
p-MEMPSODE: Parallel and Irregular

Memetic Global Optimization

C. Voglis a,1, P.E Hadjidoukas b, K.E. Parsopoulos a,
D.G. Papageorgiou c, I.E. Lagaris a M.N. Vrahatis d

aDepartment of Computer Science and Engineering, University of Ioannina, P.O.
BOX 1186, GR-45110 Ioannina, Greece

bChair of Computational Science, ETH Zurich, Zurich CH-8092, Switzerland
cDepartment of Materials Science and Engineering, University of Ioannina, P.O.

BOX 1186, GR-45110 Ioannina, Greece
dDepartment of Mathematics, University of Patras, GR-26110 Patras, Greece

Abstract

A parallel memetic global optimization algorithm suitable for shared memory mul-
ticore systems is proposed and analyzed. The considered algorithm combines two
well-known and widely used population-based stochastic algorithms, namely Par-
ticle Swarm Optimization and Differential Evolution, with two efficient and paral-
lelizable local search procedures. The sequential version of the algorithm was first
introduced as MEMPSODE (MEMetic Particle Swarm Optimization and Differen-
tial Evolution) and published in the CPC program library. We exploit the inherent
and highly irregular parallelism of the memetic global optimization algorithm by
means of a dynamic and multilevel approach based on the OpenMP tasking model.
In our case, tasks correspond to local optimization procedures or simple function
evaluations. Parallelization occurs at each iteration step of the memetic algorithm
without affecting its searching efficiency. The proposed implementation, for the same
random seed, reaches the same solution irrespectively of being executed sequentially
or in parallel. Extensive experimental evaluation has been performed in order to il-
lustrate the speedup achieved on a shared-memory multicore server.

PACS: 02.60.Pn

Key words: Parallel Global Optimization, Multicores, OpenMP, Particle Swarm
Optimization, Differential Evolution, Memetic Algorithms, Local Search.

1 Corresponding author: Department of Computer Science and Engineering, Uni-
versity of Ioannina, P.O. BOX 1186, GR-45110 Ioannina, Greece, Tel: +30
2651008834, Email: voglis@cs.uoi.gr

Preprint submitted to Elsevier Science 14 January 2015

PROGRAM SUMMARY

Manuscript Title: p-MEMPSODE: Parallel and Irregular Memetic Global Optimiza-
tion
Authors: C. Voglis, P.E. Hadjidoukas, K.E. Parsopoulos, D.G. Papageorgiou, I.E. La-
garis, M.N. Vrahatis
Program Title: p-MEMPSODE
Journal Reference:
Catalogue identifier:
Licensing provisions:
Programming language: ANSI C
Operating system: Developed under the Linux operating system using the GNU
compilers v.4.4.3 (or higher). Uses the OpenMP API and runtime system.
RAM: The code uses O(n×N) internal storage, n being the dimension of the prob-
lem and N the maximum population size. The required memory is dynamically
allocated.
Word size: 64
Number of processors used: All available.
Supplementary material:
Keywords: Global Optimization, Memetic Algorithms, Particle Swarm Optimiza-
tion, Differential Evolution, Local Search, OpenMP.
PACS: 02.60.Pn
Classification: 4.9
External routines:

Nature of problem: Numerical global optimization of real valued functions is an
indispensable methodology for solving a multitude of problems in science and engi-
neering. Many problems exhibit a number of local and/or global minimizers, expen-
sive function evaluations or require real-time response. In addition, discontinuities of
the objective function, non-smooth and deceitful landscapes constitute challenging
obstacles for most optimization algorithms.

Solution method: We implement a memetic global optimization algorithm that com-
bines stochastic, population-based methods with deterministic local search proce-
dures. More specifically, the Unified Particle Swarm Optimization and the Differ-
ential Evolution algorithms are harnessed with the derivative-free Torczon’s Multi-
Directional Search and the gradient-based BFGS methods. The produced hybrid
algorithms posses inherent parallelism. The OpenMP tasking model is employed to
take advantage of this inherent parallelism and produce an efficient software imple-
mentation. The proposed implementation reaches the same solution irrespectively
of being executed sequential or in parallel, given the same random seed.

Restrictions: The current version of the software uses only double precision arith-
metic. An OpenMP-enabled (version 3.0 or higher) compiler is required.

Unusual features: The software requires bound constraints on the optimization vari-

2

ables.

Running time: The running time depends on the complexity of the objective func-
tion (and its derivatives if used) as well as on the number of available cores. Exten-
sive experimental results demonstrate that the speedup closely approximates ideal
values.

3

LONG WRITE-UP

1 Introduction

Numerical global optimization is an indispensable tool that has been widely
applied on many scientific problems [1]. Usually, the solution of a problem is
translated to the detection of global minimizer(s) of a properly defined objec-
tive function. Also, suboptimal solutions of acceptable quality can be obtained
by closely approximating the actual global minimizers of the problem. In order
to achieve such solutions within reasonable time and resource constraints, and
algorithms shall maintain proper trade-off between their exploration (diver-
sification) and exploitation (intensification) properties. Unfortunately, these
two requirements are habitually conflicting for most algorithms. For example,
modern stochastic optimization approaches such as Evolutionary Algorithms
(EAs) [2,3] and Swarm Intelligence (SI) methods [4] are characterized by
high exploration capabilities but lack the solution refinement properties of
local search approaches [5].

Hybridization of optimization methods of different nature has proved valuable
in addressing the aforementioned shortcomings [6]. In this context, an impor-
tant family of global optimization algorithms has been developed, namely
the Memetic Algorithms [7–9]. They stemmed from the necessity for pow-
erful algorithms where the global exploration capability of EAs and SI ap-
proaches [2,4,10–15] is complemented with the efficiency and accuracy of stan-
dard Local Search (LS) techniques [5,16,17]. The combination and interaction
between the two types of algorithms promotes the diffusion of their achieve-
ments by harnessing their strengths and generates algorithmic schemes that
can tackle complex objective functions [18].

Another important issue in optimization problems is the running time of the
algorithms. Demanding problems are usually accompanied by long execution
times, attributed to their high computational demands and the complexity
of the objective function. There are several applications where the time for a
single function call is substantial, not to mention applications where real-time
response is required. Such applications are frequently met in molecular biology,
computational chemistry, engineering, aircraft design, and space trajectory
planning [1,19–21].

Parallelization can drastically reduce the required processing time to find a
solution. Parallelism in optimization methods can be found at various levels,
including,

(i) function and gradient evaluations,

4

(ii) linear algebra computations,
(iii) operators of the optimization algorithms.

Global optimization algorithms that take advantage of parallel and distributed
architectures are particularly suitable for solving problems with high compu-
tational requirements. The emerging multi-core architectures provide a cost-
effective solution for high-performance optimization. Notwithstanding the large
number of parallel global optimization algorithms in the literature, there are
only a few practical implementations. Among the most representative are NO-
MAD [22,23], PaGMO/PyGMO [24,25], PGO [26], VTDIRECT95 [27], and
pCMALib [28].

In this framework, the present paper introduces a parallel version of the
recently proposed MEMPSODE software [29]. MEMPSODE implements a
global optimization algorithm that falls into the category of Memetic Algo-
rithms. It combines the exploration properties of two very popular population-
based algorithms, namely Unified Particle Swarm Optimization (UPSO) and
Differential Evolution (DE), with the strong convergence properties of the local
search procedures implemented in the Merlin optimization environment [30].
MEMPSODE searching efficiency has been extensively examined in [31–34].
The proposed Parallel MEMPSODE (p-MEMPSODE) implementation adopts
UPSO and DE as global search components, and integrates a quasi-Newton
line search method that employs BFGS [5] updates as well as the Torczon’s
Multi-Directional Search (MDS) method [35]. Inheriting all convergence and
exploration properties from its predecessor, p-MEMSODE aims to reduce the
execution time on multicore servers.

The decision for using BFGS was based on its efficiency and popularity for
smooth functions optimization, as well as its requirement for only first order
derivatives that can be numerically approximated in parallel. On the other
hand, MDS is an efficient, well studied, derivative-free method suitable for
discontinuous functions, while it is inherently parallel. Both these methods
satisfy our basic incentive to create a powerful hybrid optimization scheme
with parallelizable components that can tackle the large runtime of various
optimization problems. In order to achieve this on shared-memory multicore
platforms, we used the OpenMP [36] tasking model, which allows for efficient
exploitation of multiple levels of parallelism. Moreover, the choice of OpenMP
offers portability and straightforward usage of our software.

Parallelization occurs at each iteration step of MDS and BFGS with numeri-
cal derivatives and does not modify their internal operations. Therefore, for a
given starting point, the same minimum is retrieved executing the same num-
ber of iterations and function evaluations and irrespectively of the software
being executed sequentially or in parallel. The same stands for the global com-
ponents of the algorithm (UPSO and DE), where parallelization is also applied

5

at their iteration level without affecting their outcome.

In the following sections, we describe in detail the parallelization properties
and implementation of the proposed p-MEMPSODE implementation. Two
levels of parallelism are exploited in order to achieve high performance and
acceleration in execution time. Task spawning raises several issues due to its
stochastic and irregular nature. Since we cannot foresee how many computa-
tional tasks may emerge at each iteration of the algorithm, task spawning and
execution is self-adaptive to the specific instance of the algorithm.

2 Description of the Algorithms

The general algorithmic scheme implemented in p-MEMPSODE is based on a
modified version of the serial algorithm implemented in [29]. It belongs to the
category of Memetic Algorithms and combines the UPSO and DE algorithms
with deterministic local searches that further exploit the best detected solu-
tions. The hybridization strategy is essentially the same as presented in [29].
However, due to its sequential structure, the Merlin optimization environment
is no longer employed in p-MEMPSODE. Instead, two local optimization al-
gorithms that admit high parallelization are used. All algorithms as well as
the hybrid scheme are described in the following sections.

2.1 Unified Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally introduced by Eberhart
and Kennedy [37,38]. The algorithm employs a swarm of search agents, called
particles, which iteratively probe the search space by changing their position
according to an adaptable velocity (position shift). Also, the best position
detected by each agent is stored in memory and it is exchanged among particles
that belong in the same neighborhood.

Putting it formally, consider the n-dimensional continuous optimization prob-
lem,

min
x∈X⊂Rn

f(x), (1)

where the search space X is an orthogonal hyperbox in Rn, i.e., X ≡ [l1, r1]×
[l2, r2] × · · · × [ln, rn]. A swarm is a group of N particles (search agents),
S = {x1, x2, . . . , xN}. Each particle assumes a current position,

xi = (xi1, xi2, . . . , xin)> ∈ X, i ∈ I,

6

an adaptable velocity (position shift),

vi = (vi1, vi2, . . . , vin)> , i ∈ I,

and a memory of the best position it has visited so far,

pi = (pi1, pi2, . . . , pin)> ∈ X, i ∈ I,

where I = {1, 2, . . . , N}. The swarm and velocities are usually initialized
randomly and uniformly within the search space.

Also, each particle assumes a neighborhood, which is defined as a set indices
of other particles with which it exchanges information,

Ni = {i−m, . . . , i− 1, i, i+ 1, . . . , i+m} .

This is the well known ring neighborhood topology [39], which assumes that
the two ends of the ring coincide, i.e., the indices recycle at the ends. If all
neighborhoods include the whole swarm, the gbest PSO model is defined. Oth-
erwise, we have the case of the lbest PSO model.

Let gi denote the best particle in Ni, i.e.,

gi = arg min
j∈Ni

f(pj),

and t denote the algorithm’s iteration counter. Then, the particle positions
and velocities are updated at each iteration as follows [40]:

v
(t+1)
ij =χ

[
v

(t)
ij + c1r1

(
p

(t)
ij − x

(t)
ij

)
+ c2r2

(
p

(t)
gij − x

(t)
ij

)]
, (2)

x
(t+1)
ij =x

(t)
ij + v

(t+1)
ij , (3)

where i ∈ I, j = 1, 2, . . . , n; χ is the constriction coefficient ; c1 and c2 are
positive constants called cognitive and social parameter, respectively; and r1,
r2, are random numbers drawn from a uniform distribution in the range [0, 1].
The best position of each particle is also updated at each iteration as follows,

p
(t+1)
ij =

x

(t+1)
ij , if f

(
x

(t+1)
ij

)
< f

(
p

(t)
ij

)
,

p
(t)
ij , otherwise.

(4)

Clerc and Kennedy [40] provided a stability analysis of the PSO model de-
scribed above, resulting in a relation among its parameters,

χ =
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, (5)

7

for ϕ = c1 + c2 > 4, from which the default parameter set, χ = 0.729, c1 =
c2 = 2.05, was derived.

Unified PSO (UPSO) generalizes the basic PSO scheme by combining the
lbest and gbest models, in order to harness their exploration/exploitation

properties. Let G
(t+1)
i and L

(t+1)
i denote the velocity of xi in the gbest and

lbest PSO model, respectively [41,42], i.e.,

G
(t+1)
ij =χ

[
v

(t)
ij + c1r1

(
p

(t)
ij − x

(t)
ij

)
+ c2r2

(
p

(t)
gj − x

(t)
ij

)]
, (6)

L
(t+1)
ij =χ

[
v

(t)
ij + c1r1

(
p

(t)
ij − x

(t)
ij

)
+ c2r2

(
p

(t)
gij − x

(t)
ij

)]
, (7)

where g is the index of the overall best particle, i.e.,

g = arg min
j=1,...,N

f(pj).

Then, UPSO updates the particles and velocities as follows [41,42],

U
(t+1)
ij =uG

(t+1)
ij + (1− u)L

(t+1)
ij , (8)

x
(t+1)
ij =x

(t)
ij + U

(t+1)
ij , (9)

where i ∈ I, j = 1, 2, . . . , n, and the parameter u ∈ [0, 1] is called the unifica-
tion factor and it balances the trade-off between the two models. Obviously,
the standard lbest PSO model corresponds to u = 0, and the gbest PSO model
is obtained for u = 1. All intermediate values u ∈ (0, 1) produce combinations
with diverse convergence properties.

UPSO can also assume a mutation operator that resembles mutation in EAs,
inducing further diversity in the swarm. The reader is referred to the main
MEMPSODE software [29] for further details.

2.2 Differential Evolution

Differential Evolution (DE) was introduced by Storn and Price [43,44]. It
works similarly to PSO, assuming a population P = {x1, x2, . . . , xN} of search
points, called individuals, that probe the search space X ⊂ Rn. Again, the
population is randomly initialized following a uniform distribution within the
search space.

Each individual is an n-dimensional vector (candidate solution),

xi = (xi1, xi2, . . . , xin)> ∈ X, i ∈ I,

8

where I = {1, 2, . . . , N}. The population P is iteratively evolved by applying
the mutation and recombination operators on each individual. Mutation pro-
duces a new vector vi for each individual xi, by combining some of the rest
individuals of the population. There are various operators for this task. Some
of the most popular are the following:

OP1: v
(t+1)
i =x(t)

g + F
(
x(t)
r1
− x(t)

r2

)
, (10)

OP2: v
(t+1)
i =x(t)

r1
+ F

(
x(t)
r2
− x(t)

r3

)
, (11)

OP3: v
(t+1)
i =x

(t)
i + F

(
x(t)
g − x

(t)
i + x(t)

r1
− x(t)

r2

)
, (12)

OP4: v
(t+1)
i =x(t)

g + F
(
x(t)
r1
− x(t)

r2
+ x(t)

r3
− x(t)

r4

)
, (13)

OP5: v
(t+1)
i =x(t)

r1
+ F

(
x(t)
r2
− x(t)

r3
+ x(t)

r4
− x(t)

r5

)
, (14)

where t denotes the iteration counter; F ∈ (0, 1] is a fixed user-defined pa-
rameter; g denotes the index of the best individual in the population; and
rj ∈ {1, 2, . . . , N}, j = 1, 2, . . . , 5, are mutually different randomly selected
indices that differ also from the index i. All vector operations in Eqs. (10)-
(14) are performed componentwise.

After mutation, recombination is applied to produce a trial vector,

ui = (ui1, ui2, . . . , uin) , i = 1, 2, . . . , N,

for each individual. This vector is defined as follows:

u
(t+1)
ij =

v

(t+1)
ij , if Rj 6 CR or j = RI(i),

x
(t)
ij , if Rj > CR and j 6= RI(i),

(15)

where j = 1, 2, . . . , n; Rj is a random variable uniformly distributed in the
range [0, 1]; CR ∈ [0, 1] is a user-defined crossover constant; and RI(i) ∈
{1, 2, . . . , n}, is a randomly selected index.

Finally, each trial vector ui is compared against its original individual xi and
the best between them comprise the new individual in the next generation,
i.e.,

x
(t+1)
i =

u

(t+1)
i , if f

(
u

(t+1)
i

)
< f

(
x

(t)
i

)
,

x
(t)
i , otherwise.

(16)

DE is a relatively greedy algorithm that can be very efficient under proper
parameter setting. The reader is referred to [29] for further implementation
details.

9

2.3 Local Search

As already mentioned, the Merlin optimization environment, which was the
main local search provider for the MEMPSODE software, was abandoned in
the present work due to its serial nature. Instead, two LS approaches were
selected such that nested parallelization could be achieved. The first level cor-
responds to the individual particles of the swarm and the second level to the
execution of the LS procedures. We acknowledge the need of LS algorithms
that work on discontinuous and noisy functions, as well as the necessity of a
robust algorithm for continuous well-behaved functions. For these reasons, the
selected algorithms are Torczon’s Multi-Directional Search (MDS) [35] and the
BFGS [5] quasi-Newton method with either parallel numerical or analytical
derivatives. Although BFGS with analytical derivatives is not parallel per se,
it achieves great performance on many continuously differentiable cases. In
the following subsections we give a brief introduction to the MDS and BFGS
algorithms, which are not provided in the corresponding MEMPSODE refer-
ences [29].

2.3.1 Multi-Directional Search

In the early 90s, the Multi-Directional Search (MDS) algorithm was introduced
by Torczon [35]. MDS operates on the n+ 1 vertices of an n-dimensional sim-
plex defined in the search space. It applies a sequence of reflection, expansion,
and contraction operators on the edges of the simplex and, under mild as-
sumptions, it provides guaranteed convergence to a local minimum [45]. MDS
was devised to operate without using derivative information of the objective
function but only concurrent function evaluations.

If t denotes the iteration counter, the corresponding simplex consists of n+ 1
points,

S(t) =
{
x

(t)
0 , x

(t)
1 , . . . , x(t)

n

}
, x

(t)
i ∈ X ⊂ Rn.

The barycenter of the simplex,

x(t)
c =

1

n+ 1

n∑
i=0

x
(t)
i ,

is considered as the approximation to the minimizer. The objective function
is evaluated at all vertices of the simplex and the indices are rearranged such
that,

f
(
x

(t)
0

)
= min

i=0,...,n
f
(
x

(t)
i

)
,

i.e., the best vertex (the one with the smallest function value) is always x
(t)
0 .

The transition to the next iteration is performed by pivoting the simplex

10

Procedure MDS(f , x(0), µ, θ, x∗)

Input: Objective function, f : X ⊂ Rn → R; initial point x(0); parameters µ ∈ (1,+∞), θ ∈ (0, 1)
Output: Approximation to local minimizer: x∗

1 Create S(0) = {x(0)
0 ,x

(0)
1 , . . . ,x

(0)
n } that contain x(0)

2 min← arg min
i
{f(x

(0)
i)} and swap x

(0)
min and x

(0)
0

3 for t = 0, 1, . . . do
4 Check the stopping criterion

// Reflection step
5 for i = 1, 2, . . . , n do

6 rt
i ← 2x

(t)
0 − x

(t)
i

7 Evaluate f(rt
i)

8 end

9 if min
i

{
f(rt

i), i = 1, 2, . . . , n
}
< f(x

(t)
0) then

// Expansion step
10 for i = 1, 2, . . . , n do

11 eti ← (1− µ)x
(t)
0 + µr

(t)
i

12 Evaluate f(eti)

13 end

14 if min
i

{
f(eti), i = 1, 2, . . . , n

}
< min

i

{
f(rt

i), i = 1, 2, . . . , n
}

then

// Expansion step accepted

15 x
(t+1)
i ← eti, i = 1, 2, . . . , n

16 else
// Reflection step accepted

17 x
(t+1)
i ← rt

i, i = 1, 2, . . . , n

18 end

19 else
// Contraction step

20 for i = 1, . . . , n do

21 cti ← (1 + θ)x
(t)
0 − θr

(t)
i

22 Evaluate f(cti)

23 end
// Always accept contraction

24 x
(t+1)
i ← cti, i = 1, 2, . . . , n

25 end

26 min← arg min
i
{f(x

(t+1)
i)} and swap x

(t+1)
min and x

(t+1)
0

27 end

28 x∗ ← 1
n+1

∑n

i=0
x
(t)
i

around x
(t)
0 and attempting a reflection step. The objective function is then

evaluated at the n reflected vertices of the simplex. If a better point is obtained,
then an expansion step is attempted to produce an even larger reflected sim-
plex. On the other hand, if the reflection step fails to improve the best point,
a contraction step is attempted to reduce the size of the considered simplex.

The procedure is repeated until a termination criterion is satisfied. This crite-
rion can be a maximum number of iterations or function evaluations or a num-
ber of consequent non-improving iterations. The MDS algorithm is presented
in the pseudocode of Procedure MDS. Apparently, the function evaluations in
lines 7, 12, and 22, are independent, hence, they can be performed in parallel.

11

Procedure BFGS(f , x(0), x∗)

Input : Objective function, f : S ⊂ Rn → R; starting point: x(0)

Output: Approximation of the minimizer: x∗

// Initialization

1 B(0) = I

2 g(0) = ∇f(x(0))

3 for k ← 1, 2, . . . do

// Linear system solution

4 Solve B(k)d(k) = −g(k)

// Line search

5 Set x(k+1) = x(k) + λ(k)d(k), where λ(k) satisfies the Wolfe conditions (1) and (2)
// Derivative evaluation

6 Calculate g(k+1) = ∇f(x(k+1))
// BFGS update

7 y(k) = g(k+1) − g(k)

8 s(k) = x(k+1) − x(k)

9 B(k+1) = B(k) −
B(k)s(k)s(k)

>
B(k)

s(k)
>
B(k)s(k)

+
y(k)y(k)

>

y(k)
>
s(k)

10 Stop if convergence criterion is met

11 end

12 Set x∗ = x(k+1)

2.3.2 BFGS Algorithm

The BFGS algorithm falls into the category of quasi-Newton methods [5,17].
Quasi-Newton algorithms assume that, at each iteration k, a point x(k), the
gradient g(k), and an approximation B(k) to the Hessian matrix, are available.
Then, a descent direction d(k) is computed by solving the linear system,

B(k) d(k) = −g(k),

and a line search is initiated from x(k) along the search direction d(k). The
outcome of the line search is a scalar step λ(k) that leads to the next approxi-
mation,

x(k+1) = x(k) + λ(k) d(k).

The step λ(k) is properly selected to satisfy the Wolfe conditions,

f
(
x(k) + λ(k)d(k)

)
6 f

(
x(k)

)
+ ρ λ(k) g(k)>d(k), (17)

∇f
(
x(k) + λ(k)d(k)

)>
d(k) >σ ∇f

(
x(k)

)>
d(k), (18)

where ρ ∈ (0, 1) and σ ∈ (ρ, 1).

The iteration is completed by updating the approximate Hessian matrix B(k)

using only first-order derivative information from x(k) and x(k+1). The algo-
rithm is given in Procedure BFGS.

12

2.4 Memetic Strategies

The MEMPSODE software implements the memetic strategies proposed in [46]
for the application of local search:

Strategy 1: LS is applied only on the overall best position pg of the
swarm.

Strategy 2: LS is applied on each locally best position, pi, i ∈ I, with
a prescribed fixed probability, ρ ∈ (0, 1].

Strategy 3: LS is applied both on the best position pg as well as on
some randomly selected locally best positions pi, i ∈ I.

The application of a LS can either take place at each iteration or after a
specific number of iterations. Also, for practical reason, only a small number of
particles are considered as start points for LS, following the suggestions in [47].
The corresponding DE strategies assume only the corresponding individuals in
the population. The reader is referred to [29] for further details. In the current
p-MEMPSODE implementation, the aforementioned strategies were retained.

3 Parallelization Issues

3.1 Parallelizing PSO and DE

The structure of both PSO and DE is intrinsically parallel and perfectly suits
the well established master-worker execution model. The master retains the
current and best positions in the PSO case and the population for the DE case.
It creates N function evaluation tasks for the workers. A synchronization point
exists at the end of each iteration of the algorithm so that the master retrieves
all new function values before updating swarm velocities and positions or DE
individuals.

Recently, asynchronous implementations have been proposed for PSO [48]. In
such cases, there is no synchronization point and the updating step is per-
formed by the master using the currently available information. Preliminary
experiments have shown that although the synchronized version may achieve
faster convergence, asynchronous task handling can increase parallel efficiency.

Although the synchronous variant has been followed in p-MEMPSODE, no
loss of parallel efficiency is guaranteed by the employment of a dynamic nested
parallelization scheme (see following sections). The synchronization point at
the end of each iteration ensures that the approximation of the minimizer will

13

1

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

1 2 n

2 k

it
e

ra
ti

o
n

k+1
k+2

M

k+1

1 2 n

Simplex calculation

1

Function evaluation

Fig. 1. Execution task graph for the memetic scheme with MDS local search.

not be affected by parallel or sequential execution of the algorithm.

3.2 Parallelizing MDS and BFGS

MDS is an inherently parallel method. At each iteration, at least n function
evaluations can be performed concurrently. In the simplest implementation,
three synchronization points for n function evaluation tasks can be included
in lines 8, 13, and 23 of Procedure MDS. Alternatively, one may concurrently
execute the reflection, expansion, and contraction steps by launching 3n func-
tion evaluation tasks. In this case, the best simplex is chosen for the next
iteration after gathering all results. Increasing the number of concurrent tasks
may lead to better parallel efficiency on larger computational systems.

Regarding the BFGS algorithm, since we consider function evaluations as the
major computational tasks, the essential source of parallelization lies in the
parallel estimation of derivatives. Numerical differentiation via finite differ-
ences can also be efficiently implemented using the master-worker model [49].

It is obvious that parallelizing each iteration of MDS or BFGS using synchro-
nization points does not affect the minimum approximation and the required
number of iterations and function evaluations. That means that executing the
parallel algorithms, from the same starting point, either in parallel or sequen-
tially, they will lead to the same minimizer having consumed the same number
of function evaluations.

14

�

� � �

� � �

� � �

� �

��� ���
�

� � �

� � �

� � �

� � �

� � �

� � �

� � �

��
	

�
��
�
�

� � �

���	��������������

�

���������	���������

(a) Numerical derivatives

� � �

��� ��� �

���	
����
�����

�

�������
����������

(b) Analytical derivatives

Fig. 2. Execution task graph for the memetic scheme with BFGS local search.

3.3 Parallelizing the Memetic Algorithm

The stochastic nature of its components, renders the Memetic Algorithm a dif-
ficult case for effective parallelization. The basic loop of the algorithm spawns
N independent tasks, each one associated with a specific particle/individual.
Some of these tasks are simple function evaluations (FE) while the rest are
local searches (LS). The probability ρ controls which particles will execute FE
(approximately (1 − ρ) × N particles) and which will initiate a local search
(approximately ρ×N particles).

An LS algorithm may require several hundreds of function evaluations, thus
its computational cost is substantially large. On the other hand, a worker,
i.e. processing unit, that is assigned an FE task is expected to finish much
sooner than a worker executing an LS. One way to achieve higher efficiency is
to introduce an additional level of parallelism inside the LS task, by assigning
new tasks to processors that have already finished their FEs. This requires
the use of parallel local searches like MDS or BFGS with parallel numerical
derivatives.

In the case that we employ MDS as the LS component, we introduce a second
level of parallelism. At this inner level, n independent calls to the objective
function are made for the computation of the reflection simplex and, subse-
quently, n calls for expansion and n calls for contraction. The distribution
of tasks in this case is shown in Fig. 1, where the computational tasks are
depicted in square boxes and represent function evaluations. The iterations
of the MDS procedure are not known beforehand, unless we choose a single
termination criterion that is based on the maximum number of iterations or

15

function evaluations. However, in practice, termination criteria based on the
proximity to the solution are habitually used. In this way, wasting of compu-
tational resources is avoided.

When the user selects the BFGS algorithm, there are two alternative task
distribution schemes based on whether parallel numerical or analytical deriva-
tives are used. The task graph of the first case is shown in Fig. 2(a). Here,
the iterative local optimization spawns an inner-level group of at least n tasks
that correspond to function evaluations required for the gradient calculation.
On the other hand, when analytical derivatives are employed the task graph of
the memetic algorithm is the one illustrated in Fig. 2(b). In this case, lengthy
first level tasks are created. Thus, in the best case, the total runtime will be
equal to the lengthiest local search task.

3.4 OpenMP directives

According to the above presentation, the parallelism of the Memetic Algorithm
is highly irregular and depends on several factors:

(a) The swarm-size and the probability of performing local searches.
(b) The time steps required by the local optimization for finding a minimum.
(c) The dimensionality and execution time of the objective function.

An efficient parallel implementation requires flexible management of this dy-
namic and highly irregular nested parallelism. To achieve this on shared-
memory platforms, we employed the OpenMP [36] tasking model.

Tasks were first introduced in OpenMP v.3.0, aiming to extend the expressive-
ness of the programming model beyond loop-level and coarse-grain parallelism.
Both function evaluations and MDS calls are expressed with OpenMP tasks,
with the latter dynamically spawning further function evaluation tasks.

Specifically, only a single team of threads for all levels of parallelism is created.
The master thread runs an implicit task, which is the primary task of the
application and it executes the main loop of the algorithm, while it iteratively
spawns first-level tasks using the task construct. The rest of the threads
reach the end of the parallel region and begin the execution of these tasks. The
primary task then encounters a taskwait construct and waits for its children
tasks to complete, while the master thread participates in their execution too.

Any OpenMP thread that executes an MDS task, dynamically spawns addi-
tional tasks at the innermost level of parallelism, following the same fork-join
(master-worker) approach. The underlying OpenMP runtime library is respon-
sible for the scheduling of all these tasks across the available cores.

16

The OpenMP tasking model allows to instantiate the task graph of the hybrid
algorithm in a straightforward way and effectively exploit the multiple levels
of parallelism. In addition, due to the single team of threads, our parallel
application avoids the overheads and performance implications of OpenMP
nested parallel regions.

Listing 1. OpenMP directives in MDS
1 while (termination_condition()) {
2 k = minimum_simplex(fu, n); // Find minimum simplex point k
3 swap_simplex(u, fu, n, k, 0); // Swap minimum and first point
4
5 // rotation step
6 fr[0] = fu[0];
7 for (i = 1; i < n + 1; i++) {
8 r[i] = u[0] - (u[i] - u[0]);
9 #pragma omp task shared(fr, r, n) firstprivate(i)

10 {
11 Objective_F(&r[i], n, &fr[i]);
12 }
13 }
14 #pragma omp taskwait
15 k = minimum_simplex(fr, n);
16 if (fr[k] < fu[0]){
17 expand = 1;
18 }
19 if (expand){ // expand
20 fec[0] = fu[0];
21 for (i = 1; i < n + 1; i++) {
22 ec[i] = u[0] - mu * ((u[i] - u[0]));
23 #pragma omp task shared(fec, ec, n) firstprivate(i)
24 {
25 Objective_F(&ec[i], n, &fec[i]);
26 }
27 }
28 #pragma omp taskwait
29 kec = minimum_simplex(fec, n);
30 if (fec[kec] < fr[k]) {
31 assign_simplex(u, fu, ec, fec, n);
32 } else {
33 assign_simplex(u, fu, r, fr, n);
34 }
35 }
36 else { // contract
37 fec[0] = fu[0];
38 for (i = 1; i < n + 1; i++) {
39 ec[i] = u[0] + theta * ((u[i] - u[0]));
40 #pragma omp task shared(fec, ec, n) firstprivate(i)
41 {
42 Objective_F(&ec[i], n, &fec[i]);
43 }
44 }
45 #pragma omp taskwait
46 assign_simplex(u, fu, ec, fec, n);
47 }
48 } /* while termination */

Listing 2. OpenMP directives in the core of the memetic scheme
1 // Define which particles will perform local searches
2 for (i = 0; i < M; i++) {
3 if (drand48() < P) {
4 eval[i] = 0;
5 local[i] = 1;

17

6 } else {
7 eval[i] = 1;
8 local[i] = 0;
9 }

10 }
11
12 for (i = 0; i < M; i++) {
13 if (eval[i] == 1) {
14 #pragma omp task untied firstprivate(i) shared(N, swarm, fswarm, stats) private(j,

FX)
15 {
16 Evaluate_Particle(&swarm[i], &FX, N);
17 #pragma omp critical
18 {
19 stats->fev = stats->fev + 1;
20 }
21 fswarm[i] = FX;
22 } /* task */
23 }
24 }
25
26 for (i = 0; i < M; i++) {
27 if (local[i] == 1) {
28 #pragma omp task untied firstprivate(i) private(GRMS,fev,gev) shared(bestpos, N,

fbestpos, xll, xrl)
29 {
30 local_optimization(&bestpos[i], N, &fbestpos[i], &GRMS, xll, xrl, &fev, &

gev);
31 #pragma omp critical
32 {
33 stats->lopts = stats->lopts + 1;
34 stats->localsearch = stats->localsearch + 1;
35 stats->fev = stats->fev + fev;
36 stats->gev = stats->gev + gev;
37 }
38 } /* task */
39 }
40 }
41 #pragma omp taskwait

4 Software Description

The proposed p-MEMPSODE software can be built either as a standalone
executable or as a library that exports a user callable interface. Like its se-
rial predecessor, all algorithmic parameters are controlled by a rich variety of
options, while all its components are written in ANSI C.

The software also contains a set of sample objective functions, including an
interface to the Tinker [50] package for molecular mechanics calculations. Dur-
ing optimization, p-MEMPSODE prints informative messages on the screen
and, upon termination, appropriate output files are created. For installation
instructions and detailed examples we refer the reader to the extensive readme
file in the software distribution.

18

4.1 User-Defined Subroutines

The user must provide the following subroutines:

(1) void Objective_F (double x[], int n, double *f)
Returns the value of the objective function evaluated at x.

x (input) Array containing the evaluation point.
n (input) Dimension of the objective function.
f (output) Objective function value.

(2) void Bounds_F(double l[], double r[], int n)
Returns the double-precision array l with the lower bounds and the
double-precision array r with the upper bounds of the variables.

n (input) Dimension of the objective function.
l (output) Array containing the lower bounds.
r (output) Array containing the upper bounds.

For the first order derivatives, the gradient is also needed:

(3) void Objective_G (double x[], int n, double g[])
Returns the gradient vector evaluated at x.

x (input) Array containing the evaluation point.
n (input) Dimension of the objective function.
g (output) Gradient vector.

4.2 Installation and Use: Standalone Version

Assuming that the above user-defined subroutines are included in file fun.c,
the standalone executable can be built using the make utility:

make OBJECTIVE=fun

Then the user can define the number of OpenMP threads that will be used to
carry out parallel computation by issuing the command:

export OMP_NUM_THREADS=8

Subsequently, execution is initiated from the command line:

19

mempsode -d 20 -a pso -l 2 -m 3 -s
100

-f
10000

dimension

of the

problem

choice be-

tween UPSO

and DE

memetic

scheme

local

search

swarm size maximum

function

evaluations

The above commands execute p-MEMPSODE on 8 OpenMP threads using
UPSO (option -a pso) for the 20-dimensional provided objective function
(option -d 20), swarm size 100 (option -s 100), maximum number of func-
tion evaluations 10000 (option -f 10000), the second memetic scheme (option
-l 2) and the third local search procedure (BFGS with analytic derivatives)
(option -m 3).

Algorithm specific parameters can be defined using the command line argu-
ments -B for BFGS and -T for MDS, which are presented below along with
their default values:

(1) BFGS parameters: -B="param1=value param2=value ..."
feps=1.e-8 Function value termination criterion tolerance.
xeps=1.e-8 X-termination criterion tolerance.
geps=1.e-8 Gradient norm termination criterion tolerance.
rho=1.e-4 Line search ρ parameter.
sigma=0.9 Line search σ parameter.
maxiter=300 Maximum number of iterations.
maxfevals=1000 Maximum number of function evaluations.
lsiter=30 Maximum number of line search iterations.

(2) MDS parameters: -T="param1=value param2=value ..."
mu=2.0 µ parameter.
theta=0.5 θ parameter.
maxiter=300 Maximum number of iterations.
maxfevals=1000 Maximum number of function evaluations.

A complete list of all available command line options is provided in the dis-
tribution or through the command:

mempsode -h

During the optimization procedure the software provides printout information
(iterations, function evaluations, minimum objective function value) and upon
termination a detailed message containing the minimum, the total number of
function evaluations, the number of local searches etc. In addition, the number
of tasks executed by each of the OpenMP threads can be retrieved.

20

4.3 Installation and Use: Library Version

The p-MEMPSODE software can be also built as a library by issuing the
command:

make lib

This command creates the file libmempsode.a, which contains a set of
interface routines. To render them usable, the user must provide appropriate
function calls, as illustrated below:

#include "mempsode.h"
...
init_mempsode();
set_mempsode_iparam("dimension", 20);
set_mempsode_cparam("algorithm", "pso");
set_mempsode_iparam("memetic", 2);

/* Use BFGS with analytic derivatives */
set_mempsode_iparam("local-search", 3);

/* Set maximum BFGS iterations */
set_mempsode_cparam("bfgs-params", "maxiter=300");

set_mempsode_iparam("swarm-size", 100);
set_mempsode_iparam("max-fun-evals", 10000);
mempsode();
get_mempsode_min("minval", &val);
...

The above code sets various p-MEMPSODE parameters, calls the main opti-
mization routine, and finally retrieves the best function value found. Assuming
that file main.c contains the above code fragment and file fun.c contains
the objective function, they can be linked with the p-MEMPSODE library as
follows:

gcc main.c fun.c -L/path/to/mempsode -I/path/to/mempsode -lmempsode -fopenmp

The complete list of interface routines as well as various installation options
are described in the software distribution.

21

Table 1
Experimental setting for the Rastrigin test function

Setting Probability (ρ) Dimension (n)

E1 0.01 30

E2 0.01 50

E3 0.01 100

E4 0.05 30

E5 0.05 50

E6 0.05 100

E7 0.1 30

E8 0.1 50

E9 0.1 100

E10 0.2 30

E11 0.2 50

E12 0.2 100

5 Sample Applications

In order to examine the parallel efficiency of p-MEMPSODE, we provide three
categories of sample applications. The first one considers the global minimiza-
tion of multimodal objective functions. For this purpose, four widely used
multimodal test function were chosen. Since parallel algorithms are more use-
ful in cases of computationally demanding objective functions, an artificial
delay was added to each function call.

The other two applications refer to molecular conformation problems using
pairwise and Tinker potentials. The parallel p-MEMPSODE software was
tested on a multicore server with 16-core AMD Opteron CPUs and 16GB
of RAM. The software was compiled under Linux 2.6 with GNU gcc 4.7 and
OpenMP 3.1.

5.1 Application on Artificial Test Functions

To measure the parallel efficiency of our implementation under different pa-
rameter configurations we used a set of standard multimodal test functions
(see Table 2). These test problems are widely used in the literature to assess
the quality of global optimization algorithms. Since we are interested in the
parallel speedup, we added artificial delays of 1ms and 10ms to each function

22

call. Preliminary experiments indicated that using delays larger than 10ms
does not affect the speedup measurements, hence we excluded them from the
analysis. We note that p-MEMPSODE retrieves the global minimizer in all
cases reported, provided a large number of available function evaluations.

Table 2
Artificial test functions

Function Formula Minimizer

Rastrigin f(x) = 10n+

n∑
i=1

(
x2i − 10 cos(2πxi)

)
f∗ = 0, x∗ = (0, 0, . . . , 0)>

Ackley
f(x) = 20 + exp(1) −20 exp

(
−0.2

√
1
n

∑n

i=1
x2i

)
− exp

(
1
n

∑n

i=1
cos(2πxi)

) f∗ = 0, x∗ = (0, 0, . . . , 0)>

Griewank f(x) =

n∑
i=1

x2i
4000

−
n∏

i=1

cos

(
xi√
i

)
+ 1 f∗ = 0, x∗ = (0, 0, . . . , 0)>

Schwefel f(x) = 418.9829 · n−
n∑

i=1

xi sin

(√
|xi|
)

f∗ = 0, x∗ = (420.9687, 420.9687, . . .)>

We tested all the LS algorithms implemented in the software. In Table 1 we
define 12 different parameter configurations by varying the probability of local
search and the dimension of the objective function. The swarm size was set
equal to the dimension for each case.

The probability ρ controls the number of parallel LS tasks launched at each
iteration in the outer parallelization level. The dimension n also defines the
number of concurrent function evaluations in the case of MDS and BFGS
with numerical derivatives, at the inner parallelization level. Small probability
and dimension result in small number of tasks. Increasing these quantities
also increases the number of parallel tasks, which theoretically favors parallel
efficiency. We also expect more parallel tasks to be spawned as the swarm size
increases.

Figure 3 illustrates the achieved speedup when MDS was used as the LS
component. The results are arranged in a 3× 2 grid. Each row of figures cor-
responds to a specific swarm size and each column to a specific computational
delay level (left column: 1ms, right column: 10ms). Each figure illustrates the
speedup for the 12 different parameter settings of Table 1, on 1, 2, 4, 8, and 16
processors. The ideal speedup is the corresponding horizontal line per number
of processors.

As we can see, almost perfect speedup is obtained for both delay values, even
for the case of 16 processors. As expected, inferior performance is observed
when the number of parallel tasks is relatively small (Experiment E1 with
swarm size 30), while the best performance is achieved when the number of
tasks is high (Experiment E12 with swarm size 100).

The case of BFGS with numerical derivatives is illustrated in Figure 4. All
speedup measurements with varying swarm size (a single row in Figure 4)

23

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

14.81

13.61

14.49

15.36
14.92

15.6015.6715.6415.7215.8315.8615.82

S
p

e
e
d
u

p

1 proc

2 procs

4 procs

8 procs

16 procs

(a) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

14.5414.3314.08

15.6215.5815.6015.8215.8115.8015.8615.8915.82

S
p

e
e
d
u

p

1 proc

2 procs

4 procs

8 procs

16 procs

(b) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

14.84
14.25

14.82

15.5815.6415.6715.6115.7015.7315.7515.7015.76

S
p

e
e
d
u

p

1 proc

2 procs

4 procs

8 procs

16 procs

(c) Swarm size 100.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

14.89

14.19
14.63

15.5615.5215.6015.7015.7315.7715.7115.7815.80

S
p

e
e
d
u

p

1 proc

2 procs

4 procs

8 procs

16 procs

(d) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16
15.04

12.74

14.89
15.30

14.77

15.5515.5715.5215.7415.7215.7615.87

S
p

e
e
d
u

p
1 proc

2 procs

4 procs

8 procs

16 procs

(e) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16
15.11

14.47

15.19
15.6515.6915.7815.7315.8015.8115.8615.8615.69

S
p

e
e
d
u

p

1 proc

2 procs

4 procs

8 procs

16 procs

(f) Swarm size 100.

Fig. 3. Results with 1ms delay (first row) and 10ms delay (second row) using MDS.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

7.07
7.59

10.58

7.33
6.83

12.23

10.15

12.14

14.00

12.45

13.77

14.96

S
p
e

e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(a) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

7.41

8.75
8.27

8.01

10.49

12.83

11.90

13.49

14.31

13.45

14.62
15.26

S
p
e

e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(b) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

8.859.08

11.66

9.98

11.49

13.53

11.47
12.09

14.73
14.13

14.87
15.37

S
p
e

e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(c) Swarm size 100.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

8.14
8.76

11.73

8.35

10.55

13.95

10.06

12.34

14.37

12.48

13.76

15.30

S
p
e
e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(d) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

7.98

10.21

11.39

10.66

12.56

14.79

12.70

14.10

15.06

13.55

14.34

15.59

S
p
e
e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(e) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

8.70

10.76

13.15
12.84

14.56

15.54

13.66

14.78

15.64

14.64
15.28

15.61

S
p
e
e
d

u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(f) Swarm size 100.

Fig. 4. Results with 1ms delay (first row) and 10ms (second row), using BFGS with
numerical derivatives.

24

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

4.59
4.93

1.68
2.091.91

1.42
1.992.011.89

2.502.492.59

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(a) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

5.02

3.76
3.31

2.73
2.26

1.94

2.712.532.53

3.623.453.59

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(b) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

5.05

4.00

2.56

3.983.753.60
4.073.873.95

5.19
5.485.68

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(c) Swarm size 100.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

4.69
5.12

1.70
2.111.93

1.43
2.002.031.90

2.532.502.59

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(d) Swarm size 30.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

5.10

3.83
3.39

2.77
2.28

1.95

2.742.552.54

3.673.483.61

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(e) Swarm size 50.

E1E2E3E4E5E6E7E8E9E10E11E12

1

2

4

8

16

5.15

4.11

2.60

4.043.813.66
4.133.913.99

5.26
5.535.71

S
p
e
e
d
u
p

1 proc

2 procs

4 procs

8 procs

16 procs

(f) Swarm size 100.

Fig. 5. Results with 1ms delay (first row) and 10ms delay (second row), using BFGS
with analytic derivatives.

show increase with increasing swarm size. Furthermore, the speedup increases
as a function of probability of local search and dimensionality. For all swarm
sizes, experiment E12 (high dimensionality, high probability) exhibits better
speedup that E1 (low dimensionality, low probability). The spikes in the 16-
processor line for the 100-D cases E3, E6 and E9, indicate that the speedup
is mainly affected by the dimensionality of the problem.

In Figure 5 we present results using the BFGS with analytical derivatives.
As expected the serial nature of the original BFGS algorithm deteriorates the
parallel efficiency of the whole scheme. The number of LS tasks (affected by
the swarm size and the probability of LS) is not large enough to keep many
processors busy, causing severe load imbalance. Notice that in the extreme
case of E12, a mean number of 100 ·0.2 = 20 LS are created in every iteration.
When 16 processors are available, these LS are distributed in two passes. In
the first pass one LS per processor will be assigned (16 tasks) and that will
leave the second pass with approximately 4 tasks remaining. So in the second
pass the majority of the processors (75%) will remain idle. As as result, an
average speedup of 4 is achieved when 4, 8 or 16 processors are used.

However, additional experiments using BFGS with analytical derivatives on
larger swarm sizes and dimensions, showed that the speedup is again ap-
proximating the ideal. The reason is the increasing number of concurrent lo-

25

cal searches that are launched using these settings. In Fig. 6, we report the
speedup for dimension n = 100, swarm size 1000 and 5000, respectively, and
probability of LS ρ = 0.2 and 0.5.

The remaining test functions were also studied for the 12 configurations of
Table 1, again using artificial delays of 1 and 10ms. The resulting charts are
grouped together in a Supplementary Material section in the end this docu-
ment. The reported speedup values in all cases, are similar to the ones reported
for the Rastrigin function. The only significant difference occurs when BFGS
with analytical derivatives was applied to the Griewank function (Fig. 16).
The speedup reported in this figure is greater than the one reported for the
Rastrigin, Ackley and Schwefel functions (Figs. 5, 13,19) and this can be at-
tributed to the increased complexity of the Griewank objective.

1 2 4 8 16
1
2

4

8

16

procs

S
p

e
e

d
u

p

Prob = 0.2 SS = 1000

Dimension = 100

(a)

1 2 4 8 16
1
2

4

8

16

procs

S
p

e
e

d
u

p

Prob = 0.2 SS = 5000

Dimension = 100

(b)

1 2 4 8 16
1
2

4

8

16

procs

S
p

e
e

d
u

p

Prob = 0.5 SS = 1000

Dimension = 100

(c)

1 2 4 8 16
1
2

4

8

16

procs

S
p

e
e

d
u

p

Prob = 0.5 SS = 5000

Dimension = 100

(d)

Fig. 6. Speedup using BFGS with analytic derivatives on the 100-dimensional Ras-
trigin test function.

5.2 Application on Atomic Clusters using Pairwise Energy Potentials

Pairwise energy potentials are mathematical models used to calculate the to-
tal energy in a cluster of atoms. Minimizing this energy with respect to the
coordinates of the atoms, corresponds to finding a stable conformation of the

26

cluster. In the case of pairwise potentials, the total energy of the system con-
sisting of Natoms atoms can be calculated as:

Utot =
N∑
i=1

N∑
j<i

E (rij) (19)

Here the quantity E (rij) is the pairwise interaction energy between the i-th
and j-th atoms and

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

is the distance between atom i located at (xi, yi, zi)
> and atom j located at

(xj, yj, zj)
>. Different formulations for E (rij) lead to different potentials and

hence different conformations in space. Different pairwise energies to describe
interactions for various classes of atoms have been proposed over the last years.

In the present work we use p-MEMPSODE to minimize three well known
pairwise energy potentials (Lennard-Jones, Morse and Girifalco). The purpose
of these benchmarks is to estimate the parallel efficiency of the software. Since
the objective function is analytic and first order derivatives are available, we
focused on the hybrid scheme that applies BFGS with analytical derivatives.

5.2.1 Lennard Jones Potential

The Lennard-Jones potential [51] is a simple model that approximates the
interaction between a pair of neutral atoms or molecules (van der Waals in-
teraction). It is considered a relatively good and universal approximation and
due to its simplicity is often used to describe the properties of gases.

Formation of Lennard-Jones clusters have been extensively used as global
optimization benchmark problems. The potential energy of the cluster is given
by:

E(rij) = 4 ε

(σ

rij

)12

−
(
σ

rij

)6
 , (20)

where rij is the distance between atoms i and j. This function, for reduced
units (σ = ε = 1), is implemented in the file lj.c of the p-MEMPSODE
source code distribution.

We tested the speedup of p-MEMPSODE on a relatively large molecule of 100
atoms, which results in a problem of dimension n = 300. Each call for this
specific instance of the Lennard-Jones objective function takes approximately
1 ms on a single core of the multicore server. We tested large swarm sizes (100,
500, and 1000) with probabilities set to 0.1, 0.2, and 0.3, respectively.

27

Figure 7 depicts the achieved speedups. We can easily notice that when 16
processors were utilized, the speedup ranged from 9.26 up to 11.07. This evi-
dence is in accordance with the experiment results for the Rastrigin function
with large swarm size and probability value (see Fig. 6). Again, it is apparent
that larger swarms lead to more local searches and hence better speedup.

1 2 4 8 16
1
2

4

8

16

procs

S
pe

ed
up

Prob = 0.1 Dim = 300

1.00
1.89

3.39

5.49

9.26

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 16
1
2

4

8

16

procs

S
pe

ed
up

Prob = 0.2 Dim = 300

1.00
1.93

3.58

6.13

10.96

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 16
1
2

4

8

16

procs

S
pe

ed
up

Prob = 0.5 Dim = 300

1.00
1.97

3.80

7.30

13.24

Swarm size = 100
Swarm size = 500
Swarm size = 1000

Fig. 7. Speedup for the Lennard-Jones potential: cluster of 100 atoms.

5.2.2 Morse Potential

The Morse potential [52] is a convenient model for the potential energy of
diatomic molecules. Morse clusters are also considered a particularly tough
test system for global optimization. The potential energy of the cluster is
given by:

E(rij) = ε
[
e−nβ(rij−r0) − ne−β(rij−r0)

]
(21)

The parameter r0 is the distance which corresponds to the minimum of the
potential and ε(n − 1) is the energy of the potential at its minimum. The
parameters β and n define the steepness of the potential.

We measured the speedup of p-MEMPSODE using the same settings as in the
Lennard-Jones case (100 atoms). The runtime of this instance of the objective
function is approximately 1ms. The results are shown in Figure 8 and are very
similar to those observed for the Lennard-Jones potential.

5.2.3 Girifalco Potential

The Girifalco potential [53] was derived as an effective potential of the fullerene-
fullerene interaction. A fullerene is a molecule composed of carbon in the form
of a hollow sphere or ellipsoid. The formula of this potential is given by:

28

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.1 Dim = 300

1.00
1.93

3.51

5.56

9.20

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.2 Dim = 300

1.00
1.94

3.72

6.73

11.81

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.5 Dim = 300

1.00
1.97

3.87

7.49

14.15Swarm size = 100
Swarm size = 500
Swarm size = 1000

Fig. 8. Speedup for the Morse potential: cluster of 100 atoms.

E(rij) =−α
[

1

sij(sij − 1)3
+

1

sij(sij + 1)3
− 2

s4
ij

]

+ β

[
1

sij(sij − 1)9
+

1

sij(sij + 1)9
− 2

s10
ij

]
, (22)

where sij =
rij
2a

, α =
N2
cA

12(2a)6
, β =

N2
cB

90(2a)12
. Here Nc is the number of carbon

atoms of the fullerene, a defines the minimum position and the quantities
A = 19.97 and B = 34809 are calculated empirically.

In this experiment we used p-MEMPSODE to calculate clusters of 100 fullerenes
each one consisting of Nc = 60 carbon atoms. The results are shown in Fig-
ure 9. Although the same general trend is observed, the speedups are slightly
lower in this case. Further analysis revealed that for the Girifalco potential,
the BFGS algorithm exhibits larger variance in the number of steps required
for convergence compared to the other two cases. That means that higher load
imbalance is introduced by the BFGS, affecting the parallel performance of
algorithm.

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.1 Dim = 300

1.00
1.87

3.23

4.92

6.91

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.2 Dim = 300

1.00
1.94

3.48

6.03

9.08

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 12 16
1
2

4

8

12

16

procs

S
pe

ed
up

Prob = 0.5 Dim = 300

1.00
1.97

3.79

7.17

12.53

Swarm size = 100
Swarm size = 500
Swarm size = 1000

Fig. 9. Speedup for the Girifalco potential: cluster of 100 fullerenes

29

1 2 4 8 16
1
2

4

8

16

procs

S
p
e
e
d
u
p

Prob = 0.1 Dim = 35

 1.00
 1.90

 3.48

 5.73

10.98

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 16
1
2

4

8

16

procs

S
p
e
e
d
u
p

Prob = 0.2 Dim = 35

 1.00
 1.94

 3.63

 6.41

13.02

Swarm size = 100
Swarm size = 500
Swarm size = 1000

1 2 4 8 16
1
2

4

8

16

procs

S
p
e
e
d
u
p

Prob = 0.5 Dim = 35

 1.00

 1.97

 3.76

 7.01

14.96Swarm size = 100
Swarm size = 500
Swarm size = 1000

Fig. 10. Speedup for the Tinker potential application.

5.3 Application on Tinker Potential

The Tinker potential energy function was used in [29] to demonstrate the
efficiency of the serial MEMPSODE version. In that example, the minimum
energy conformation of a gas phase Alanine octamer was found. In the present
work, we use the same example to measure the speedup of the p-MEMPSODE
software.

The Tinker software package contains a Fortran implementation of the Am-
ber [54] force field used in this study and in [29]. Tinker makes heavy use of
common blocks for inter-subroutine communication. Since OpenMP threads
share the same address space, concurrent Tinker function evaluations will
be erroneous. To deal with this issue, we spawn separate Tinker server pro-
cesses, one for each OpenMP thread. Each server calculates the same poten-
tial within its own memory space and communicates with p-MEMPSODE via
Unix-domain sockets. This special implementation reduces the communica-
tion overhead while allowing concurrent Tinker evaluations to be issued by
multiple OpenMP threads on a single computer system.

6 Conclusions

It this work, the parallel implementation of a hybrid global optimization al-
gorithm that combines population based methods with local searches is pro-
posed. The components of the hybrid algorithm were chosen mainly due to
their inherent parallelization capabilities. The parallelization of the presented
method results in an irregular, two-level task graph, considering function eval-
uations as basic computational tasks. The implementation is based on the
OpenMP tasking model which provides seamless extraction and efficient ex-
ecution of nested task-based parallelism. Thorough experimental testing on

30

a server with 16 cores revealed that the proposed parallel implementation
harnesses the power of multicore architectures and drastically reduces the ex-
ecution time of the hybrid optimization algorithm.

Acknowledgments

This work is co-financed by the European Union and Greece Operational Pro-
gram “Human Resources Development” - NSFR 2007-2013 - European Social
Fund.

References

[1] R. Horst and P. M. Pardalos. Handbook of Global Optimization. Kluwer
Academic Publishers, London, 1995.

[2] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

[3] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr.
Kovač, Hamburg, 1997.

[4] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and
Intelligence: Advances and Applications. Information Science Publishing (IGI
Global), 2010.

[5] J. Nocedal and S. J. Wright, editors. Numerical Optimization. Springer, 2006.

[6] A. Žilinskas and J. Žilinskas. A hybrid global optimization algorithm for non-
linear least squares regression. Journal of Global Optimization, 56(2):265–277,
2013.

[7] R. Dawkins. The Selfish Gene. Oxford University Press, New York, 1976.

[8] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P Report 826, Caltech
Concurrent Computation Program, California, USA, 1989.

[9] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 219–235. McGraw-Hill,
London, 1999.

[10] H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical issues
and guidelines for practice. Comput. Methods Appl. Mech. Engrg., 186:239–269,
2000.

[11] E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York, 1999.

31

[12] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer, New York, 2002.

[13] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley,
2006.

[14] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, 2001.

[15] M. W. S. Land. Evolutionary Algorithms with Local Search for Combinatorical
Optimization. PhD thesis, University of California, San Diego,USA, 1998.

[16] R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1987.

[17] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, London, 1981.

[18] F. Neri, C. Cotta, and P. Moscato, editors. Handbook of Memetic Algorithms.
Springer-Verlag, Berlin, 2012.

[19] Reiner Horst, Panos M Pardalos, and H Edwin Romeijn. Handbook of global
optimization, volume 2. Springer, 2002.

[20] JJ Alonso, P LeGresley, and V Pereyra. Aircraft design optimization.
Mathematics and Computers in Simulation, 79(6):1948–1958, 2009.

[21] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics, 21(2):193–207, 1998.

[22] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report
G-2009-37, Les cahiers du GERAD, 2009.

[23] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and
C. Tribes. The NOMAD project. Software available at http://www.gerad.
ca/nomad.

[24] Dario Izzo, Marek Ruciński, and Francesco Biscani. The generalized island
model. In Parallel Architectures and Bioinspired Algorithms, pages 151–169.
Springer, 2012.

[25] Dario Izzo. Pygmo and pykep: Open source tools for massively
parallel optimization in astrodynamics (the case of interplanetary trajectory
optimization). In Proceedings of the Fifth International Conference on
Astrodynamics Tools and Techniques, ICATT, 2012.

[26] Kejing He, Li Zheng, Shoubin Dong, Liqun Tang, Jianfeng Wu, and Chunmiao
Zheng. Pgo: A parallel computing platform for global optimization based on
genetic algorithm. Computers & Geosciences, 33(3):357–366, 2007.

[27] Jian He, Layne T Watson, and Masha Sosonkina. Algorithm 897: Vtdirect95:
serial and parallel codes for the global optimization algorithm direct. ACM
Transactions on Mathematical Software (TOMS), 36(3):17, 2009.

32

[28] Christian L Müller, Benedikt Baumgartner, Georg Ofenbeck, Birte Schrader,
and Ivo F Sbalzarini. pcmalib: a parallel fortran 90 library for the evolution
strategy with covariance matrix adaptation. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 1411–1418. ACM,
2009.

[29] C. Voglis, K. E. Parsopoulos, D. G. Papageorgiou, I. E. Lagaris, and
M. N. Vrahatis. MEMPSODE: A global optimization software based on
hybridization of population-based algorithms and local searches. Computer
Physics Communications, 183(5):1139–1154, 2012.

[30] D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris. Merlin-3.1. 1.
a new version of the Merlin optimization environment. Computer Physics
Communications, 159(1):70–71, 2004.

[31] Costas Voglis, Grigoris S Piperagkas, Konstantinos E Parsopoulos, Dimitris G
Papageorgiou, and Isaac E Lagaris. Mempsode: comparing particle swarm
optimization and differential evolution within a hybrid memetic global
optimization framework. In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference companion,
pages 253–260. ACM, 2012.

[32] Costas Voglis, Grigoris S Piperagkas, Konstantinos E Parsopoulos, Dimitris G
Papageorgiou, and Isaac E Lagaris. Mempsode: An empirical assessment of
local search algorithm impact on a memetic algorithm using noiseless testbed.
In Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference companion, pages 245–252. ACM, 2012.

[33] Costas Voglis. Adapt-mempsode: a memetic algorithm with adaptive selection
of local searches. In Proceeding of the fifteenth annual conference companion on
Genetic and evolutionary computation conference companion, pages 1137–1144.
ACM, 2013.

[34] Costas Voglis, Panagiotis E Hadjidoukas, Konstantinos E Parsopoulos,
Dimitrios G Papageorgiou, and Isaac E Lagaris. Adaptive memetic particle
swarm optimization with variable local search pool size. In Proceeding
of the fifteenth annual conference on Genetic and evolutionary computation
conference, pages 113–120. ACM, 2013.

[35] V. Torczon. A Direct Search Algorithm for Parallel Machines. PhD thesis,
Department of Mathematical Sciences, Rice University, Houston, U. S. A., 1989.

[36] OpenMP Architecture Review Board. Openmp specifications. Available at:
http://www.openmp.org.

[37] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE
Int. Conf. Neural Networks, volume IV, pages 1942–1948, Piscataway, NJ, 1995.
IEEE Service Center.

[38] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.
In Proceedings Sixth Symposium on Micro Machine and Human Science, pages
39–43, Piscataway, NJ, 1995. IEEE Service Center.

33

[39] P. N. Suganthan. Particle swarm optimizer with neighborhood operator. In
Proc. IEEE Congr. Evol. Comput., pages 1958–1961, Washington, D.C., USA,
1999.

[40] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans. Evol. Comput.,
6(1):58–73, 2002.

[41] K. E. Parsopoulos and M. N. Vrahatis. UPSO: A unified particle swarm
optimization scheme. In Lecture Series on Computer and Computational
Sciences, Vol. 1, Proceedings of the International Conference of Computational
Methods in Sciences and Engineering (ICCMSE 2004), pages 868–873. VSP
International Science Publishers, Zeist, The Netherlands, 2004.

[42] K. E. Parsopoulos and M. N. Vrahatis. Parameter selection and adaptation in
unified particle swarm optimization. Mathematical and Computer Modelling,
46(1-2):198–213, 2007.

[43] R. Storn and K. Price. Differential evolution-a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optimization, 11:341–359,
1997.

[44] K. Price. Differential evolution: A fast and simple numerical optimizer. In
Proceedings NAFIPS’96, pages 524–525, 1996.

[45] V. Torczon. On the convergence of the multidimensional search algorithm.
SIAM J. Optimization, 1:123–145, 1991.

[46] Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis. Memetic particle swarm
optimization. Annals of Operations Research, 156(1):99–127, 2007.

[47] W. E. Hart. Adaptive Global Optimization with Local Search. PhD thesis,
University of California, San Diego,USA, 1994.

[48] C. Voglis, K. E. Parsopoulos, and I. E. Lagaris. Particle swarm optimization
with deliberate loss of information. Soft Computing, 16(8):1373–1392, 2012.

[49] C. Voglis, PE Hadjidoukas, IE Lagaris, and DG Papageorgiou. A numerical
differentiation library exploiting parallel architectures. Computer Physics
Communications, 180(8):1404–1415, 2009.

[50] J.W. Ponder et al. TINKER: software tools for molecular design. Department
of Biochemistry and Molecular Biophysics, Washington University School of
Medicine, St. Louis, MO, 1998.

[51] J. Lennard-Jones. On the determination of molecular fields. Proc. R. Soc. Lond.
A., 47(6):106–463, 1924.

[52] P. Morse. Diatomic molecules according to the wave mechanics ii. vibrational
levels. Proc. R. Soc. Lond. A., 34:57–64, 1929.

[53] L. Girifalco. Molecular properties of fullerene in the gas and solid phases. J.
Phys. Chem., 96:858–861, 1992.

34

[54] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson,
D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. A second generation
force field for the simulation of proteins, nucleic acids, and organic molecules.
Journal of the American Chemical Society, 117(19):5179–5197, 1995.

35

Supplementary Material

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16
14.87

14.25
14.71

16.0016.0016.0016.0016.0015.7416.0016.0015.88

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16
16.00

15.36

13.69

15.47
16.0015.9815.9616.0016.0016.0015.9015.83

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16 15.50

14.59
14.96

15.7815.8115.9115.9616.0015.8515.8615.8815.97

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16
15.15

14.09

14.85

15.68
15.11

15.8115.7315.6715.8815.7415.9116.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.33

14.6314.53

15.7315.5915.7715.7115.7915.8315.7215.8415.84

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.59
15.2215.22

15.7115.7915.9315.7215.8615.9616.0016.0016.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 11. Ackley function results with 1ms delay (first row) and 10ms delay (second
row) using MDS.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

8.86
9.23

12.36

8.43

10.66

13.80

10.46

11.61

14.84

11.41

12.88

15.01

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

7.42

12.78

11.46
11.8312.01

14.61

13.2313.09

15.05

13.52

12.06

15.35

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

9.30

11.44

12.78

14.95

11.68

15.39

14.56
14.94

15.42

13.87

15.63
16.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

10.42
11.00

13.45

11.2511.41

15.05

12.58

13.58

15.24

13.2013.31

15.92

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

9.82

12.57
12.88

13.19
13.53

15.58

14.29
14.85

15.79

14.58
13.92

16.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

10.70

12.80

14.3514.42

16.0016.00

14.85

16.0016.00

15.13

16.0015.96

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 12. Ackley function results with 1ms delay (first row) and 10ms (second row),
using BFGS with numerical derivatives.

36

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

2.60

1.86
1.52

2.08
1.80

1.53

2.31
1.882.15

2.52
2.11

2.55

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

2.362.161.93
2.54

2.17
1.86

2.97
2.66

2.15

3.73
3.39

2.97

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

2.612.42
2.11

3.773.92

2.94

5.04
4.48

3.67

5.92
5.58

5.11

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

2.64

1.90
1.54

2.12
1.83

1.55

2.35
1.92

2.18
2.56

2.14
2.59

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

2.542.332.08

2.75
2.34

2.01

3.21
2.87

2.32

4.02
3.66

3.21

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

2.742.54
2.22

3.974.13

3.09

5.31
4.71

3.86

6.22
5.87

5.38

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 13. Ackley function results with 1ms delay (first row) and 10ms delay (second
row), using BFGS with analytic derivatives.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

14.40

13.39

14.15

15.10
14.68

15.4715.5015.4715.6115.6715.8715.95

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

14.3414.18
13.68

15.4215.3915.4815.6415.7015.6915.7115.7415.78

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16
14.79

14.09
14.49

15.6315.7115.5815.7115.8615.7915.8915.7815.79

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.60

14.02

14.84

15.77

14.98

15.8015.6715.7215.8116.0015.7715.87

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.47

14.6114.46

15.6715.6715.7515.7815.7815.9215.7815.8115.90

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.63

14.70
15.29

15.8615.8015.8616.0015.8516.0016.0016.0015.99

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 14. Griewank function results with 1ms delay (first row) and 10ms delay (second
row) using MDS.

37

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

8.07

9.61

12.50

9.32

12.05

14.65

11.90

13.23

15.23

13.87

15.09
15.65

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

8.46

11.07
11.67

12.03

13.25

15.36

14.11
14.47

15.75

14.63

15.35
15.79

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

8.78

11.89

13.29
13.83

15.07
15.69

14.26

15.23

16.00

15.21
15.60

16.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

10.9611.04

13.49

11.62

13.35

15.53

13.53
14.12

16.00

14.90
15.49

15.99

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

11.06

12.05

13.04
13.55

14.32

15.64
15.3115.28

16.00
15.35

15.7816.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

11.22

12.96

14.43
14.75

15.8816.00
15.5115.67

16.0015.8615.8416.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 15. Griewank function results with 1ms delay (first row) and 10ms (second
row), using BFGS with numerical derivatives.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

3.263.14

1.48
1.96

2.87

1.88

2.822.89
2.34

3.24
3.513.47

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

4.12

2.20

3.173.21
2.78

1.92

3.81
3.29

2.79

4.10

4.77
4.18

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
12 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

3.62

2.712.50

3.403.46

2.64

4.67

5.50

4.72

6.926.98
6.69S

pe
ed

up

1 procs
2 procs
4 procs
8 procs
12 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

3.673.53

1.66
2.20

3.23

2.11

3.173.25
2.63

3.64
3.953.90

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

4.40

2.35

3.393.44
2.98

2.06

4.08
3.52

2.99

4.39

5.10
4.48

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

3.99

2.992.75

3.753.81

2.91

5.15

6.07

5.21

7.637.69
7.38

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 16. Griewank function results with 1ms delay (first row) and 10ms delay (second
row), using BFGS with analytic derivatives.

38

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

14.49

13.39

14.18

15.07
14.69

15.6115.6915.6215.8015.62
15.9415.71

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

14.2714.44

13.69

15.3515.5315.54
15.8715.8615.8315.8015.7915.91

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16
14.76

14.11
14.57

15.7615.7415.6715.7515.7815.8615.66
16.0015.93

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.38

14.7014.50

15.6815.7315.7715.8815.9716.0016.0015.9516.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.63

14.06

14.80

15.71

15.04

15.7715.8915.9415.9816.0015.9416.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16 15.57

14.72
15.35

15.9015.9815.8816.0016.0016.0016.0016.0016.00

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 17. Schwefel function results with 1ms delay (first row) and 10ms delay (second
row) using MDS.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

7.647.43

9.22

7.45

9.67

13.17

9.19

11.73

12.91

10.47

12.33

14.46

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

7.64

9.00

11.29

9.28

12.15

13.56

11.1210.88

13.77

12.34

13.63

14.55

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

9.02
8.75

12.69

10.94

11.75

14.60

11.90

14.15
14.77

13.19

14.81
15.42

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

10.17
9.76

11.23

10.09

11.13

14.23

11.5511.33

14.23

12.49

13.69

15.17

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

9.96

10.91

12.67

11.37

13.41

14.62

12.98
12.58

14.93

13.71

14.71
15.22

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

11.0210.77

14.04

12.94
13.40

16.00

13.10

13.85

15.56

14.28

15.33
15.74

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 18. Schwefel function results with 1ms delay (first row) and 10ms (second row),
using BFGS with numerical derivatives.

39

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

2.89

2.15

1.48
1.891.861.65

2.17
1.881.85

2.852.882.87

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(a) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

2.64

1.931.69

2.582.38
2.05

3.042.80
2.35

3.983.773.67

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(b) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

1

2

4

8

12

16

3.27
2.77

2.11

3.503.38
3.03

4.83
4.53

4.07

6.195.945.98

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(c) Swarm size 100.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

3.42

2.54

1.75
2.242.201.95

2.57
2.222.19

3.373.403.39

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(d) Swarm size 30.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

2.97

2.18
1.90

2.912.68
2.31

3.43
3.15

2.64

4.484.244.13

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(e) Swarm size 50.

E12 E11 E10 E09 E08 E07 E06 E05 E04 E03 E02 E01

4

8

16

3.33
2.83

2.15

3.573.45
3.09

4.93
4.62

4.15

6.32
6.056.10

S
pe

ed
up

1 procs
2 procs
4 procs
8 procs
16 procs

(f) Swarm size 100.

Fig. 19. Schwefel function results with 1ms delay (first row) and 10ms delay (second
row), using BFGS with analytic derivatives.

40

