rebuild the missing state before starting to
serve other downstream nodes. In contrast to passive-
standby, upstream-backup requires a longer recovery but
comes with lower runtime overhead.

In all aforementioned methodologies replica nodes retain
output tuples and checkpoints in memory buffers reducing
the amount memory available for input tuple processing. One
solution to this problem is to utilize persistent storage
[15][20]. SGuard [17] is a system that leverages the use of a
distributed and replicated file system (HDFS [7]) to achieve
stream fault-tolerance in Borealis [8]. Operators periodically
produce delta-checkpoints of their current state and the
recovery is made using the latest checkpoint of the failed
node. In this approach, HDFS act as the backup location for
the checkpointed state, thus reducing the memory
requirements of the stream processing nodes. To eliminate
the overhead of freezing the operators during checkpoint,
SGuard performs checkpoints asynchronously and manages
resource contention of the distributed file system with the
enhancement of a scheduler that batches together several
write requests. SGuard is related to CEC in its focus on
producing operator checkpoints and persisting them on stable
storage. SGuard however considers the entire operator as a
checkpoint unit whereas our approach breaks operator state
into parts, treating each window as an independently entity.
Another system that takes advantage of operator semantics to
optimize checkpointing performance is SPADE [16].

Zhou et al. [22] use log-based recovery and fuzzy
checkpointing to offer programming support for high-
throughput data services. Their fuzzy checkpoints of
independent memory objects are similar to our eventual
checkpoints of independent operator-window states and their
logs are similar to our upstream queues, which can replay
input tuples during recovery. In addition, they propose an
adaptive control approach to regulating checkpoint
frequency based on a number of target parameters. Our work
differs in that our checkpoints are integrated within the
logging infrastructure; they are continuously and
incrementally evolving; and we use a different set of target
parameters to regulate checkpointing intensity.

VII. CONCLUSIONS
In this paper we proposed a new methodology for

checkpoint-rollback recovery for stateful stream processing
operators that we call continuous eventual checkpointing
(CEC). This novel mechanism performs checkpoints of parts
of the operator state asynchronously and independently in the
form of control tuples produced by the operator. Individual
window checkpoints are interleaved with regular output
tuples at the output queue of each operator and persisted in
stable storage. During recovery, CEC processes the output
queue of the operator to reconstruct a full checkpoint, which
it then loads on the operator. The checkpoint determines the
amount of tuples that need to be replayed by the upstream
source. Our results indicate that CEC does not penalize
operator processing when operating under minimal recovery
guarantees. Offering stronger recovery guarantees is possible
through tuning of the Q, U target parameters regulating the
eventual checkpoint’s extent size and upstream queue replay
size. The checkpoint interval and period parameters CI, CP
can further tune the system to the desired response-time
objective. Overall our results demonstrate that CEC is a
simple to implement, configurable, low-overhead
checkpoint-rollback solution for mission-critical stream
processing operators.

VIII. ACKNOWLEDGMENTS
We thankfully acknowledge the support of the European

FP7-ICT program through the STREAM (STREP 216181)
and SCALEWORKS (MC IEF 237677) projects.

IX. APPENDIX: PERSISTENCE ARCHITECTURE
CEC’s intermixing of operator state checkpoints with

regular output tuples at the operator’s output queue raises the
need for a queue persistence mechanism in the context of a
stream processing engine (SPE). The upper-left part of
Figure 10 shows a standard SPE structure such as found in
the Aurora/Borealis [4] system. In this structure incoming
tuples from a stream S are shepherded by a thread (the
Enqueue thread in this figure) to be enqueued into the SPE
for processing by operator(s) that use S as one of their inputs.
The tuples produced by the operators are placed on an output
stream and dequeued by a separate thread (the Dequeue
thread in the figure) and grouped into stream events (SEs).
SEs are serialized objects grouping several tuples for the
purpose of efficient communication. The remainder of the
figure describes the path that persists SEs prior to
communicating them to downstream nodes.

Our detailed description starts with the case of failure-
free operation:

Failure-free operation: SEs created by the dequeue
thread are first serialized. If the streams they are associated
with are set for persistence (on a per-operator basis through a
configuration option) the SEs enter the persist-event list,
otherwise they move directly onto the forward-event list. A
write operation to storage is initiated using a non-blocking
API with asynchronous notification [2]. We additionally use
checksums to check that an I/O has been performed correctly
in its entirety on the storage device. The asynchronous I/O

operations are handled by a state machine in an event loop.
For parallelism, we maintain a configurable window of N
concurrently outstanding I/Os. Once a completion of a write
I/O is posted by the storage system we first update a per-
stream index (shown in Figure 10), and then move the
persisted event data structure to the forward-event list.
Subsequently a network send operation is initiated. The SE
remains there until successfully sent out over the network.

The stream index maps a timestamp into a serialized SE
that contains a tuple with that timestamp. The mapping is
typically the file offset within the persisted object. In our
current prototype the index is implemented using an Oracle
Berkeley DB database.

Operation under failure: When a downstream SPE node

fails, all streams connected to queues on that node disconnect
and no outgoing network communication takes place on
those streams until reconnection (other streams however are
not affected). SEs produced by local operators are still
persisted as described during failure-free operation.
However, as soon as the SPE receives an I/O completion for
an SE, it deletes it from memory. Other SEs belonging to
still-connected streams proceed to the forward-event list as
described during failure-free operation.

Figure 10. Stream processing engine I/O architecture.

Recovery: A recovering SPE node can reconnect to

upstream SPEs serving the streams it was connected to prior
to its failure. The recovering SPE performs the following
steps: (1) reconcile the stream index in the DB with the log
length reported by the file system; (2) determines the last
consistent operator checkpoint, load the checkpoint, and
determine the timestamp they want to start replaying from, as
described in Section II.B; (3) communicate the timestamp to
the appropriate upstream SPEs, which will replay tuples
from those streams. Upon such a request from a downstream
node SPE, an upstream node will look up the requested
timestamp into its stream index. The lookup will return a
pointer to an SE x that contains the requested timestamped

tuple. The node will then start issuing asynchronous read I/O
operations for stored SEs starting from x in a manner similar
to the write operations described during failure-free
operation. Upon completion of a read I/O, the retrieved SE
may need to be de-serialized (if a subset of the SE is
requested, as for example, in the beginning of a stream
replay request) then re-serialized (if needed) and put into the
forward-event list. Similar to the process followed during
failure-free operation, the SE will be sent to the connected
downstream SPEs over the network.

Catching up with a live stream: The persisted queue may

be growing by simultaneously appending tuples to it
(incoming on a live stream), and reading tuples by multiple
clients from different offsets. In certain cases, the rate at
which a reader consumes tuples may be higher than the rate
at which tuples are produced (as for example when tuples are
produced at a source-determined rate of a few Mbps while
the reader consumes as fast as I/O resources possibly -
several tens of MB/s- allow). In such cases the read pointer
into the persisted queue may reach the end -in essence,
exhausting the object portion that exists only in storage.
Read I/O operations will then start being satisfied from
memory buffers and we can say that the reader has “caught
up” with the live stream. In such cases, an SPE may decide
to interrupt stream persistence if the reason for it was to
avoid tuple loss due to a downstream node failure. In cases
where persistence has been explicitly requested, the two I/O
directions (reads and writes) can continue to be
simultaneously active with reads satisfied at memory speeds.

REFERENCES
[1] IBM Ushers in Era of Stream Computing. IBM Press Report,

http://www-03.ibm.com/press/us/en/pressrelease/27508.wss.
[2] Kernel Asynchronous I/O for Linux,

http://lse.sourceforge.net/io/aio.html.
[3] Borealis Application Programmer’s Guide, Borealis Team,

2008.
[4] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A New Model and Architecture for Data Stream
Management. The VLDB Journal, 12(2):120–139, 2003.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R.
Motwani, U. Srivastava, and J. Widom. STREAM: The
Stanford Data Stream Management System. Springer, 2004.

[6] M. Balazinska, H. Balakrishnan, S. R. Madden, and M.
Stonebraker. Fault-Tolerance in the Borealis Distributed
Stream Processing System. ACM Transactions on Database
Systems, 33(1):1–44, 2008.

[7] D. Borthakur. The Hadoop Distributed Fle System:
Architecture and Design, The Apache Software Foundation,
2007.

[8] Cetintemel, Abadi, Ahmad, Balakrishnan, Balazinska,
Cherniack, Hwang, Lindner, Madden, Maskey, Rasin,
Ryvkina, Stonebraker, Tatbul, Xing, and Zdonik. The aurora
and borealis stream processing engines. In Data Stream
Management: Processing High-Speed Data Streams, 2006.

[9] C. Drew. Military is Awash in Data from Drones, New York
Times, January 10, 2010.

[10] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[11] J. Gray. Why Do Computers Stop and What Can be Done
About it?, Tandem Technical Report 85-7, 1985.

[12] D. Hilley and U. Ramachandran. Persistent temporal streams.
In Middleware ’09: Proceedings of the 10th
ACM/IFIP/USENIX International Conference on
Middleware, pages 1–20, New York, NY, USA, 2009.

[13] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik. High-availability algorithms for
distributed stream processing. In ICDE ’05: Proceedings of
the 21st International Conference on Data Engineering, pages
779–790, Washington, DC, USA, 2005.

[14] J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and highly-
available stream processing over wide area networks. In
ICDE ’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 804–813,
Washington, DC, USA, 2008.

[15] J.-H. Hwang, Y. Zing, U. Cetintemel, and S. Zdonik. A
Cooperative Self-Configuring High-Availability Solution for
Stream Processing. In ICDE ’07: Proceedings of the 2007
IEEE 23th International Conference on Data Engineering,
pages 176–185, Istanbul, Turkey, 2007.

[16] G. Jacques-Silva, B. Gedik, H. Andrade, K.-L. Wu,
Language-level Checkpointing Support for Stream Processing
Applications, in Proceedings of 39th IEEE/IFIP International

Conference on Dependable Systems and Networks
(DSN’2009), Lisbon, Portugal, 2009.

[17] Y. Kwon, M. Balazinska, and A. Greenberg. Fault-tolerant
Stream Processing Using a Distributed, Replicated Fle
System. volume 1, pages 574–585. VLDB Endowment, 2008.

[18] M. Ligon and R. Ross. Overview of the Parallel Virtual Fle
System. In Proceedings of Extreme Linux Workshop, 1999.

[19] F. B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: a Tutorial. ACM Computing
Surveys, 22(4):299–319, 1990.

[20] Z. Sebepou and K. Magoutis. Scalable Storage Support for
Data Stream Processing. In Proceedings of 26th IEEE
Conference on Mass Storage Systems and Technologies
(MSST 2010), Lake Tahoe, Nevada, May 2010.

[21] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly
Available, Fault-Tolerant, Parallel Dataflows. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, New York, NY, 2004.

[22] J. Zhou, C. Zhang, H. Tang, J. Wu, T. Yang, “Programming
Support and Adaptive Checkpointing for High-Throughput
Data Services with Log-Based Recovery”, in Proceedings of
40th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’2010), Chicago, IL, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

