Chapter 3: Transport Layer

Our goals:

A understand principles O learn about transport
behind transport layer protocols in the
layer services: Internet:

o multiplexing/demultipl O UDP: connectionless
exing transport

O reliable data transfer O TCP: connection-oriented

o flow control transport

o congestion control O TCP congestion control

Transport Layer 3-1

Chapter 3 outline

03 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure
O reliable data transfer

o flow control

O cohnection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion

control

Transport Layer

3-2

Transport services and protocols

O provide /fogical communication
between app processes _
running on different hosts hetwork

3 transport protocols runin
end systems

O send side: breaks app
messages into segments,
passes fo network layer

O rcv side: reassembles
segments into messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

application
transport

data link
physical

Transport Layer 3-3

Transport vs. network layer

O network layer: logical communication between hosts

3 fransport layer: logical communication between
processes
O relies on and enhances network layer services

Transport Layer 3-4

Internet transport-layer protocols

A reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup

3 unreliable, unordered
delivery: UDP

o no-frills extension of
"best-effort" IP

0 services not available: o e e n
O delay guarantees
O bandwidth guarantees

application
transport

data link

Transport Layer 3-5

Chapter 3 outline

3 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure
O reliable data transfer

o flow control

O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion

control

Transport Layer

3-6

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — Multiplexing at send host: _
| gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket (::::) = process

application application application
L | S|
transport ‘??unip5F¥ transport
network neT¢ork network
link link link
physical physicat physical
host 1 host 2 host 3

Transport Layer 3-7

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

« 32 bits -+

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-8

Connectionless demultiplexing

3 When host receives UDP

O Create sockets with port
segment:

numbers: o
DatagramSocket mySocketl = new O checks C%ZSTIHC(TIOH pOl"T
DatagramSocket (99111) ; humber in segmen‘r
DatagramSocket mySocket2 = new O directs UDP segment to
DatagramSocket (99222) ; socket with that port
7 UDP socket identified by number |
two-tuple: 3 IP datagrams with

different source IP
addresses and/or source
port humbers directed
to same socket

(des’r IP address, dest port number)

Transport Layer 3-9

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428) ;
SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-10

Connection-oriented demux

3 TCP socket identified O Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
o dest IP address its own 4-tuple
O dest port number 7 Web servers have
A recv host uses all four different sockets for
values to direct each connecting client
segment to appropriate O non-persistent HTTP will

have different socket for

socket
each request

Transport Layer 3-11

Connection-oriented demux

(cont)

client
IP: A

P4 H)(P5
ﬂOHO
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-12

Client
IP:B

Connection-oriented demux:

Threaded Web Server

client
IP: A

< P4 >
i I L, I
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
BP: 80 server bP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-13

Client
IP:B

Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-14

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones"
Internet transport Why is there a UDP?
EPOTOCOI . . 0 ho connection
3 “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost 0 simple: no connection state
o delivered out of order at sender, receiver
To app 7 small segment header
O connectionless: T ho congestion control: UDP
o no handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others

Transport Layer 3-15

UDP: more

J often used for streaming

multimedia apps = 32 bits »

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP™ [~ length checksum
e e
7 other UDP uses Smf,t‘dir:g
o DNS header
o SNMP
A reliable transfer over UDP: Application
add reliability at data
application layer (message)
O application-specific

error recovery!
UDP segment format

Transport Layer 3-16

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in fransmitted
segment

Sender: Receiver:
O treat segment contents 3 compute checksum of
as sequence of 16-bit received segment
infegers 3 check if computed checksum
3 checksum: addition (1's equals checksum field value:
complement sum) of o NO - error detected
segment contents o YES - no error detected.
O sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Transport Layer 3-17

Internet Checksum Example

3 Note

O When adding nhumbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1

1100110011 00110
1101010101 01O01O01

wraparound ()1 001 1 1 01110111011

sum

1 1 00
checksum 0

111
O0O0O0T11

Transport Layer 3-18

011101110
1 0001 00O01

Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-19

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

Q

application
layer

transport
layer

() provided service

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-20

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

Q

application
layer

transport
layer

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j rat_send ()
reliable data

Q

application
layer

deliver data()

=
8_ O reliable data

@ > fransfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt send()i [packet | [packet] Irdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Reliable data transfer: getting started

rdt send () : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side]

send
side

deliver data() : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

udt_send ()} [packel

relioble data receive
fransfer protocol id
(receiving side) Side
packet Irdt_rcv ()

T—»()unrelicible channel)<T

udt send() : called by rdft,
to transfer packet over
unreliable channel to receiver

rdt rcv() : called when packet
arrives on rcv-side of channel

Transport Layer 3-23

Reliable data transfer: getting started

we'll:
3 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
3 consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

/ \
event @
actions)

Transport Layer 3-24

state: when in this
"state” next state
uniquely determined
by next event

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O ho bit errors
O no loss of packets

O separate FSMs for sender, receiver:

O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data) “AWait for
call from
below

rdt_rcv(packet)

Walit for
call from
above

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)
sender receiver

Transport Layer 3-25

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
o checksum to detect bit errors

3 the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
3 new mechanisms in rdt2.0 (beyond rdtl.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-26

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

ISNAK(rcvpkt)

Walit for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && iISACK(rcvpkt)

Wait for
A call from
sender below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-27

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Walit for
call from
below

rdt_rcv(rcvpkt) && iISACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-28

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

t rcv(rcvpkt) &&
ISNAR e

-

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) > .

P Wait for
call from
below

A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? o sender retransmits current

0 sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! O sender adds seguence

7 can't just retransmit: number to each pkt
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt

-stop and wait
Sender sends one packet,
then waits for receiver
response

Transport Layer 3-30

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
\Avé\iéfg: Wait for
rdt_rcv(rcvpkt) && NAK 1 Caalllb%,\tfm
(corrupt(rcvpkt) |
SNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-31

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-32

rdt2.1: discussion

Sender: Receiver:
0 seq # added to pkt 3 must check if received
7 two seq. #'s (0,1) will packet is duplicate

suffice. Why? O state indicates whether

: : O or 1is expected pkt

3 must check if received seq #

AC.K/ NAK corrupted 3 note: receiver can not
O twice as many states know if its last

O state must “remember” ACK/NAK received OK

whether "current” pkt

has O or 1 seq. # at sender

Transport Layer 3-33

rdt2.2: a NAK-free protocol

73 same functionality as rdt2.1, using ACKs only

7 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-34

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

RN — Y
P, Wait for (_corrupt(rcvpkt) ||
...................... call 0 from ACK ISACK(revpkt.1))
.................................... above 0 udt_send(sndpkt)
.. sender FSM
... fragment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
ook ge e && isACK(rcvpkt,0)
(corrupt(revpkt) || —~c" e A
has_seql(rcvpkt)) receiver FSM T
udt_send(sndpkt) fragmen’r ..
- T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-35

rdt3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits
"reasonable” amount of
time for ACK

A retransmits if no ACK
received in this time

3 if pkt (or ACK) just delayed
(not lost):
O retransmission will be

duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

O requires countdown timer

Transport Layer 3-36

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_sgnd(sndpkt) iISACK(rcvpkt,1))
rdt_rcv(rcvpkt) \ start_timer A
A o

V\Illacl)tffor timeout

call virom udt_send(sndpkt)
above :

start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt)

start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-37

rdt3.0 in action

sender receiver sender receiver
ok g
send pki0 e send pki0 v 0
> rcv pkio
M ACK send ACKO

send ACKO
y rcv ACKO
rcv ACKO send pkt1] kT]
send pki] \K (loss)
rcv pkil
ACK] y send ACKI
[CV.
send pki0 kt fimeout | kt
Q resend pki1 24
ACK v pkil \ oV pkt
send ACKO ACK send ACK

rcvACK] o
send pki0

d) operation with no loss rcv pki0
(@) op }G/ send ACKO

(b) lost packet

Transport Layer 3-38

rdt3.0 in action

sender receiver
oly
NP0 20 rov pug
ACK send ACKO
rcv ACKO
send pktl ka]
\ rcv pktl
ACK send ACK
(loss) X/
fimeout = okt 4
resend pkil \rcv okt 1 |
ACK (detect duplicate)
send ACKI]
rCVACKT o
send pkt0
rcv pkto
ACK send ACKO
(c) lost ACK

sender receiver
kt
sendpk0. —LL0__ oy g
ACK send ACKO
rcv ACKO _
send pkiT
rcv kil
send ACK1
fimeout
resend pkil =
rcv pkil
rcvACK (detect duplicate)
send pkio send ACK1
rcv pkio
send ACKO

(d) premature timeout

Transport Layer 3-39

Performance of rdt3.0

3 rdt3.0 works, but performance stinks
O example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

.- L (packet length inbits) _ 8kb/pkt
fransmit R (transmission rate, bps) ~ 10**9 b/sec

= 8 microsec

O U opdert UTilization - fraction of time sender busy sending

U ~ L/R .008

der™ = = 0.00027
sender RTT+L/R 30008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
o network protocol limits use of physical resources!

Transport Layer 3-40

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —sg-------------ooomoeeo
last packet bit transmitted, t = L/ R 17

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t =RTT+L/R

<

y ._ L/R _ .008

= — = 0.00027
sender RTT+L/R 30.008

Transport Layer 3-41

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

7 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-42

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —je---------ccocooooo
last bit transmitted, t=L/R

first packet bit arrives
last packet bit arrives, send ACK

~ > last bit of 2nd packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next,
packet, t = RTT+ L /R [=

................. Increase utilization
................ ‘ / by a factor of 3!

U -_3*L/R _ 0z = 0.0008

sender RTT+L/R 30008

Transport Layer 3-43

Go-Back-N

Sender:
J k-bit seq # in pkt header
J “window" of up to N, consecutive unack'ed pkts allowed

send_base nhexfsegnum dlready Usable. nof
i i ack’ed yet sent
I VETEHTITO0000I0 | smmeta [v
+ __ window size —4%
N

0 ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
O may receive duplicate ACKs (see receiver)

O timer for oldest not-yet-acknowledged pkt

O timeout: retransmit pkt at base and all higher seq # in window

Transport Layer 3-44

GBN: sender extended FSM

rdt_send(data)

If (nextsegnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnumy])
if (base == nextsegnum)
start_timer
nextsegnum-++
~~~~~~ }
A T, else
refuse_data(data)

""""" . timeout
start_timer
udt_send(sndpkt[base])
6‘ udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
A udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer Transport Layer 3-45



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(revpkt)
-~ ( ) && notcurrupt(rcvpkt)

A T~ a - && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #

O may generate duplicate ACKs
O need only remember expectedsegnum

3 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #

Transport Layer 3-46



GBN in

action

sender

send pktO
send pkf

¥ send pki?2

send pkT3
(wdalif)

rcv ACKO
send pkt4

rcv ACK]

—pktZ timeout
send pki2
send pkt3
send pkt4
send pktd

receiver

\
\(Ea(ss)

A\

send pkts \

—
~

rcv pkto
send ACKO

rcv pkil
send ACK

rcv pkt3, discard
send ACK

rcv pktd, discard
send ACK

rcv pktd, discard
sencpj) ACK]

rcv pki2, deliver

send ACK?2
rcv pkt3, deliver

send ACK3

Transport Layer 3-47



Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt

7 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-48



Selective repeat: sender, receiver windows

send_base  hextsegnum dlready Lsable. not
L ¢ ack’ed yet sent
T | s e
L _ window size —2
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |ogecregaet [ o

t _ window size—#4

1 N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-49



Selective repeat

—sender —receiver
data fr'om above : ka nin [rcvbase, rcvbase+N-1]
3 if next available seq # in 3 send ACK(n)
window, send pkt 3 out-of-order: buffer
timeout(n): 3 in-order: deliver (also
O resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
next not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

ACK(n) in [sendbase sendbase+N]:
O mark pkt n as received
O if n smallest unACKed pkt,

advance window base to - ACK(n')
next unACKed seq # otherwise:
3 ighore

Transport Layer 3-50



Selective repeat in action

pktl =ent
o012 3

pktl =ent
o012 3

pkt:? =ent
o012 3

0123

pkt3 =ent.
4 5 6 7 89

4 56 7879

window full

ACKD rowd, pktd =e=nt

o1 2 3 4

Ee 7809

ACK1 rowd, pkti =ent

01

2 3458 789

—— pkt2 TIMEOUT, pkt2 resent

01

2 3458 789

ACK3 rowd, nothing sent

01

23458 7889

0

1 2 3 4|5

4 56 7 89 _—ﬁ_\m—‘_———* pktl rocwd, deliwvered. ACED =ent

E 7 8 9

pktl rocwd, delivered. ACKl =ent

01
456 789 Wy

(loss)

2345

B 7 8 9

pktd rovd., buffered. ACKI sent

01

2 345

B 7 89

pktd rcwd, buffered. ACK4 =ent

n1

pktS rowd.
n1

2 345

2345

B 7 89

buf fered. ACKES =ent

B 7 89

pkt? rowd, pkt?. pkt3d, pltd plth
delivered, ACKZ? =e=nt

012345

B 7 89

rt Layer

3-51



sender window

Selective repeat:

dilemma

Example:
0 seq#s:0,1,2,3
3 window size=3

[ receiver sees ho
difference in two
scenariosl!

O incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

receiver window

(after receipt) (after receipt)
pktO

012130172 ol1 2 3l01 2

0121301 0123012

01230172 012130 1l2

timeout

retransmit pktﬁ(;)ktO _

012301 —p receive packet

sender window
(after receipt )

with seq number O

(a)

receiver window
(after receipt)

01

213 01

01

213 01

01

213 01

o] !

2 3]0 1

01

pktO

4

Ofl 2 3J0 1 2

01123 0]1 2

12430 1}2

receive packet
with seq number O

(0)

Transport Layer 3-52



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-53



TCP: Overview «rrcs: 793, 1122, 1323, 2018, 2581

0 point-to-point: 0 full duplex data:
O ohe sender, one receiver O bi-directional data flow
3 reliable, in-order byte In same connection
steam: O MSS: maximum segment
Size

O no "message boundaries”
O pipelined:
O TCP congestion and flow
control set window size

3 connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0O send & receive buffers before data exchange

3 flow controlled:
e O sender will not

" door

overwhelm receiver

socket
door —

TCP
send buffer

() segment] —» ()

Transport Layer 3-54



TCP segment structure

URG: urgent data

source port #

32 bits

dest port #

counting

(generally not used)\
ACK: ACK #

~

sequence number

by bytes
of data

valid

(not segments!)

PSH: push data now
(generally not used)—|

C owled_gemen’r number
h!ead ';:rd A[’JI}SF Receive window

cheeksum,

Urg data pnter

# bytes
rcvr willing

RST, SYN, FIN:—
connection estab

_—
Opy(s (variable length)

to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-55



TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
“number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

o cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up fo
implementor

host ACKs
receipt
of echoed
'

receipt of

A3 e =S 'C, echoes
=19 A== back 'C’
Sed”

time

simple telnet scenario

\ 4

Transport Layer 3-56



TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

3 longer than RTT
O but RTT varies

3 Yoo short: premature
timeout

O unnecessary
retransmissions

3 too long: slow reaction
to segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from
segment transmission until ACK
receipt

O ighore retransmissions

0 SampleRTT will vary, want
estimated RTT “smoother”

O average several recent

measurements, not just
current SampleRTT

Transport Layer 3-57



TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT
0 Exponential weighted moving average

O influence of past sample decreases exponentially fast
O typical value: a =0.125

Transport Layer 3-58



Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

N

al

o
—
—
>
—

RTT (milliseconds)

N

o

o
I

150

100 T T T T T T T T T T T T

1 8 15 22 29 36 43 50 57 64 71 78 85

time (seconnds)

—o— SampleRTT —&— Estimated RTT

92 99 106

Transport Layer 3-59



TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-fB) *DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-60



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-61



TCP reliable data transfer

3 TCP creates rdt 3 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events

3 Pipelined segments O duplicate acks

7 Cumulative acks O IHITIGIIY consider

simplified TCP sender:
O ignore duplicate acks

o ignore flow control,
congestion control

O TCP uses single
retransmission timer

Transport Layer 3-62



TCP sender events:

data rcvd from app: timeout:
O Create segment with O retransmit segment
seq # that caused timeout

0 seq # is byte-stream O restart timer
number of first data Ack revd:
byte in segment

O If acknowledges

3 start timer if not pr-eviously unacked
already running (think segments
of timer as for oldest O update what is known to
unacked segment) be acked

A expiration interval: O start timer if there are
TimeOutInterval outstanding segments

Transport Layer 3-63



NextSeqNum = InitialSegqNum
SendBase = InitialSeqgNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} I* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

+ SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-64



TCP: retransmission scenarios

«——timeout——

SendBase
= 100

v
time

lost ACK scenario

Sendbase
=100
SendBase
=120

SendBase
=120

92 Timeou‘r—>|

92 timeout —+— Seq

eq-

'p]
i
v

time

premature timeout

Transport Layer 3-65



TCP retransmission scenarios (more)

=120

A

\{
loss
SendBase P\c\("\zo

time '
Cumulative ACK scenario

Transport Layer 3-66



TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-67



Fast Retransmit

O Time-out period often O If sender receives 3

relatively long: ACKs for the same
o long delay before data, it supposes that
resending lost packet segment after ACKed
O Detect lost segments data was lost:
via duplicate ACKs. o fast retransmit: resend
O Sender often sends segment before timer
many segments back-to- expires
back

O If segment is lost,
there will likely be many
duplicate ACKs.

Transport Layer 3-68



Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

)
/ \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-69



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-70



TCP Flow Control

7 receive side of TCP
conhection has a
receive buffer:

k— RevWindow —f

7

data from
IP

7
7, / 77
'|l— RevBuffer —I‘*

T app process may be

slow at reading from
buffer

-flow control
sender won't overflow
receiver's buffer by
transmitting too much,

too fast

/ 7 IR

application

7 speed-matching

service: matching the
send rate to the
receiving app's drain
rate

Transport Layer 3-71



TCP Flow control: how it works

k— RevWindow —f

007 O Rcvr advertises spare
/ | jswplicain  OOM by including value

data from

o ™ of ReviWindow in
Z / 22 segments
re 3 Sender limits unACKed
(Suppose TCP receiver data to ReviWindow
discards out-of-order o guarantees receive
segments) buffer doesn't overflow
3 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 3-72



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-73



TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish "connection”

before exchanging data Step 1: client host sends TCP
segments SYN segment to server
A initialize TCP variables: O specifies initial seq #
O seq. #s O no data
O buffers, flow control Step 2: server host receives
info (e.g. ReviWindow) SYN, replies with SYNACK
3 client: connection initiator segment

Socket clientSocket = new
Socket ("hostname" , "port

number") ;

o server allocates buffers
O specifies server initial

7 s ntacted by client seq. #
erver. contacrte clie . .
o . Y _ Step 3: client receives SYNACK,
ocket connectionSocket = : .
welcomeSocket.accept() ; r‘eplles W'Th ACK SegmenT'

which may contain data

Transport Layer 3-74



TCP Connection Management (cont.)

Closing a connection:

client closes socket: FIN
clientSocket.close() ;

Step 1: client end system poK
sends TCP FIN control ew

segment to server

close

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

d wait

Q. time

close

Transport Layer 3-75



TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

closing

o Enters “timed wait" -
will respond with ACK

to received FINs ACK .
closing

Step 4: server, receives
ACK. Connection closed. —

=
Note: with small _%
modification, can handle

Q)

) e

simultaneous FINs. F
closed

closed

Transport Layer 3-76



TCP Connection Management (cont)

wait 30 seconds

/

CLOSED

TIME_WAIT

3

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nathing

TCP client
lifecycle

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

h 4

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

LAST_ACK
A

send FIN

CLOSE_WAIT
A

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYN
send SYN & ACK

h 4

SYN_RCVD

receive FIN

send ACK ESTABLISHED

receive ACK
send nothing

Transport Layer

3-77



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-78



Principles of Congestion Control

Congestion:

3 informally: "too many sources sending too much
data too fast for network to handle”

3 different from flow controll
3 manifestations:
O lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
3 a top-10 problem!

Transport Layer 3-79



Causes/costs of congestion: scenario 1

Host A oy
A . original data out

3 two senders, two
receivers

O one router,
infinite buffers

[ no retransmission

unlimited shared
output link buffers

Host B

O large delays
when congested

O maximum
achievable
o throughput

C/2+

?Lout
delay

Transport Layer 3-80



Causes/costs of congestion: scenario 2

3 one router, finite buffers
3 sender retransmission of lost packet

HoStA ;. original Rout

data
A’y - original data, plus A
retransmitted data

finite shared output
link buffers

Transport Layer 3-81



Causes/costs of congestion: scenario 2

J always: A = }'OU'[ (goodput)
in
O “perfect” retransmission only when loss: )" > )

out

in /
O retransmission of delayed (not lost) packet makes xin larger

R/2

“costs” of congestion:

(than perfect case) for same }LO

, R/2
xin

a

=

o
<

R/2

R/3

ut

R/2

R/2

O more work (retrans) for given “"goodput”
O unneeded retransmissions: link carries multiple copies of pkt

R/2

Transport Layer 3-82



Causes/costs of congestion: scenario 3

3 four senders Q: what happens as KI
and A! increase ?

O multihop paths
3 timeout/retransmit

Host A

N

A, - original data

B—

A" o original data, plus
retransmitted data

finite shared output

Host B

7

link buffe

Transport Layer 3-83



Causes/costs of congestion: scenario 3

C/2 s

3 o
(< 1

k!
in
Another “cost” of congestion:

O when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-84



Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

3 no explicit feedback from O routers provide feedback
hetwork to end systems

7 congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

3 approach taken by TCP ATM)

o explicit rate sender
should send at

Transport Layer 3-85



Chapter 3 outline

3 3.1 Transport-layer
services

3 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-88



TCP congestion control

7 How to detect congestion?
3 How to react to congestion?

O How to adjust to congestion state?

Transport Layer 3-89



TCP Congestion Control: details

How does sender 3 sender limits transmission:
perceive congestion? LastByteSent-LastByteAcked
3 loss event = timeout or < CongWin
3 duplicate acks 3 Roughly,
3 TCP sender reduces CongWin
rate (CongWin) after rate = RTT Bytes/sec
loss event . ) )
o J CongWin is dynamic, function
three mechanisms: of perceived network
o AIMD

conhgestion
O slow start

O conservative after
timeout events

Transport Layer 3-90



TCP congestion control: additive increase,
multiplicative decrease
O Approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase: increase CongWin by 1 MSS
every RTT until loss detected

O multiplicative decrease: cut CongWin in half after

loss
GNJ -
‘D 24 Kbytes —
=
Saw tooth g
. . 16 Kbytes —
behavior: probing s
for bandwidth 5
g 8 Kbytes —
2
S .
o time

Transport Layer 3-91



TCP Slow Start

0 When connection begins, O When connection begins,

CongWin = 1 MSS increase rate
o Example: MSS = 500 exponentially fast until
bytes & RTT = 200 msec first loss event

O initial rate = 20 kbps

O available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

Transport Layer 3-92



TCP Slow Start (more)

[ When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK

received
J Summary: initial rate
is slow but ramps up
exponentially fast

time

\ |

Transport Layer 3-93



Refinement

Q: When should the
exponential
increase switch to
linear?

: When CongWin
gets to 1/2 of its
value before
timeout.

Td—

_;
P
|

_| Threshold

Transmission round

TCP Series 1 Tahoe

TCP Series 2 Reno

Threshold

Implementation:
3 Variable Threshold

A At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

34 5 6 7 B

Transmission round

] 1 [ |
9 10 111213 14 15

Transport Layer 3-94



Refinement: inferring loss

0 After 3 dup ACKs:
O CongWin is cut in half

— Philosophy:
O window then grows
linearly d 3 dup ACKs indicates

network capable of

3 But after timeout event: Mol
delivering some segments

O CongWin instead set to Q timeout indicates a

IMSS; “more alarming”

O window ’rhen grows congestion scenario
exponentially

O to a threshold, then
grows linearly

Transport Layer 3-95



Summary: TCP Congestion Control

7 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

7 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

3 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-96



TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACKreceipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSor CA Loss event Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSor CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSor CA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-97



TCP throughput

3 What's the average throughout of TCP as a
function of window size and RTT?

O Ignore slow start
7 Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

3 Just after loss, window drops to W/2,
throughput to W/2RTT.

3 Average throughout: .75 W/RTT

Transport Layer 3-98



TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

conhnection 2

Transport Layer 3-100



Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 3-101



Fairness (more)

Fairness and UDP Fairness and parallel TCP
connections

3 Multimedia apps often

do not use TCP 3 nothing prevents app from
o do not want rate opening .PG"'C(“el
throttled by congestion connections between 2
control hosts.
0 Instead use UDP: 7 Web browsers do this
> pump audiofvideot 7 Examplei link of rate R
packet loss supporting 9 cnctions;
7 Research area: TCP N ?ﬁfeag}:’lgﬂs for 1 TCP, gets
friendly O new app asks for 11 TCPs,

gets R/2 |

Transport Layer 3-102



Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

O TCP connection establishment

O data transmission delay

0 slow start

Notation, assumptions:

7 Assume onhe link between
client and server of rate R

3 S: MSS (bits)

0 O: object size (bits)

3 no retransmissions (ho loss,
no corruption)

Window size:

A First assume: fixed
congestion window, W
segments

3 Then dynamic window,
modeling slow start

Transport Layer 3-103



Fixed congestion window (1)

iritiate TCF |
cormection ..

Fi r'ST CGSC: request _HMW'M_

ohject I [P
WS/R > RTT + S/R: ACK for
first segment in window
returns before window's
worth of data sent

My,
—drire

delay = 2RTT + O/R

¥ ¥

at client at serrer

fime

Transport Layer 3-104



Fixed congestion window (2)

initiate TCP
Cotiect] ofn ‘\7& i ey

i
b
e

Second case: —

-
e
=

3 WS/R<RTT + S/R: wait Tt ™
for ACK after sending

window's worth of data /,/// S IWS:R

sent
ETT

RTT

F

]

|
L

e,
—rairen
o — e,

delay = 2RTT + O/R /‘\lstm
+ (K-1)[S/R + RTT - WS/R] /’/ s
//
tirne titme
at client ¥ 'at BETVET

Transport Layer 3-105



TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency = 2RTT +9+ Pl RTT +§ —(2° —1)§
R R R

where Pis the number of times TCP idles at server:

P=min{Q,K -1}

- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.

Transport Layer 3-106



TCP Delay Modeling

. Slow Start (2)

Delay components: initiate TP
* 2 RTT for connection —
estab and r'CQUCST request __|
. O/R to transmit object 3 first window
object , "SR
* time server idles due RIT second window
to slow start I = 2SIR

1 . third wind
Server idles: rd window

P = min{K-1,Q} times

Example:

v
A

fourth window

=8S/R
+ O/S =15 segments
- K = 4 windows
° Q = 2. v{
1P Emintk-1.Q) = 2 compete
delivered
Server idles P=2 times W irgrevfrt

client

Transport Layer 3-107



TCP Delay Modeling (3)

% + RTT = time from when server startstosend segment

until server receives acknowledgement

initiate TCP
connection

—_

2“% = time to transmit the kth window equest
object 7 ¢ first window
=S/R

RTT I

[%+ RTT —2¢* %} =idle time after thekth window ¥

second window
=2S/R

third window
=4S/R
O P
delay = = 2RTT + > idleTime fourth indow
p=1
0 GBS S
=~ +2RTT + Y [2 +RTT 212 '
R ; [ R R ] object \ comp_let_e
delivered transmission
_ O L ORTT + P[RTT +2]- (27 -1) > |
R R R time at server

client

Transport Layer 3-108



TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+...+2“'S >0}
=min{k:2°+2"' +...+ 2" >0/S}

=min{k : 2“ -1> %}
: O
=min{k : k > Iog2(§+1)}

:[Iogz(%ﬂﬂ

Calculation of Q, number of idles for infinite-size object,
is similar.

Transport Layer 3-109



HTTP Modeling

J Assume Web page consists of:
O Ibase HTML page (of size Obits)
O Mimages (each of size Obits)
O Non-persistent HTTP:
O M+1TCP connections in series
O Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
O Persistent HTTP:
O 2 RTTto request and receive base HTML file
O 1RTTto request and receive M images
O Response time = (M+1)O/R + SRTT + sum of idle times
O Non-persistent HTTP with X parallel connections
O Suppose M/X integer.
O 1 TCP connection for base file
O M/X sets of parallel connections for images.
O Response time = (M+1)O/R + (M/X + 1)ZRTT + sum of idle times

Transport Layer 3-110



HTTP Response time (in seconds)

RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

201
18
16+
141
12
10+

8_

@ non-persistent

M persistent

[ parallel non-
persistent

oON B~ O

28 100 1 10
Kbps Kbps Mbps Mbps
For low bandwidth, connection & response time dominated by
transmission time.

Persistent connections only give minor improvement over parallel
connections.
Transport Layer 3-111



HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

701

60 1

50 ,

I non-persistent

401

30- M persistent

201 O parallel non-
10+ persistent

0_

28 100 1 10
Kbps Kbps Mbps Mbps

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delayebandwidth networks.

Transport Layer 3-112



Chapter 3: Summary

O principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer

o flow control Next:
O congestion control 3 leaving the network
J instantiation and “edge” (application,
implementation in the transport layers)
Internet 3 into the network
o UDP “core”
o TCP

Transport Layer 3-113



TCP Synchronization

0 Like many congestion control protocols,
TCP uses packet loss as an indication of

Packet loss

congestion

Rate
\&

TCP

Time

Network Layer 4-114



TCP Synchronization (cont'd)

O If losses are synchronized

O TCP flows sharing bottleneck receive loss
indications at around the same time

O decrease rates at around the same time

O periods where link bandwidth significantly
underutilized

bottleneck
Y, rate

Aggregate load

Rate

.
.
**

Network Layer 4-115



Stopping Synchronization

0 Observation: if rate synchronization can be

prevented, then bandwidth will be used more
efficiently

0 Q: how can the network prevent rate
synchronization?

bottleneck
rate
\/ \/ \/ \/ \/ \/ Aggregate load
Q
o+
o] : A : e ,
H 7 o : .
d -_‘/ “““.‘ :-(// |l. Ei'// :‘ 7 FIOW 1 ..............
""""" | // 1 ’: | /’
o v H | // | //
Y Flow2 ----
Time

Network Layer 4-116



One Solution: RED

7 Random Early Detection
O track length of queue

O when queue starts to fill up, begin dropping
packets randomly

7 Randomness breaks the rate

SYHChPOHIZGTIOh 3 miny,: lower bound on

avg queue length to
drop pkts

O max,,: upper bound on
avg queue length to not
drop every pkt

O max,: the drop
probability as avg queue
len approaches max;,
Network Layer 4-117

—

Drop Prob

Avg. Queue Len Max;y,



RED: Average Queue Length

0 RED uses an average queue length instead
of the instantaneous queue length
O loss rate more stable with time

O short bursts of traffic (that fill queue for
short time) do not affect RED dropping rate

O avg(ti.q) = (1-wg) avg(t) + w, q(Ti.1)
O t; = time of arrival of ith packet
O avg(x) = avg queue size at time x
O q(x) = actual queue size at time x

O w, = exponential average weight, O < w <1

Network Layer 4-118



