MERLIN-3.0

User Manual

D.G. Papageorgiou, I.N. Demetropoulos
Department of Chemistry

[.E. Lagaris

Department of Computer Science

http://nrt.cs.uoi.gr/merlin

UNIVERSITY OF [OANNINA
GREECE

Contents

Introduction

1.1 What kind of problems MERLIN handles

1.2 Conventions o i e e e e e e e e e e e e e e e
1.2.1 Typing o e e e e e
1.2.2 Symbols

Installation and configuration

2.1 Thepieces o o e e e e e e e
2.2 Imstallation e
2.2.1 Why an installation procedure Lo
2.2.2 Running the installer programo 0oL
2.2.3 The complete list of installer macros
2.3 Configuration

User written programs

3.1 The main program e
3.2 The objective function. General formo 0oL
3.3 The objective function. Sum of squares form L.
3.4 The gradient vector L
3.5 The Jacobian matrixo
3.6 The Hessian matrix o e
3.7 Important note L

The MERLIN Operating System

4.1 Commands oL
4.2 Supplyinginputo
4.3 Output handling
4.4 Getting help. L
4.5 Minimization commands oL Lo
4.6 Macros e e e e e e
4.7 Confidence intervals

11
11
12
14
15
15
16
17

Contents

4.8 Command abbreviations 29
4.9 The MERLIN flags and how touse them 29
4.10 Call counters e e e e e e e e e 29
4.11 MERLIN files. o 30
Curve fitting. A complete example 33
Command description 39
6.1 Command classification 39
6.2 Attribute related commands 40
6.2.1 POINT o it e e e e e e e e e e e e 40
6.2.2 INIT . . . o o o e i e e e e e e e e e e e e e 40
6.2.3 PICK o it it e e e e e e 41
6.2.4 LMARGIN, RMARGIN it e e e e e e e 42
6.2.5 LDEMARGIN, RDEMARGIN ittt e e it e e e 42
6.2.6 FIX . . . e e e e e 42
6.2.7 FIXALL e e e e e e e e e 43
6.2.8 LOOSE i i e e e e e e e 43
6.2.9 LOOSALL o e e e e e e e e e e e e 43
6.2.10 GODFATHER i it e e e e e e e e e e e e e e e 43
6.2.11 NONAME e e e e e e e e e e e e e e 43
6.2.12 SHORTDIS v v o v e 44
6.2.13 VALDIS ot e e e e e e e e 44
6.2.14 TERMDIS ot e e e e e e e e e e e e e e 44
6.2.15 TITLE o i e 44
6.2.16 RESET ot i e e e e e e e e e e e e e e e 45
6.3 Minimization related commands o 45
6.3.1 ROLL o e e e e e e e 45
6.3.2 SIMPLEX i e e e e e e e e e e e 46
6.3.3 BEGS e e e e e e e e 49
6.3.4 DFP e e e e e e 51
6.3.5 TOLMIN e e e e e e e e e e e e e e e 51
6.3.6 TRUST v i et e e e e e e e e e e e e e e 53
6.3.7 CONGRA e e e e e e e 55
6.3.8 LEVE e e e e e e 58
6.3.9 AUTO o e e e e e e e e 59
6.3.10 ACCUM ot et e e e e e e e e 60
6.3.11 TARGET o i i e et e e e e e e e e e e e e e 61
6.3.12 NOTARGET et e e e e e e e e e e e e e e 62

6.3.13 ADJUST e e 62

Contents 1ii

6.4

6.5

6.6

6.7

6.8

6.3.14 STEPALLt it et e e e e 62
6.3.15 STEP e e e e e e 62
6.3.16 STEPDIS i i i it e e e e e e e e 62
Flags and related commands L 62
6.4.1 FLAG o 62
6.4.2 FLAGDIS e e e 63
6.4.3 CFLAG e e 63
6.4.4 CFLAGDIS i it e e e 63
Modes of operation and related commandso oo 63
6.5.1 FAST, QUAD, NUMER, ANAL oot 63
6.5.2 MIXED i it e e 64
6.5.3 JNUMER, JANALt e e e 64
6.5.4 HESSIAN o o e 64
6.5.5 GRADDIS o i e e 66
6.5.6 GRADCHECK o o i ittt e e e e e e 66
6.5.7 JCOMPARE e 67
6.5.8 GNORM o e 67
6.5.9 MAD e 67
6.5.10 TIAF, BATCH o i i i i i e e e e e s e e 68
6.5.11 NOBACK, LASTBACK, FULLBACK i i i i it e e e 68
6.5.12 BACKUP it e e 69
6.5.13 NOPRINT, HALFPRINT, FULLPRINT i v i e e e e 70
6.5.14 GENERAL, SOS o it e e e e e e e 70
6.5.15 EVALUATE, NOEVAL i e e e e e e e e e e e e e 71
6.5.16 MODEDIS ¢ v v it e et e e e e e e e e 71
6.5.17 LIMITS o o i e e e e e e e e e e e e e e 71
Aliasing and related commands L oL L 71
6.6.1 ALIAS 71
6.6.2 UNALIAS o e e 71
6.6.3 ALTASDIS i ittt e e e e 72
Termination and post—processing Lo 72
6.7.1 STOP o e e 72
6.7.2 RETURN e e e e 72
6.7.3 QUIT . o o o o e e e e 72
File manipulation commands L o 73
6.8.1 MEMO e e e e 73
6.8.2 DUMP e 74
6.8.3 DISCARD o i i e 75

6.8.4 DELETE o i i e e e e e e e e 75

iv Contents
6.8.5 REWIND o it e e e e e e 76
6.8.6 GOEOF e 76
6.8.7 INSPECT o it e e e e e e e e e e e 76

6.9 Graphics and related commandso 0oL oL 77
6.9.1 GRAPH e e e 7
6.9.2 PSGRAPH e 78

6.10 Panel related commandso Lo 81
6.10.1 PANELON o o ottt e et e e e e e e 81
6.10.2 PANELOFF o ot e et e e e e 81
6.10.3 PSTATUS o o it et e e 81
6.10.4 PDUMP i e e e e e e e 81

6.11 Output redirection and related commands 82
6.11.1 HIDEQUT o it ittt e e e e e e e e e e e 82
6.11.2 REVEAL oottt e e e e e e e e 82

6.12 Macro and McCL related commands L. 82
6.12.1 MACRO o e e e e e 82
6.12.2 CLEAR e e e e 83
6.12.3 RUNMCL o ittt et e e e e e e e e e e e 83

6.13 Data fitting related commandso oL 83
6.13.1 COVARIANCE o ittt et e e e e e e e e 83
6.13.2 CONFIDENCE o it i e e e e e e e e e e s e e e 84

6.14 Getting help. e 84
6.14.1 LIST o ot i e i e e e e e e e e e e 84
6.14.2 HELP o e e e e e e 84
6.14.3 Help on panel keywords Lo 86

6.15 Oddsand ends e 86
6.15.1 ECHO o o it it e e e e e e e e 86
6.15.2 EPILOG o o ittt e e e e e e e e e e 87
6.15.3 CONTROL o i it i e e e e e e e e e e e e e e 87
6.15.4 HISTORY e e e e e e e e e e 89

7 Extensions 91

7.1 Whyextend e 91

7.2 Writing the plug-inmodule Lo 91

7.3 Naming the plug-inmodule o o 93

7.4 Addingon-linehelp 93

7.5 Plug-ins with command line arguments 94

7.6 Plug-ins with a panelo 94

7.7 The panel description file 96

7.7.1 Declaring the panel name L. 96

Contents A\
7.7.2 Declaring the keywords 99
7.7.3 Adding help texts 100

8 The MERLIN-MCL configuration file 101

8.1 General description Lo 101
8.2 Directives that control MERLIN input—output 102
8.2.1 MERLIN input—-output units and files oL 102
8.2.2 INPUTFILE i i i e e e e e e e e e e e e e e e 102

8.2.3 OUTPUT FILE i i it i it e e e s e e e e e e 104

8.2.4 INPUTUNIT i it e e e e e e e e e e e e e e e e 104
8.2.5 OUTPUTUNIT o i it e e e e e e e e e e e e e 105
8.2.6 INPUT PRECONN ittt it e e e e e e e e e e e e e 105
8.2.7 OUTPUTPRECONN ittt e e e e e e e e e e e e e 105
8.2.8 HEADER o i it e e e e e 106
8.2.9 PRINTOUT i e e e e e e e e e e e e e e e e 106

8.3 File related directiveso 106
8.3.1 PDESC.FILE i i it ittt e e s e 106

8.3.2 MACROFILE o i ittt e e e e e 107

8.3.3 HELP.FILE it e e e e e e e e e 107
8.3.4 MCL_ERRORFILE i ittt i 107

8.3.5 MCL.OBJECT FILE o v vttt et e e e e e e e e e 108

8.3.6 HAS_APPEND i i it it e e e e e 108
8.3.7 SIZEREAL o it e e e e e 108
8.3.8 SIZE INT v i i ittt e e e e e e e 109
8.3.9 SIZE CHAR i i it i e e 109
8.3.10 UNIT RANGE o ottt e s s e e e e e 109
8.3.11 ONEQF v o v it it e e e e e e e e 110
8.3.12 FILE i it e e e e e e 110

8.4 Miscellaneous directives L 111
8.4.1 MODE i e e e e e e 111
8.4.2 PROLOG o ittt e e e e e e 111
8.4.3 EPILOG o o it it e e e e e e 112
8.4.4 PLUG o ot i e e e e e e e 112
8.4.5 BIGGER e e 112
8.4.6 SMALLER o i e e e e e 113
8.4.7 MACHINE DIGITS o i i ittt e e e e e e e e e e e e e e 113

9 MERLIN glue routines 115
9.1 Parameter related glue routineso L oL L 116
9.1.1 SUBROUTINE GETX o o i it it e e e e e e e e e e e 116

vi Contents
9.1.2 SUBROUTINE GETX1 e e e e e e e e e e e e 116
9.1.3 SUBROUTINE SETX o i i it it e e e e e e e e e e 116
9.1.4 SUBROUTINE SETX1 ot it e e s e e e e e e e e e e e 117
9.1.5 SUBROUTINE GETG v it i e e e e e e e e e e e e e e e e 117
9.1.6 SUBROUTINE GETGL i e e e e e e e e e e e 117
9.1.7 SUBROUTINE GETHES o i i i et e e e e e e e e e e e e 118
9.1.8 SUBROUTINE GETJAC o o i i it i s e e e e e e e e e 119
9.1.9 SUBROUTINE GETMAR o i e e e e e e e e e e 119
9.1.10 SUBROUTINE GETMRL o i e et e e et e e e e 120
9.1.11 SUBROUTINE GETFIX o o i it i e e e e e e e e e 120
9.1.12 SUBROUTINE GETFX1 o e s e e e e e e e 121
9.1.13 SUBROUTINE GETNAM o i e e e e e e e e e 121
9.1.14 SUBROUTINE GETNM1L i et e e e e e e 122

9.2 Panel related glue routineso 122
9.2.1 SUBROUTINE GETPI o o i i it i e e e e e e e e e 122
9.2.2 SUBROUTINE GETPR ittt e e e e e e e e e e e e 122
9.2.3 SUBROUTINE GETPS it it e e e e e e e e e e e e e 123
9.2.4 SUBROUTINE GETPPI s i i it i ittt e e e e e e e e 123
9.2.5 SUBROUTINE GETPPR s e e e e e e 124
9.2.6 SUBROUTINE GETPPS i e e e e e e e e e 124
9.2.7 SUBROUTINE SETPI ittt e e e e e e e e e e e e 125
9.2.8 SUBROUTINE SETPR o o it it e i e e e e e e e e e e 125
9.2.9 SUBROUTINE SETPS o o v it i i e i e e e e e e e e e e 126
9.2.10 SUBROUTINE SETPPI o ittt e e e e e e e e e e e e e 126
9.2.11 SUBROUTINE SETPPR i i it e e et e e e e e e e e e 127
9.2.12 SUBROUTINE SETPPS o o o i it e e e e e e e e e e 128
9.2.13 SUBROUTINE CHANGE e e e e e e e 128

9.3 Utility glue routines L 129
9.3.1 SUBROUTINE UPPER v ittt e i e e e e e e e e e e e e 129
9.3.2 SUBROUTINE I2STR o o v it it e e e e e e e e e e e 129
9.3.3 SUBROUTINE TOINT o o it it e it e e e e e e e e e e 130
9.3.4 SUBROUTINE TOREAL o i i i e it e e e e e e 130
9.3.5 FUNCTION ISCOMP ¢ v ittt e e e e e e e e 131
9.3.6 FUNCTION LENGTH o o i i it i e e e e e e e e e 131

9.4 Miscellaneous glue routines L L 132
9.4.1 SUBROUTINE GETDIM i i it i it e e e et e e e 132
9.4.2 SUBROUTINE ARGNO ittt e e e e e e e e e e e 132
9.4.3 SUBROUTINE GETARG o i i i i e e e e e e e e e 132
9.4.4 SUBROUTINE GETACC v i i it i e e e e e e e e e e 133

Contents vii
9.4.5 SUBROUTINE GETMC o o o i e e e e e e e e e e e e e e e e e e e 133
9.4.6 SUBROUTINE GETCNT o v v i e e e e e e e e e e e e e e e e e e e 133
9.4.7 SUBROUTINE GETFLA o i o i e e e e e e e e e e e e e e e e 134
9.4.8 SUBROUTINE SETFLA o o e e e e e e e e e e e e e e e e e e 134
9.4.9 SUBROUTINE GETCFL o i i e e e e e e e e e e e e e e e e e e e 135
9.4.10 SUBROUTINE SETCFL o v v i e e e e e e e e e e e e e e e e e e 135
9.4.11 SUBROUTINE SETCOD o v v i i e e e e e e e e e e e e e e e e e e e 135
9.4.12 FUNCTION ISMCL o i i e 136
9.4.13 SUBROUTINE GETIOU o o i e e e e e e e e e e e e e e e e e e 136
9.4.14 SUBROUTINE GETPRL o i i i e e e e e e e e e e e e e e e e e 137
9.4.15 SUBROUTINE GETVAL o i i i e e e e e e e e e e e e e e e e e 138
9.4.16 SUBROUTINE SETVAL o o i e e e e e e e e e e e e e e e e e e 138
9.4.17 SUBROUTINE GETEVM o i i e e e e e e e e e e e e e e e e e e 138
9.4.18 SUBROUTINE GETFFO o i i e e e e e e e e e e e e e e e e e e 139
9.4.19 SUBROUTINE GETTRG o o v i e e e e e e e e e e e e e e e e e e e 139
9.4.20 SUBROUTINE SETADE o o i it e e e e e e e e e e e e e e e 140
9.4.21 FUNCTION NUNIT o o i e 140
9.4.22 SUBROUTINE BACKUP o it i e e e e e e e e e e e e e e e e e 141
9.4.23 FUNCTION ISIAF o i i e 141
9.4.24 FUNCTION ACSQ o o e e e e e e e e s e e e e e e e 142
9.4.25 SUBROUTINE LSQFCN o ot e e e e e e e e e e e e e e e e e e e 142

A MEeRLIN Quick Reference 143

viii Contents

List of Tables

2.1

4.1
4.2
4.3
4.4

5.1
5.2

8.1

Some systems under which MERLIN was successfully installed. 8
Shared parameter properties used in index specifications. 22
Using an initial Hessian approximation. 26
Sample file MACROF with two macros. v 27
Sample macro that expects two arguments. L. 27
Data points to be fitted for the sample curve fit. 34

A complete MERLIN session for the curve fit example. User input appears underlined. 37

Default values for all configuration directives. 103

ix

List of Tables

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Sample installer definitions file. 7
Sample configuration file. Lo 10
A sample main program. L. L Lo e e e e 13
A sample FUNCTION FUNMIN. @ . i i i i it et e e e e e e e e 14
A sample SUBROUTINE SUBSUM. v v v it e e e e e e e e e e e e e 15
A sample SUBROUTINE GRANAL. o v it i e et e e e e e e e e 15
A sample SUBROUTINE JANAL. i i i i e e e e e e e e e e e 16
A sample SUBROUTINE HANAL. i i it e e e e e e e e 17
Typical MERLIN panel. o e e 22
Usage of the MERLIN flags. 30
The objective function for the sample curve fit. 34
The Jacobian matrix for the sample curve fit. 35
First partial derivatives for the sample curve fit. 35
The Hessian matrix for the sample curve fit. 36
The INIT panel. e e 40
The PICK panel. e e e e 42
The ROLL panel. o e e e e 45
The SIMPLEX panel. e e 47
The BFGS panel. e 49
The DFP panel. e e e 51
The TOLMIN panel. o e e e e e e 52
The TRUST panel. e e e e 53
The CONGRA panel. e e 56
The LEVE panel. e e 58
The AUTO panel. o e e e e 59
The ACCUM panel. e e e 60
The HESSTAN panel. o e e e 65
The MAD panel. e e e 67

xi

xii List of Figures
6.15 The BACKUP panel. o it e e e e e 69
6.16 The MEMO panel. L e e 73
6.17 The DUMP panel. o e 74
6.18 The INSPECT panel. ettt 76
6.19 The GRAPH panel. e 78
6.20 The PSGRAPH panel. e 79
6.21 The COVARIANCE panel. e 83
6.22 Output from the LIST command.o 0o v 85
6.23 Sample output from the HELP command. 85
6.24 Requesting help on panel keywords. L. 86
6.25 The CONTROL panel. o . o o e e e e e e e e 87
6.26 The HISTORY panel. o ettt e 89
7.1 Sample plug—in module: an alternative to SHORTDIS. 92
7.2 Output from the sample plug-in module NEWSH. 92
7.3 The structure of the MERLIN help file., 94
7.4 Help text for the sample plug—in module NEWSH. 94
7.5 Sample plug—in module that takes advantage of command line arguments. 95
7.6 Sample plug—in module that exploits the panel mechanism. 97
7.7 Part of the panel description file corresponding to the PEXA sample plug-in module. 98
7.8 The panel of the PEXA sample plug—in module as presented by MERLIN. 98

Chapter 1

Introduction

1.1 What kind of problems MERLIN handles

Multidimensional minimization is a common procedure needed in many fields. A variety of problems
in engineering, physics, chemistry, etc., are frequently reduced to ones of minimizing a function of
many variables. For instance we refer to systems of non—linear equations, to variational methods, to
curve fitting and to the training of neural networks. Minimizing a multidimensional function faces a
lot of difficulties. There is no single method that can tackle all problems in a satisfactory way. It has
been realized that one needs a strategy, combining different methods, to efficiently handle a wide
spectrum of problems. The presence of constraints, even of simple ones, enhances the difficulty.
Many algorithms require evaluation of the gradient. This imposes additional problems since it is
not always straightforward to code it. Hence one resorts to approximating the derivatives using

differencing, that costs in computing time as well as in accuracy.

MERLIN is an integrated environment designed to solve optimization problems. It is devised to be
easy—to—use, and implemented so as to be portable among different platforms. Another feature is
that MERLIN is open, i.e. a plug-in mechanism is provided so that others can easily embed their
own code modules. MERLIN handles the following category of problems:

Find a local minimum of the function:
f(x), ze€RY x=[z1,20,...,25]"

under the conditions:
z; € [l,u] for i=1,2,...,N

Special merit has been taken for problems where the objective function can be written as sum of

squares i.e.:

M
fl®)=3" fi(z)
i=1

1

2 Introduction

This form is particularly suited when one needs to fit data points using a model function. One then
minimizes the chisquare which is of the above form. In this case MERLIN can calculate parabolic

estimates of the confidence intervals for the model parameters as well as partial covariance matrices.

MERLIN can be used both interactively and in batch. Interactively the user drives MERLIN by
entering commands through the keyboard. In batch MERLIN reads commands from an input com-
mand file. Interactively MERLIN is tolerant to errors in input and issues appropriate warning
messages, while in batch aborts. There are various commands at the user’s disposal that either

invoke minimization algorithms or perform other auxiliary operations.

MERLIN is programmable. Its programming language McL (Merlin Control Language), is a high
level, easy to learn language. The MCL compiler takes as input a strategy (coded in McL) and
produces as output a file that contains commands that can steer MERLIN appropriately. MERLIN
and McL are both written in ANSI Fortran—77 to guarantee portability.

1.2 Conventions

1.2.1 Typing

. Lower case boldface letters (x, g, etc.) stand for vectors in the N-dimensional space.

. Upper case boldface letters (G, H, etc.) stand for N x N matrices.

. MERLIN commands, Fortran code and I/O data are printed using a monospaced font.
. (cr) denotes keying the “carriage return”.

. ... implies that preceding symbols may be repeated.

. Optional items are enclosed in square brackets | ... |

1.2.2 Symbols

e N,n The number of parameters (dimensionality of the problem).
e f(x) The objective function.
o The i*® component of .

e fr(x) The k" term entering in the calculation of the objective function when it has the form:

leyzl f,?(a:)

o M The number of the squared terms involved in the above sum.

Conventions 3

og The gradient vector of the objective function V f(x).

oJ The Jacobian matrix with Ji; = FIt.

o GG The Hessian matrix with G;; = %{%.

e B An approximation to G.

e H An approximation to G™.

® [, u; The lower and upper bounds for x;, referred to as the left and right margins.

o The machine accuracy, i.e. the approximately largest constant such that in machine

precision 1 4 7 is equal to 1.

Introduction

Chapter 2

Installation and configuration

2.1 The pieces

MERLIN is under continuous development. The authors make several minor revisions from time to

time that enhance its performance and functionality. However these revisions alone do not justify a

new publication. For this reason the latest revision of the MERLIN-MCL package is available from:

http://nrt.cs.uoi.gr/merlin.

The complete distribution contains the following files:

e install.f

e merlin.d

e sample.d

e HELP

e PDESC

emcl.d

e manual.ps

The MERLIN-MCL installation program.

Source code for the MERLIN package. Does not contain any of the user written
routines. Empty plug—in modules for extending MERLIN’s functionality are included

here.

Sample user written routines: A sample main program, and the source code for the
Rosenbrock function in both forms, general and sum of squares. It also contains

the source for the gradient, Hessian and Jacobian.
The MERLIN help file.

The panel description file. It used by both MERLIN and MCcCL, in order to correctly

recognize panel commands.
Source code for the McCL compiler.

The present manual in PostScript form.

Note that the files merlin.d, sample.d and mcl.d must be processed by the installer program

before they can be actually compiled. The procedure is explained in the following sections.

6 Installation and configuration

2.2 Installation

2.2.1 Why an installation procedure

The MERLIN-MCL source code contains a number of parameters and options that must be cus-
tomized in order for the programs to operate correctly. Some of them can be set at run—time while
others must be hard—coded in the Fortran source. An example of the later is the maximum number
of minimization parameters (which affects the size of the internal one-dimensional MERLIN work
arrays), and the precision (single or double) of floating point numbers. Although we could provide
reasonable defaults, any attempt to change them, would become quite tedious, due to the size and
complexity of the source code. Instead of hard—coding a default value in the source, we made use
of an installer macro. An installer macro is a symbolic name that is referenced in the source as

$(name). Therefore the distribution files contain statements like:

IMPLICIT $(TYPE) (A-H,0-Z)
PARAMETER (MXV = $(MXV))
PARAMETER (MXT = $(MXT))

In the above statements the installer macros $(TYPE), $(MXV) and $(MXT) must be substituted
with actual values before the programs can be compiled. Hence, the term installation refers to the
production of a valid Fortran source code from the distribution files. After installation is complete

the above statements might look like:

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (MXV = 200)
PARAMETER (MXT = 400)

A complete list of all installer macros used in the MERLIN-MCL source code is given in §2.2.3.

2.2.2 Running the installer program

To ease the installation process, we have developed a small installer program, written in Fortran—77.
Its main purpose is to replace all instances of the installer macros in the MERLIN-MCL distribution
files with actual values, and output a valid Fortran source, ready for compilation. The actual
values to be substituted are supplied interactively by the user. Note that the source code for both,

MERLIN and MCL must be processed by the installer.
Compiling and running the installer program is straightforward. For example on a Unix system:

f77 -0 -o install install.f
./install

Installation 7

TYPE ’DOUBLE PRECISION’
MXV 200

MXT 200

CONFIG CONFIG

FC ??

MCLMEM 50000
MCLBUF 50000
MXPLUG 50

Figure 2.1: Sample installer definitions file.

Installation is then carried out in three steps:

1. The installer will interactively ask you for the values of the most important installer macros.
Then it will record these values in the installer definitions file (with the default name DEFS)

and use them in the next step.

The format of the installer definitions file is simple: each line contains the name of an installer
macro and the actual value to be substituted in the source code. Blank lines and lines starting
with the % character (comments) are ignored. Items containing space or tab characters must
be enclosed in a pair of quotes. A single quote is produced by the sequence \’. A sample

definitions file is shown in figure 1.

The installer will allow you to prepare a definitions file yourself, instead of creating one
interactively. In this case you must include in the installer definitions file a value for all

installer macros listed in §2.2.3.

2. The installer will read the installer definitions file (either the one created by the installer
itself, or the one prepared by the user) and ask the names of the distribution files. Then
it will read the contents of the distribution files, substitute the actual values in place of the

installer macros, and output the full Fortran—77 source, ready for compilation.

3. The last step is compilation of the package. The installer cannot do this for you since invoking
a compiler is a system dependent task. Compilation of the processed MERLIN-MCL source
is quite straightforward. MCL is an autonomous program and must be compiled alone. For

example on a Unix system:
£f77 -0 mcl.f -o mcl

MERLIN should be compiled and linked with the appropriate user written routines. The

distribution provides a sample:

8 Installation and configuration

Hardware Operating System Compiler
SUN Ultra—2 SunOS 5.5.1 f77 4.0
SUN SparcClassic SunOS 4.1.3C f77 1.4
SGI Power Challenge-M | IRIX 6.2 fr7 7.0
Control Data 4680 EP/IX 1.4.3 77 2.20
PC-486 MS—Windows 95 | MS Fortran PowerStation 4.0
PC-486 Linux 2.0.18 f2c 19950110, gcc 2.7.0
Macintosh Performa 6320 | MacOS 7.5.1 MPW 3.3, LS Fortran 3.3
Macintosh LC475 MacOS 7.1 Absoft Mac—Fortran 2.4

Table 2.1: Some systems under which MERLIN was successfully installed.

£f77 -0 -¢c merlin.f
£f77 -0 -c sample.f

f77 -o merlin merlin.o sample.o

Make sure the panel description file PDESC is present before attempting to run the MERLIN

or McCL executables.

Using the above procedure, we were able to successfully install MERLIN in a number of different

systems in single and double precision. Some of them are listed in table 2.1.

2.2.3 The complete list of installer macros

All of the following installer macros are used in the MERLIN source code. In addition, TYPE, MXPLUG

and FC are used in the McCL source as well.

e TYPE Specifies the Fortran type for floating point variables. It should be set to either REAL or
’DOUBLE PRECISION’. The installer will ask for the appropriate setting. Note that both
MERLIN and McCL must be installed in the same precision in order for the programs to

correctly cooperate.

e MXV The maximum number of optimization parameters. The setting of MXV determines the

size of a few one-dimensional arrays used as work space.

e MXT The maximum number of terms when the objective function is coded as a sum of
squared terms. The setting of MXT determines the size of a few one-dimensional arrays
used as work space. If you do not intend to code the objective function as as sum—of—

squares, set MXT to 1.

Configuration 9

e CONFIG

e FC

e MCLMEM

e MCLBUF

o MXPLUG

Name of the MERLIN-MCL configuration file. Configuration is described in §2.3 and in
chapter 8. The default name substituted by the installer is CONFIG.

Some systems use the first character of an output line as a terminal control character.
In order to use a terminal control character, set FC to 1X,. The installer always sets

FC to ’’ (no control character).

The size of an array, available as run—time memory for an McCL program. The array
is of type REAL or DOUBLE PRECISION, depending on the setting of TYPE. If you do not
intend to run MCL programs set MCLMEM to 1. If during the installation process you
specify that you intend to run MCL programs, the default value 50000 is substituted;
otherwise MCLMEM is set to 1.

The length of a character variable used as the McCL program buffer. This buffer is
supposed to hold the entire MERLIN object code during execution of an MCL program.
If you do not intend to run MCL programs set MCLBUF to 1 (MCL programs will still
run; at a slower pace however). If during the installation process you specify that you
intend to run MCL programs, the default value 50000 is substituted; otherwise MCLBUF

is set to 1.

The maximum number of plug—in modules. The installer always sets MXPLUG to 50. You
should not change the default value, unless you are prepared to make the necessary
modifications in the source code as well (add empty plug—ins, CALL and GOTO statements

etc.).

2.3 Configuration

Although we made every effort to ensure the code is truly portable, there is a small number of

system dependent options, that must be customized before MERLIN or MCL begins execution. The

most important ones are the input—output unit numbers, and an approximation of the largest and

smallest positive (distinguishable from zero) floating point numbers your machine accepts. The

internal MERLIN defaults for these parameters are set in the source code to 5, 6, 103° and 10730

correspondingly; adequate for most systems in single precision. Any change to these parameters

must be recorded in a configuration file, named CONFIG!, that is read by MERLIN and MCL as

well. In fact the purpose of the configuration file is twofold: Machine dependent parameters can
be specified in CONFIG. On the other hand, the configuration file is used to alter the defaults, until
one reaches the MERLIN prompt.

Each line of the configuration file contains a configuration directive:

'The default name can be changed during installation, using the CONFIG installer macro.

10 Installation and configuration

% This line is a comment since it starts with the % character.

% The largest floating point number.

BIGGER 1.D300

% The smallest positive, distinguishable from zero, floating point number.
SMALLER 1.D-300

% This system uses some peculiar input—output units.

INPUT_UNIT 9

OUTPUT_UNIT 9

Figure 2.2: Sample configuration file.

directive parameter; parametery ... parametery

As usual, to embed spaces in a parameter, you must enclose it in a pair of singe quotes. Lines
starting with the percent character (comments) and blank lines are ignored. The contents of a
typical configuration file are shown in figure 2.2. The directives INPUT UNIT and OUTPUT UNIT
refer to the input and output unit correspondingly, while directives BIGGER and SMALLER refer to
the largest and smallest positive (distinguishable from zero) floating point numbers. There more
directives that change the defaults and control the behavior of MERLIN during startup; they are

explained in detail in chapter 8.

Chapter 3
User written programs

MERLIN offers an optimization environment, supplies several utility as well as minimization tools,
so that the user can choose whatever is convenient and effective each time. The programs the user
may have to write are the following:

1. The main program.

2. The objective function in a general or in a sum—of-squares form.

3. The gradient vector (optional).

4. The Jacobian matrix (optional).
5. The Hessian matrix (optional).
In what follows we give sample programs coded in single precision. These should be used with a

single precision installation. If double precision is needed, which is quite often the case, one should

use a double precision installation, and code these programs in double precision.

3.1 The main program

The role of the main program is to initiate MERLIN’s execution. The user may write his own main
program or may use the sample provided below modified appropriately to meet his needs. To invoke

MERLIN one should make a call to the subprogram:

SUBROUTINE MERLIN (N, M, VERSIM, MAXW, IQUIT)

N (input) is the dimensionality of the problem.

11

12

User written programs

M

VERSIM (workspace)

MAXW

IQUIT

(input)

(input)

(output)

is the number of the squared terms (useful for the sum of squares form)

is a work—space array dimensioned as: VERSIM(MAXW)

max{N (N +11), NM}

is an output flag that is either specified by the user at run—time, or set by the

MERLIN Operating System to indicate an error condition. Possible values

are:

A RETURN command was issued by the user.
A QUIT command was issued, with the specified value for IQUIT.

There is not enough one—dimensional storage for this problem. You

must redimension (by running the installer) and recompile MERLIN.

MERLIN cannot allocate the initial unit numbers for the configura-

tion file.

The output file or unit cannot be opened. Moreover, some errors

occurred while parsing the configuration file.

An error occurred while parsing the configuration file. The error is

related to directives that set the output unit or file.

The output file or unit cannot be opened. The configuration file

has been successfully parsed.

An error occurred while parsing the configuration file. The error is
not related to the output file or unit which has been successfully

opened.

An error occurred while parsing the panel description file.

The input unit cannot be opened.

An End-of-File condition was encountered in the input file or unit.

A run time error, other than End-of-File has occurred (incorrect
command, MCL runtime error, etc.). This value will be returned
only if the BATCH mode was set.

A sample main program is listed in figure 3.1.

3.2 The objective function. General form

This must be written as a function subprogram:

The objective function. General form

13

QaQaQQQ

PROGRAM MASTER

Maximum number of variables.
PARAMETER (MXV = 200)

Maximum number of terms.
PARAMETER (MXT = 200)

The 2-dimensional storage required by some Merlin commands depends
on the maximum number of parameters (MXV) and the maximum number of
terms (MXT).
If MXV+11 > MXT one needs MAX1 storage locations:
PARAMETER (MAX1 = MXV**2+11xMXV)
Otherwise:
PARAMETER (MAX2 = MXV*MXT)
For this example we chose MAX1 (actually MAX2 would be ok too).
PARAMETER (MAXW = MAX1)
Alternatively if you don’t have that much storage available,
set MAXW to any positive value. Commands that need more storage
will not be executed by Merlin.
DIMENSION VERSIM(MAXW)

WRITE (*,*) ’Enter number of variables, number of squared terms:’
READ (*,*) N, M
CALL MERLIN(N,M,VERSIM,MAXW,IQUIT)

END

Figure 3.1: A sample main program.

14 User written programs

FUNCTION FUNMIN (X, N)

DIMENSION X(N)

X1 = X(1)

X2 = X(2)

FUNMIN = (10%(X2-X1%%2))**2 + (1-X1)%%2
END

Figure 3.2: A sample FUNCTION FUNMIN.

FUNCTION FUNMIN (X, N)

DIMENSION X(N)
X (input) is an array holding the values of the parameters z;.
N (input) is the dimensionality of the problem.

FUNMIN (output) upon return assumes the value of the objective function f(x).

An example for the Rosenbrock function f(x) = 100(ze — 22)% + (1 — x1)? is shown in figure 3.2.

3.3 The objective function. Sum of squares form

This must be written as a subroutine subprogram:

SUBROUTINE SUBSUM (M, N, X, F)
DIMENSION X(N), F(M)

M (input) is the number of the squared terms.
N (input) is the dimensionality of the problem.

X (input) is an array holding the values of the parameters z;.

|

(output) is an array holding the values of the terms f;(x).

An example is given in figure 3.3 again for the Rosenbrock function with f; = 10(zy — z?) and
f2 =1- ZI9.

The gradient vector 15

SUBROUTINE SUBSUM (M, N, X, F)
DIMENSION X(N), F(M)

X1 = X(1)

X2 = X(2)

F(1) = 10%(X2-X1%%2)

F(2) = 1-X1

END

Figure 3.3: A sample SUBROUTINE SUBSUM.

SUBROUTINE GRANAL (N, X, GRAD)
DIMENSION X(N), GRAD(N)

X1 = X(1)

X2 = X(2)

T = X2-X1%%2

GRAD(1) = -400%X1*T - 2x(1-X1)
GRAD(2) = 200*T

END

Figure 3.4: A sample SUBROUTINE GRANAL.

3.4 The gradient vector

This must be written as a subroutine subprogram:
SUBROUTINE GRANAL (N, X, GRAD)
DIMENSION X(N), GRAD(N)
N (input) is the dimensionality of the problem.
X (input) is an array holding the values of the parameters z;.

GRAD (output) is an array holding the values of the gradient components 36_51{1"

An example for the Rosenbrock function is given in figure 3.4. Note that in earlier versions of

MERLIN this routine had a different calling sequence.

3.5 The Jacobian matrix

This must be written as a subroutine subprogram:

16 User written programs

SUBROUTINE JANAL (M, N, X, FJ, LD)
DIMENSION X(N), FJ(LD,N)

X1 = X(1)

X2 = X(2)

FJ(1,1) = -20%X1

FJ(1,2) = 10

FJ(2,1) = -1

FJ(2,2) =0

END

Figure 3.5: A sample SUBROUTINE JANAL.

SUBROUTINE JANAL (M, N, X, FJ, LD)
DIMENSION X(N), FJ(LD,N)

M (input) is the number of the squared terms.

N (input) is the dimensionality of the problem.

X (input) is an array holding the values of the variables x;.
FJ (output) is an array holding the values: FI(I,J) = %.

LD (input) is the leading dimension of the matrix FJ used by MERLIN to store the Jacobian.

An example for the Jacobian of the Rosenbrock test-function is shown in figure 3.5.

3.6 The Hessian matrix

This must be written as a subroutine subprogram:

SUBROUTINE HANAL (H, LD, N, X)
DIMENSION H(LD,N), X(N)

H (output) is an array holding the values of the Hessian elements G;;(x).
LD (input) is the leading dimension of the matrix H used by MERLIN to store the Hessian.

N (input) is the dimensionality of the problem.

X (input) is an array holding the values of the parameters x;.

Important note

17

C diagonal) part of matrix H.
DIMENSION H(LD,N), X(N)

SUBROUTINE HANAL (H, LD, N, X)
C Note: We only have to fill the lower triangular (including the

X1 = X(1)

X2 = X(2)

H(1,1) = 1200%X1%*2 - 400%X2 + 2
H(2,1) = -400%X1

H(2,2) = 200

END

Figure 3.6: A sample SUBROUTINE HANAL.

Note that only the lower triangular part of H must be filled in. The rest of the Hessian matrix is

completed by MERLIN, using symmetry. An example for the Hessian of the Rosenbrock function is

shown in figure 3.6.

3.7 Important note

The user must always construct one of the FUNCTION FUNMIN, or the SUBROUTINE SUBSUM subpro-

grams. However a dummy routine must be provided for the one that is left out, since many linkers

will not create the executable file otherwise. We list below examples for the dummy subprograms:

FUNCTION FUNMIN (X, N)
DIMENSION X(N)
END

SUBROUTINE SUBSUM (M, N, X, F)
DIMENSION X(N), F(M)
END

The same action must be taken when the user does not wish to code the SUBROUTINE GRANAL, the
SUBROUTINE JANAL and the SUBROUTINE HANAL subprograms. The dummy routines should read

as:

SUBROUTINE GRANAL (N, X, GRAD)
DIMENSION X(N), GRAD(N)
END

SUBROUTINE JANAL (M, N, X, FJ, LD)
DIMENSION X(N), FJ(LD,N)

18

User written programs

END

SUBROUTINE HANAL (H, LD, N, X)
DIMENSION H(LD,N), X(N)
END

Chapter 4

The MERLIN Operating System

MERLIN provides an operating system, in order to render the optimization process efficient, flexible
and programmable. MERLIN has a command interpreter as a front end, that accepts the input
commands and instructs the MERLIN’s kernel to take appropriate action. Like most operating
systems, the MERLIN Operating System (MOS) supports argumentary command packages called
macros as well as command aliasing. In addition, there is the Merlin Control Language (McCL)
through which one can device intelligent minimization strategies. The MCL compiler is a separate

software package built specifically for this purpose.

This chapter presents the most important MERLIN features. A detailed description of all MERLIN

commands is given in chapter 6.

4.1 Commands

MOS offers a repertoire of commands. These can be classified into categories according to their

action. In order to present the general idea we will mention the most essential categories.

e Commands that manipulate the attributes of the minimization parameters. The i*" mini-

mization parameter, has the following attributes:

— Its current value z;.
— A unique symbolic name, up to 10 characters long, that may be set by the user.

— An indication whether this parameter is fixed. This is referred to as the fix status of the

parameter. The minimization routines do not alter the value of fixed parameters.

An indication whether there exist lower and/or upper bounds for this parameter. This
is referred to as the margin status of the parameter. The minimization routines make

sure they never evaluate the function outside the allowed bounds.

19

20 The MERLIN Operating System

— The lower bound [;, if it exists.

— The upper bound u;, if it exists.
e Commands that invoke one of the coded minimization algorithms.

e Commands that set the options for the various operation modes. These modes determine
the overall behavior of MERLIN. For example there is the printout mode that determines the
amount of output issued by MERLIN, the gradient mode that determines the manner in which
the gradient components are estimated, the operation mode that can be set to either error

tolerant, for interactive use, or strict, for batch processing, etc.

e Commands that issue information about the current state of both the optimization process
and the system. For example command SHORTDIS, displays the attributes of the current
minimization parameters, the corresponding value of the objective function and the number
of function and gradient calls spent so far. Also the command MODEDIS displays the currently

set options for the various modes.

e Commands that perform file manipulation operations. For instance the command DELETE that
erases a file or the command MEMO that appends the current attributes of the minimization

parameters to a file, etc.

e Commands that deal with the construction of macro packages, aliasing and other utilities.

4.2 Supplying input

Most MERLIN commands accept arguments that specify their action. Arguments are either manda-

tory or optional. The most general form of a command has the following structure:
command mandatory_arguments optional_arguments

Note that a command may or may not have either mandatory or optional arguments. One may
proceed by entering only the command’s name. In that case MERLIN will prompt only for the

mandatory, if any, and not for the optional arguments, i.e. in this case the syntax is:

command (cr)

mandatory_arguments

MOS first checks that the entered command is a valid one, in which case proceeds with a syntax
check of the following data, otherwise issues a warning message and prompts for another command.
Blank lines and comment lines do not cause warnings. A comment line is any line that its first
non-blank character is the % symbol. Comment lines can be used for documentation purposes and
are useful inside macros and in batch processing where an input file is prepared containing all the

commands to be processed.

Supplying input 21

The input arguments are acquired using a mechanism called the one line input. The required input

must be supplied by the user in a line of the form:
itemy items itemsg ... itemy

Items are separated by one or more spaces. The significance of each item varies according to the
specific MERLIN command requesting the input. Commands that manipulate the minimization
parameters use a scheme to specify which parameters are to be manipulated. This specification

scheme uses:

1. Parameter indices.
To operate on parameter z; its index ¢ is used. For example the entry: FIX 1 5 7 fixes

variables z1, x5 and 7 to their current values.

2. Parameter names.
A name corresponds to an index. It is just an auxiliary mnemonic alternative. Hence names

and indices may be used invariably. Names can be set using the GODFATHER command.

3. Parameter ranges.
A range is denoted as: index; — indexy and specifies all parameters Z;pgez, through zipges,.
For example the entry: FIX 1-5 fixes the parameters x; through x5 to their current values.
A range denoted as indexr;— corresponds to variables z;,g4e,, through z,. Similarly a range

denoted as —indexy corresponds to variables z; through Z;ndes.,-

4. Shared parameter properties.
One can specify a symbol that refers to some property of the minimization parameters. For
example SHORTDIS /F will output the fixed parameters only, SHORTDIS 1-10 25-30 /F will
display the parameters z; through x19, z25 through z3¢, and of all the fixed variables. The

complete list of supported properties is shown in table 4.1.

5. In addition if the negation symbol ! is set in front of an index specification, the meaning
of the specification is reversed. For example a ! in front of an index or a name excludes
the corresponding parameter. Also a ! in front of a range excludes the parameters in that
range, and so on so forth. A ! in front of an attribute specification excludes the parameters
possessing this attribute. Note that no spaces nor tabs are allowed in between the negation
operator ! and the specification that follows. Example: GRADDIS !/F, LDEMARGIN !/M.

Panels are based on the one line input and are used to display and change the input parameters
for some of the MERLIN commands. A panel displays in a tabular form all parameters that may be
changed, their corresponding keywords, a short description of their function, their default values,
and a list or range of allowed values. A typical panel is shown in figure 4.1. The panel prompts the

user to change the current values, supplying an one line input, of the form:

22 The MERLIN Operating System
Property Description

/F or /FIX Fixed variables

/L or /LOOSE | Loose variables

/LM or /LEFT Variables with left margin

/RM or /RIGHT | Variables with right margin

/M or /MARGIN | Variables with both margins

/FD or /FAST Variables whose derivative mode is set to FAST

/QD or /QUAD Variables whose derivative mode is set to QUAD

/ND or /NUMER | Variables whose derivative mode is set to NUMER

/AD or /ANAL Variables whose derivative mode is set to ANAL

/N or /NAMED | Named variables

Table 4.1: Shared parameter properties used in index specifications.

BFGS Panel

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1
2) PRINT Printout level 1 {0,1,2}
3) GTOL G-convergence criterion 1.E-15 0. < real < 1.
4) XTOL X-convergence criterion 1.E-15 0. < real < 1.
5) FTOL F-convergence criterion 0. 0. <= real < 1.
6) ITER Iterations (-1 = Inf) -1 Any int >= -1
7) MAD Automatic derivatives off {on,off}
8) USEG Use/Recalculate gradient 0 {1,0%}
9) USEH Use/Recalculate Hessian 0 {1,0}
10) LS Line search conditions Weak {Strong,Weak}
11) LSITER Max. LS iterations 30 Any int >= 1
12) RHO Line search rho 0.0001 0. <= real <= 1.
13) SIGMA Line search sigma 0.9 0. <= real <= 1.
14) CANCEL Cancel / Proceed 1 {0,1}
Enter changes:

Figure 4.1: Typical MERLIN panel.

Output handling 23

parameter; valuey parametery valuey ... parametery valuey

Parameters are of course specific to the command being used and may be entered using either their
keyword, or their index in the panel. For example, for the BFGS panel shown above, any of the

following two lines can be used invariably for input.

NOC 1000 PRINT 2
1 1000 2 2

An empty line signifies no changes. Parameters that are changed, are recorded by the panel and
appear the next time the command is invoked. Panels also communicate information to an MCL
program, upon completion of a command’s execution; a subject covered in a later section. Each
panel may be active (on) or inactive (off). Active panels appear and prompt the user for changes
when the associated command is invoked. Inactive panels do not appear; their stored values are
automatically used by the command. Panels are turned on or off with the commands PANELON and
PANELOFF correspondingly. If used without an accompanying argument these commands turn on
or off all MERLIN panels. Arguments may be used to alter the status of some of the panels. For

example, the command:
PANELOFF BFGS DFP

turns off the panels associated with the commands BFGS and DFP. The status of all panels can be
displayed with the PSTATUS command.

Panel commands can use a syntax involving two special characters the semicolon (;) and the

exclamation (!) as directives in the following way.

panel_command keyword, value; keywords values ... ;

panel_command keyword; value; keywords values ... !

In the first example keyword,, keywords, ... assume the values wvaluey, values, ... The panel
appears displaying these newly substituted values and prompts for additional input. In the second
case keyword,, keywordy, ... assume the values value;, values, ... which are substituted in the

panel. The panel_command is not executed however, and no panel appears.

4.3 Output handling

MERLIN produces two kinds of output, the informative (normal) output, and the error output. Nor-
mal output is produced by almost every command, while error output results when some abnormal
situation is encountered. The amount of output produced by MERLIN is controlled by the com-
mands FULLPRINT, HALFPRINT, and NOPRINT that set the options for the printout mode. Note that

24 The MERLIN Operating System

some commands contain options (most notably the PRINT keyword in all minimization command

panels) that allow further control on the output when the FULLPRINT option is in effect.

MERLIN output may be temporarily redirected from its normal destination (a terminal or a file) to

any file using the > and >> symbols, followed by a filename. For example, the command:
SHORTDIS > result

redirects the output of the SHORTDIS command to a file named result, overwriting its previous
contents. The symbol >> appends the output to the contents of an already existing file. Note that
both the normal as well as the error output are redirected. The effect of output redirection can be
facilitated for a number of subsequent commands, using a pair of HIDEQUT — REVEAL commands.

The command:
HIDEOUT file

redirects all subsequent output to the specified file, until a REVEAL command is entered. The file is

overwritten. To append to the specified file rather than overwriting it one must enter the following:
HIDEOUT file append

Nested pairs of HIDEQUT — REVEAL commands are allowed, as well as commands with > and >>
redirection, inside a HIDEOUT — REVEAL block.

4.4 Getting help

Since MERLIN is designed primarily for interactive use, it is equipped with an easy to use help
system. The user can request help on any MERLIN command. The help texts include the command

syntax, a short description of the command, and pointers to other relevant information.

The help system is facilitated by the HELP command. Without any arguments it displays a help
screen, instructing the user how to request further help. To get information about a specific
command or topic, use HELP with an argument, for example: HELP BFGS. To get an alphabetic list
of all MERLIN commands, enter the command LIST.

Help is also available on the usage and meaning of the various keywords in the panel commands.
When prompted by a panel for changes, enter the name of any keyword followed by a question

mark, for example PRINT 7.

The MERLIN help system can be easily extended, if one wishes to add his own commands or topics,
or even enlarge the description of the already existing texts. The procedure is described in detail

in chapter 7.

Minimization commands 25

4.5 Minimization commands

The minimization algorithms are invoked using the commands BFGS, DFP, TRUST, TOLMIN, CONGRA,
ROLL, SIMPLEX, LEVE and AUTO. They all use the panel mechanism to obtain their input parameters,
and set the termination criteria. All minimization commands use a few keywords with the same

meaning;:

NOC is an approximate upper bound to the allowed number of evaluations of the objective

function.
PRINT controls the amount of output by the minimization algorithm. Allowed values are:

e 0 suppresses all output.
e 1 reports each lower function value as it is discovered.

e 2 reports the function value as well as the values of the minimization parameters.

CANCEL controls whether execution of the minimization algorithm will proceed. Allowed values

are:

e 0 causes the user changes to be recorded in the panel, the minimization algorithm will

not be executed however.

e 1 causes minimization to proceed normally.

Upon termination all minimization commands report the number of function and gradient calls

that were performed as well as the number of iterations of the method.

MERLIN can estimate derivatives of the objective function using finite differences. Three ways are
implemented and correspond to the following modes of operation, listed in order of increasing accu-
racy and computational cost: FAST, QUAD, NUMER. The minimization methods that use derivatives
have the so called MAD option in their panel, standing for MERLIN Automatic Derivatives. This op-
tion, when it is turned on, allows according to some criterion the automatic transition from a lower
to a higher accuracy mode. This is done separately for each component of the gradient. This means
that at a particular instant, some components will be calculated in the FAST mode, some others
in the QUAD mode, etc. This is designed so as to economize calls to the objective function. The
criterion for a transition is based on the absolute value of the gradient component. Two numbers
(thresholds) are specified, one for the transition from FAST to QUAD and another for the transition
from QUAD to NUMER. A derivative changes from FAST to QUAD if its absolute value is below the first
threshold. Similarly the second threshold arranges for the QUAD to NUMER transition. The rational
behind this criteria is that as the minimum is approached, the gradient components tend to become

smaller and smaller in absolute value. The closer to the minimum the more accurate estimation of

26 The MERLIN Operating System

MERLIN commands Description
HESSIAN DO C Calculate the Hessian
HESSIAN DO D Decompose the Hessian to its Choleski factors
BFGS NOC 1000 USEH 1 | Instruct BFGS it to use the existing Choleski factors

Table 4.2: Using an initial Hessian approximation.

the gradient is needed. The thresholds can be set via the MAD command and their values depend

on the problem at hand.

MERLIN can also estimate the Hessian and the Jacobian numerically. For the Jacobian forward
differences are used. The Hessian can always be calculated by using function values. However if
the user has supplied his own code for the gradient MERLIN can estimate the Hessian using these
gradient code. The appropriate formulas are given in chapter 6. The minimization commands BFGS,
DFP and TRUST can take advantage of this capability, by using this rather well estimated Hessian
initially, instead of the unit matrix. So one first calculates the Hessian and then instructs one of
the above three commands to employ it as an initial approximation. This is facilitated by setting
the USEH parameter in their panels equal to 1. However since the routines do not use the Hessian
directly, but its Choleski factors, after calculating the Hessian, one must decompose it and then

proceed with one of the above commands. The relevant input to achieve this is listed in table 4.2.

4.6 Macros

A macro is a collection of MERLIN commands and calls to other macros. Macros are identified by
a symbolic name, and are stored either individually (each macro in a separate file) or collectively
in a special multi-macro file, named MACROF'. A macro stored in a separate file, is named after the
filename. Macros stored in file MACROF, have their names explicitly declared inside the file, along

with the constituent commands. A sample MACROF is shown in table 4.3.

A macro is invoked using its name, prepended by a dot. For example, a macro named test would

be invoked as
.test

When a macro is invoked MERLIN first searches the multi-macro file MACROF and then, if the macro
cannot be found there, tests for a file with the same name. Macros can contain an arbitrary
number of commands and calls to other macros, the only restriction being that macro recursion is

not allowed. Macros can accept optional arguments that are designated as [1], [2] etc. inside the

'The default name MACROF can be changed using the MACRO_FILE configuration directive.

Macros 27

File contents Description
* Macro separator
.S Macro name
SHORTDIS 1-5 The first macro starts here
STEPDIS 1-5
CLEAR The first macro ends here
* Magcro separator
.mini Macro name
POINT 1- 4 The second macro starts here
ANAL
BFGS NOC 2000 PRINT O
VALDIS
GNORM
CLEAR The second macro ends here

Table 4.3: Sample file MACROF with two macros.

Macro commands Description

ECHO The macro name is [0] Display the macro name
ECHO You entered [#] arguments | How many arguments did the user enter 7
BFGS NOC [1] PRINT [2] Use the arguments in a BFGS call

Table 4.4: Sample macro that expects two arguments.

macro. When the macro is invoked, they are substituted by the actual arguments supplied by the
user. The macro name itself is designated as [0], while the number of arguments that are actually
entered when the macro is invoked is designated as [#]. The sample macro m shown in table 4.4

expects two arguments and can be invoked as
.m 1000 O

or

.m 2000 1

Any text editor can be used to construct and modify a macro. MERLIN provides a simple facility
to aid the construction of a macro. Command MACRO initiates an interactive process, that prompts
for the macro name and its contents, and finally stores the macro in the specially formatted multi—
macro file MACROF.

28 The MERLIN Operating System

Macros can conveniently automate certain procedures. They are of limited use however, since they
don’t provide mechanisms for conditional execution of commands or transfer of control. One should

use the MERLIN Control Language to implement complex tasks.

4.7 Confidence intervals

One of the most common uses of MERLIN is to fit a set of M data points (¢;,y;) to a model
function y(¢;), that depends on the N unknown parameters . Each measurement y; has its
own uncertainty e;. Assuming the measurement errors e; are normally distributed around the true

model y(t), the most likely set of parameters x is determined by minimizing the chisquare function

M 2
fl®)=>" (W) (4.1)
i—1 €i
The user is responsible for coding the objective function f(x) as described in chapter 3, and invoke
the MERLIN minimizers. After a minimum has been found, MERLIN is able to compute confidence
intervals, based on the covariance matrix of the fit; the so—called parabolic errors. This approach
assumes that either the model y(¢;) is linear in its parameters, or the sample size M is large
enough, so that the uncertainties in the fitted parameters @ are inside a region in which the model

could be replaced by a suitable linearized model.

Let v be the number of parameters whose joint confidence region we wish to compute, and p the
desired confidence limit. The covariance matrix C is defined as C = 2 G !. The procedure involves

two steps.

Initially using the COVARIANCE command, one must set the desired confidence limit p and calcu-
late the covariance matrix of the fit. MERLIN calculates the second derivative matrix using finite
differences, inverts it using Choleski decomposition, writes the resulting covariance matrix to a file
for further work, and prints the standard errors o; = v/Cj;.

Once the covariance matrix is calculated and stored, one must invoke the command CONFIDENCE
with appropriate arguments, to calculate the joint confidence region for any number v of param-
eters. For example, to calculate the confidence region for parameters 2 and 5, use the command
CONFIDENCE 2 5. MERLIN reads the stored covariance matrix and forms a new v x v matrix C
using the intersections of the v rows and columns of C, corresponding to the parameters specified

in the CONFIDENCE command. Using a simple bisection routine it solves the equation
Qw/2,A/2)=1-p (4.2)

for A, and prints out the standard errors o; = /Cj and the corresponding confidence intervals
ox; = VA o;. Q(v/2,A/2) is the incomplete Gamma function, and A is a value such that the

Command abbreviations 29

probability of a chisquare variable with v degrees of freedom, being less than A is p. Finally

MERLIN inverts C , and prints the equation of the ellipsoid that defines the confidence region:
A=(z"—2)'C (2" —) (4.3)

where * is the current minimizer of the objective function. The stored covariance matrix can
be used by successive CONFIDENCE commands, in order to calculate the confidence regions for any

combinations of the parameters.

4.8 Command abbreviations

MOS supports command abbreviations. One needs to enter only an initial part of the command
name that however identifies it uniquely. For example SH is long enough for SHORTDIS, PO for POINT,
BF for BFGS etc. However STE is a common part of the three commands STEP, STEPALL, STEPDIS
and hence unique identification is impossible. In such a case MOS lists all matching commands to
remind the user of the several possibilities. Note also that commands can be entered invariably in

either lower or upper case.

4.9 The MERLIN flags and how to use them

MERLIN maintains two arrays for flags. One is of floating point type, while the other is of character
type. At run time the user may specify values for these flags. The default initial values are zeros
for the numerical flags and blanks for the character ones. Flags can be used to further extend the
control of the MOS inside the user’s program. There is a glue routine called SUBROUTINE GETFLA
(see chapter 9 on glue routines) that the user can call from his code and then decide what to do
according to the flag’s value. This is very convenient if for example at some stage one decides that
wants to print the values of some variables or arrays used in his program. Also a flag can be used
to implement a penalty factor in order to solve a constrained optimization problem. This version
of MOS supports twenty numerical and ten character flags, each one being 30 characters long. An

example is listed in figure 4.2.

4.10 Call counters

MERLIN has eight counters. Their current values appear in the output produced by the commands
SHORTDIS and VALDIS. The four of them count the calls to:

1. The objective function (FUNCTION FUNMIN or SUBROUTINE SUBSUM).

30 The MERLIN Operating System

FUNCTION FUNMIN (X, N)
DIMENSION X(N)

C Call the glue routine that will return
C the current value of the #1 flag.
CALL GETFLA(1,FLAG)

=
I

expression

another_expression

FUNMIN = Ax*2 + Bx*2

C Print the values of A and B

C if the user has set the #1 flag to three.
IF (NINT(FLAG).EQ.3) WRITE (x,x) A, B
END

Figure 4.2: Usage of the MERLIN flags.

2. The user supplied code for the gradient (SUBROUTINE GRANAL).
3. The user supplied code for the Jacobian (SUBROUTINE JANAL) .

4. The user supplied code for the Hessian (SUBROUTINE HANAL).

Counting starts at the beginning of the run and these counters cannot be reset (total counters).
The remaining four counters (called partial counters) behave identically, with the exception that
their values can be reset to zero by the user, via the RESET command. This can be quite convenient

when a comparison among different methods or strategies is sought.

4.11 MERLIN files

MERLIN uses ordinary disk files to store information during the minimization process. The smallest
unit of information stored in a MERLIN file, is called a record. It consists of N + 1 entries, one for
each minimization parameter, containing its value, symbolic name, fix status and lower and upper

bound. The last entry contains the corresponding value of the objective function.

Two types of files are handled by MERLIN: Tezt files, where all the information is stored as human—
readable ASCII characters. They are implemented in Fortran using formatted sequential files.

Although updating the contents of a text file can be quite slow, the file is portable across different

MERLIN files 31

computer platforms. On the other hand, there are binary files, where information is stored in
machine-readable form. They are implemented in Fortran using unformatted direct access files.
Updating the contents of such a file is fast, even for large files. The file however cannot be transfered

in a different computer system. Text is the default type for all file operations.

32

The MERLIN Operating System

Chapter 5

Curve fitting. A complete example

Suppose we have the points (¢;,v;),7 = 1,2,..., M and we want to construct an appropriate function
p(z) such that y; =~ p(t;), Vi=1,2,..., M. We model the function p(t) = p(t,a1,as,...,a,) with
parameters a;,7 = 1,2, ..., N which will be varied so as to achieve the above goal. Equivalently we

may claim that this corresponds to minimizing the following objective function with respect to the

ai’s. u o
F(ay,a2,...,an) = Y _[yi — p(tira1,a2,...,an)]* = fi(a1,a2,...,an)
i=1 i=1

To refer to a specific example consider the 20 points shown in table 5.1 and try to fit them with
p(t a1, a,a3,a1) = a1 + ast + ast® + aqt’

The Jacobian, the gradient and the Hessian are given by:

m
k+j—2
Gk = 2Zti +]
i=1

The Fortran—77 code for the subroutines SUBSUM, JANAL, GRANAL and HANAL is shown in figures 5.1,
5.2, 5.3 and 5.4 correspondingly. We assume that the data points reside in a file named datafile
with contents as shown in table 5.1. A complete MERLIN session for this example is shown in table
5.2.

33

Curve fitting. A complete example

Ll] ow Jift] w
110.2|3.69619 || 11 | 2.2 | 8.37241
2104357096 | 12 | 2.4 | 9.43215
31 0.6 | 3.60643 | 13 | 2.6 | 10.58280
41 0.8 |3.78799 || 14 | 2.8 | 11.82240
5| 1.0 | 4.10364 || 15 | 3.0 | 13.14940
6 | 1.2 | 4.54358 || 16 | 3.2 | 14.56230
71 1.41]5.09979 | 17 | 3.4 | 16.06010
8 1 1.6 | 5.76569 || 18 | 3.6 | 17.64200
9] 1.8]6.53590 || 19 | 3.8 | 19.30710
10 | 2.0 | 7.40601 || 20 | 4.0 | 21.05490

Table 5.1: Data points to be fitted for the sample curve fit.

* % ¥ *

SUBROUTINE SUBSUM (M, N, X, F)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

SAVE

PARAMETER (NDATA = 20)

DIMENSION X(N), F(M)

COMMON /XYDATA/ XDATA(NDATA), YDATA(NDATA)
DATA ITRIC / O /

The following block-if is executed only once i.e.,
when the subroutine is called for the first time.

IF (ITRIC.EQ.O) THEN
ITRIC = 1
OPEN (1,FILE=’datafile’)
DO 1 I=1,M
1 READ (1,%) XDATA(I), YDATA(I)
CLOSE (1)
END IF

DO 2 I=1,M
XD = XDATA(I)
YMODEL = X(1)+X(2)*XD+X(3) *XD**2+X(4) *XD*%3
F(I) = YDATA(I)-YMODEL
2 CONTINUE
END

Figure 5.1: The objective function for the sample curve fit.

35

SUBROUTINE JANAL (M, N, X, FJ, LD)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NDATA = 20)

DIMENSION X(N), FJ(LD,N)

COMMON /XYDATA/ XDATA(NDATA), YDATA(NDATA)

DO 2 J=1,N
DO 2 I=1,M
2 FJ(I,J) = -XDATA(I)**(J-1)

END

Figure 5.2: The Jacobian matrix for the sample curve fit.

3

SUBROUTINE GRANAL (N, X, GRAD)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NDATA = 20)

DIMENSION X(N), GRAD(N)

COMMON /XYDATA/ XDATA(NDATA), YDATA(NDATA)

DO 3 J=1,N
GSUM = 0.
DO 2 I=1,NDATA
XD = XDATA(I)
YMODEL = X(1)+X(2)*XD+X(3) *XD**2+X (4) *XD**3
FI = YDATA(I)-YMODEL
GSUM = GSUM-2*FI*XD**(J-1)
CONTINUE
GRAD(J) = GSUM
CONTINUE
END

Figure 5.3: First partial derivatives for the sample curve fit.

36

Curve fitting. A complete example

SUBROUTINE HANAL (H, LD, N, X)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NDATA = 20)

COMMON /XYDATA/ XDATA(NDATA), YDATA(NDATA)
DIMENSION X(N), H(LD,N)

DO 1 I=1,N
DO 1 J=1,I
HSUM = 0O
DO 2 K=1,NDATA
HSUM = HSUM + 2*XDATA(K)**(I+J-2)

H(I,J) = HSUM

CONTINUE

END

Figure 5.4: The Hessian matrix for the sample curve fit.

37

Table 5.2: A complete MERLIN session for the curve fit example.
User input appears underlined.

Enter number of variables, number of squared terms:

........................... MERLIN- 3.0
........................... D.G. Papageorgiou, I.E. Lagaris
........................... I.N. Demetropoulos
........................... University of Ioannina
........................... GREECE
........................... Email: merlin@nrt.cs.uoi.gr
........................... Web: http://nrt.cs.uoi.gr/merlin

The Merlin help file "HELP" is present.

The panel description file "PDESC" is present.

Use the "help" command to obtain on-line information.
Number of terms: 20

Number of variables: 4

Estimated machine’s accuracy: 1.E-15

Merlin uses "SUBROUTINE SUBSUM" as the objective function.

WARNING
Initialize variables

/N/N/N/N/N\/\ Merlin is at your command !!!
sos Instruct MERLIN to use the sum—of-squares form
S0S

Functional form has been set to "sum-of-squares".
Merlin will be calling "subroutine subsum".

WARNING
Initialize variables

IN\N/\N/\N/\/\/\ Merlin is at your command !'!
point 1 22.9 2-3 1.1 4 -11.4 Enter a starting point
POINT

/N/N/N/N/N\/\ Merlin is at your command !!!
janal Instruct MERLIN to use the user supplied code for the Jacobian
JANAL

IN\N/\N/\N/\/\/\ Merlin is at your command !'!
title ’Curve Fitting using a cubic polynomial’ Set a title for the problem
TITLE

Title is set to: "Curve fitting using a cubic polynomial"

/N/N/N/N/N\/\ Merlin is at your command !!!

continued on next page

38

Curve fitting. A complete example

continued from previous page

shortdis

SHORTDIS

Title: Curve fitting using a cubic polynomial

Number of evaluations: Function Gradient Hessian Jacobian
Total: 1 0 0 0
Since last reset: 1 0 0 0
Index Name Fix Parameter value Left margin Right margin
. 22.9000000000000
2) ... 1.10000000000000
3 i, 1.10000000000000
A -11.4000000000000
Value 1623492.70661034
IN\N/\N/\N/\/\/\ Merlin is at your command !'!
leve noc 100 Start the minimization using the Levenberg—Marquardt method
LEVE
Iter: 1 Lower value: 1623492.70661034 Calls: 1 of 100
Iter: 2 Lower value: 9.484394200265691E-03 Calls: 2 of 100
Iter: 3 Lower value: 9.484394200265485E-03 Calls: 3 of 100

Function evaluations: 5
Jacobian evaluations: 3
Iterations: 3
/N\N/\N/\N/\/\/\ Merlin is at your command !!!
shortdis
SHORTDIS

Title: Curve fitting using a cubic polynomial

Number of evaluations: Function Gradient Hessian Jacobian
Total: 6 0 0 3
Since last reset: 6 0 0 3
Index Name Fix Parameter value Left margin Right margin
v 3.85673558101135
2) i -1.37311723433982
3 . 1.71949888365997
L -7.585181298786750E-02
Value 9.484394200265485E-03
IN\N/\N/\N/\/\/\ Merlin is at your command !'!
stop We are done. Good bye
STOP

Chapter 6

Command description

6.1 Command classification

There are several ways in which the commands can be grouped together. In presenting the com-
mands a grouping based on the context relevance is used. However a grouping according to the
syntax format is also convenient for the command description. Hence some definitions are given

below for the several syntax categories:

1. Simple commands (SIC)
These commands need no arguments. They are called by issuing their names.
Example: RESET

2. Range commands (RAC)
These commands need only range specification arguments. Range specifications are described
in §4.2.
Syntax: command_name range; ranges ...
Example: FIX 1-3 7-8 10

3. Range—value commands (RAVAC)
These commands need both range and value arguments.
Syntax: command_name range; value; ranges values ...
Example: POINT 1-5 10 6 11.2 7-10 -3.1

4. Panel commands (PAC)
These commands need arguments as determined by the associated panel.
Syntax: command_name key; value; keys values ...
Example: ROLL NOC 1000 FAIL 8

39

40 Command description

Ind Keyword Description Value Allowed values
1) FILE File to read from Any string

2) WHAT What to initialize X {x,1,r,f,s,n}
3) NPL Numbers per line 0 Any int >= 0
4) SKIP Lines to skip 0 Any int >= 0
5) FROM Index to start from 1 Any int >= 1
6) TO Index to end to 2 Any int >= 1
7) FORMAT Format, eg: E20.10 * Any string

8) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.1: The INIT panel.

5. Unclassified commands (UNC)
There are a few commands that do not conform to the above types and do not deserve a

separate classification.

6.2 Attribute related commands

6.2.1 POINT

Syntax classification: RAVAC
Purpose: Assigns values to minimization parameters.

Examples: POINT 1-5 3.1 6 7 8- -1.2
Assigns to variables x; through zs the value 3.1, to variable zg the value 7 and to

variables zg through z, the value —1.2.

6.2.2 INIT

Syntax classification: PAC

Purpose: Assigns names or values stored in a file to minimization parameters. In addition it can
be used to assign values stored in a file to either the lower or upper bounds, to the fix—status of
the variables, or to the search steps for the ROLL method. The associated panel is listed in figure

6.1. The panel parameters are as follows:

FILE The file holding the appropriate data.

WHAT Specifies what to initialize. Allowed values are:

Attribute related commands 41

e X Read in the current point.

e L. Read in the left margins.

e R Read in the right margins.

e F Read in the fix statuses (1 for a free variable, 0 for a fixed one).
e S Read in the search steps used by the ROLL command.

e N Read in the symbolic names of the parameters.

NPL Specifies how many numbers will be read from each line of the file. This does not apply
to symbolic names, which are always read one per line. Setting NPL to 0, lets the system
decide for the actual numbers per line.

SKIP Determines an initial number of lines to be skipped before actually reading initialization
data.
FROM Specifies the index to start the initialization.
TO Specifies the index to end the initialization.

FORMAT This is the format to be used when reading data from the file. You may specify any valid
Fortran format, or * to use a free format. Note that the format must be consistent with
the setting of NPL, containing the appropriate number of format specifiers. Symbolic
names are always read one per line using an A format.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any
changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.
e 0 cancels the action initially intended.
6.2.3 PICK

Syntax classification: PAC

Purpose: Assigns values for all the parameter attributes by reading a specially formatted file. Such
files may be created by other MERLIN commands (MEMO, DISCARD, BACKUP). The associated panel

is listed in figure 6.2. The panel parameters are as follows:

FILE The file to pick from.

TYPE The file type. Allowed values are:

e TEXT for a MERLIN text file. Information is stored in human-readable, ASCII form.
Slower but portable.

42 Command description

Ind Keyword Description Value Allowed values
1) FILE File to pick from Any string

2) TYPE File type Text {Text,Bin}

3) REC Record to pick 1 Any int >= 0
4) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.2: The PICK panel.
e BIN for a MERLIN binary file. Information is stored in binary, machine-dependent
form. Faster, but less portable.
REC The record to pick from the specified file.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.2.4 LMARGIN, RMARGIN

Syntax classification: RAVAC
Purpose: Set the lower and the upper bound correspondingly.

Examples: To restrict 25 through zg in [-3.,5.] and z1¢ in [0, 00) use the following:
LMARGIN 5-8 -3 10 O
RMARGIN 5-8 5

6.2.5 LDEMARGIN, RDEMARGIN

Syntax classification: RAC
Purpose: Clear the restrictions of the lower and upper bounds correspondingly.

Examples: To clear the lower bounds of parameters z1 through x5 use:
LDEMARGIN 1-3

6.2.6 FIX

Syntax classification: RAC

Purpose: Fixes specified parameters to their current values.

Attribute related commands 43

Examples: To fix parameters z1 — x3, z¢ and 19 use:
FIX 1-3 6 10

6.2.7 FIXALL

Syntax classification: SIC

Purpose: Fixes all parameters to their current values. This is used when one wants to let only a

few variables free and it seems convenient to fix all variables and then loose a few.

Equivalent to: FIX 1-

6.2.8 LOOSE

Syntax classification: RAC
Purpose: Frees fixed variables.

Examples: To loose parameters x1 — 3, x¢ and 19 use:
LOOSE 1-3 6 10

6.2.9 LOOSALL

Syntax classification: SIC
Purpose: Frees all variables.

Equivalent to: LOOSE 1-

6.2.10 GODFATHER

Syntax classification: RAVAC

Purpose: Assigns symbolic names to the minimization parameters. Each name must be up to 10

characters long and is case insensitive.

Examples: To assign the name sigma to 1 and the name rho to z2 use the following:
GODFATHER 1 sigma 2 rho

6.2.11 NONAME

Syntax classification: RAC

44 Command description

Purpose: Clears parameter names.

Examples: To clear the names of x1 to x5 and that of zg use the following:
NONAME 1-5 8

6.2.12 SHORTDIS

Syntax classification: RAC

Purpose: Displays the current values of the minimization parameters and their attributes. In
addition SHORTDIS displays the title of the run (if a title has been set, via the TITLE command),
and the total and partial call counters for the objective function, the gradient, the Jacobian and the
Hessian. The value of the objective function is also displayed at the end. Issuing simply SHORTDIS
is equivalent to: SHORTDIS 1-

Examples: SHORTDIS 3-5 7 displays the attributes of the variables x3 through z5 and that of x7.
To display the attributes of the fixed variables use: SHORTDIS /f.

6.2.13 VALDIS

Syntax classification: SIC

Purpose: Displays title and call counters (as the SHORTDIS command) and the value of the objective

function. It does not display the parameter attributes.

Equivalent to: SHORTDIS !1-

6.2.14 TERMDIS

Syntax classification: RAC

Purpose: Displays the values of the M terms f;(x) in case the objective function has been coded

as a sum of squares.

Examples: TERMDIS 1-5 will display the values of the terms f;(x) through f5(x).

6.2.15 TITLE

Syntax classification: UNC

Syntax: TITLE title_text

Minimization related commands 45

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1

2) PRINT Printout level 1 {0,1,2}

3) FAIL Failures allowed 4 Any int >= 1

4) SFACTOR Step factor 3. Any real > 1.
5) FTOL Min. relative drop 0. 0. <=real <1
6) LSNOC Line search calls 30 Any int >= 1

7) LSTOL Line search tolerance 0.001 0. <= real < 1.
8) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.3: The ROLL panel.

Purpose: Sets a short title for the run. The title appears on top of the output produced by the
SHORTDIS command.

Examples: TITLE Rosenbrock Test Function

6.2.16 RESET

Syntax classification: SIC

Purpose: Resets to zero the partial counters for the calls to the objective function, to the user
supplied code for the gradient (SUBROUTINE GRANAL), the Jacobian (SUBROUTINE JANAL) and the
Hessian (SUBROUTINE HANAL).

6.3 Minimization related commands

6.3.1 ROLL

Syntax classification: PAC
Purpose: Invokes the Roll minimization algorithm. The associated panel is listed in figure 6.3. The
panel parameters are as follows:
NOC An approximate upper bound for the number of calls to the objective function.
PRINT Determines the amount of output from the minimization method. Allowed values are:

e 0 No printout at all.

e 1 Display lower function values as they are discovered.

46

Command description

FAIL

SFACTOR

FTOL

LSNOC

LSTOL

CANCEL

e 2 Display function and parameter values as well.

The number of successive cycle—failures allowed.

The step enhancement factor.

The minimum acceptable function drop per cycle.

The maximum number of function calls that are allowed in the line search.

The line search termination criterion. The search is terminated when the endpoints

that bracket the minimum have a relative distance less than LSTOL.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

ITERDONE

INFO

Number of function evaluations that were performed.
Number of Roll iterations that were performed.
Result code. Possible values are:

e 1 Target value has been reached.
e 2 All function evaluations have been used.

e 3 Too many cycle failures.

6.3.2 SIMPLEX

Syntax classification: PAC

Purpose: Invokes the Simplex minimization algorithm. The associated panel is listed in figure 6.4.

The panel parameters are as follows:

NOC

PRINT

An approximate upper bound for the number of calls to the objective function.
Determines the amount of output from the minimization method. Allowed values are:

e) No printout at all.

e 1 Display lower function values as they are discovered.

Minimization related commands 47

Ind
1)
2)
3)
4)
5)
6)
7)
8)
9)

10)

11)

12)

13)

14)

Keyword Description Value Allowed values
NOC Number of calls 500 Any int >= 1
PRINT Printout level 1 {0,1,2}

USEV Use/Recalculate vertices 0 {1,0}

INIT Initialization (Disp/LS) 1 {1,2}

DISP Displacement percent 0.1 Any real > 0
LSNOC Line search calls 50 Any int >= 1
LSTOL Line search tolerance 0.01 0. <= real < 1.
FTOL Simplex tolerance 0. 0. <= real < 1.
XTOL X-convergence criterion 1.E-15 0. <= real < 1.
ITER Iterations (-1 = Inf) -1 Any int >= -1
ALPHA Reflection factor 1. Any real > O.
BETA Contraction factor 0.5 0. < real < 1.
GAMMA Expansion factor 2. Any real > 1.
CANCEL Cancel / Proceed 1 {0,1}

USEV

INIT

DISP

LSNOC

LSTOL

FTOL

Figure 6.4: The SIMPLEX panel.

e 2 Display function and parameter values as well.
Specifies how SIMPLEX should obtain its initial vertices. Allowed values are:

e 0 Initialize the simplex vertices, according to the setting of INIT.

e 1 Use the vertices from a previous SIMPLEX invocation.

Specifies the method of initializing the simplex vertices when USEV is set to 0. Allowed

values are:

e 1 Use a displacement along each direction. The relative distance is specified by DISP.

e 2 Perform a line search along each direction and use the resulting minimum as a

vertex.

Specifies the relative distance along each direction when INIT 1 is selected. More

specifically, vertex 7 is set to the current point with the " parameter being:

x; + DISP * |z;]

The maximum number of function calls that are allowed in the line search.

The line search termination criterion. The search is terminated when the endpoints

that bracket the minimum have a relative distance less than LSTOL.

The standard simplex termination criterion. SIMPLEX terminates when the standard

deviation of the function values at the vertices is less than FTOL.

48

Command description

XTOL

ITER

ALPHA

BETA

GAMMA

CANCEL

SIMPLEX terminates when either one of the following conditions hold:

e The standard deviation of every minimization parameter (with respect to all sim-

plex vertices) is less than XTOL.

° The scaled distance between two successive iterates is less than XTOL.

The number of Simplex iterations to perform. A value of —1 allows an unlimited number

of iterations.

The reflection factor.
The contraction factor.
The expansion factor.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

ITERDONE

INFO

Number of function evaluations that were performed.
Number of Simplex iterations that were performed.
Result code. Possible values are:

e 1 The specified function accuracy has been achieved.
e 2 The specified number of iterations has been reached.
e 3 All function evaluations have been used.

e 4 Target value has been reached.

e 5 The X-convergence criterion is satisfied.

e 6 The simplex has become too small.

e 7 All variables are fixed.

e 8 Further progress is not possible.

Minimization related commands

49

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1

2) PRINT Printout level 1 {0,1,2}

3) GTOL G-convergence criterion 1.E-15 0. < real < 1.
4) XTOL X-convergence criterion 1.E-15 0. < real < 1.
5) FTOL F-convergence criterion 0. 0. <= real < 1.
6) ITER Iterations (-1 = Inf) -1 Any int >= -1

7) MAD Automatic derivatives 0ff {0n,0ff}

8) USEG Use/Recalculate gradient 0 {1,0}

9) USEH Use/Recalculate Hessian 0 {1,0}

10) LS Line search conditions Weak {Strong,Weak}
11) LSITER Max. LS iterations 30 Any int >= 1

12) RHO Line search rho 0.0001 0. <= real <= 1.
13) SIGMA Line search sigma 0.9 0. <= real <= 1.
14) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.5: The BFGS panel.
6.3.3 BFGS

Syntax classification: PAC
Purpose: Invokes the BFGS minimization algorithm using line search and Choleski decomposition
for the Hessian. The associated panel is listed in figure 6.5. The panel parameters are as follows:
NOC An approximate upper bound for the number of calls to the objective function.
PRINT Determines the amount of output from the minimization method. Allowed values are:

e) No printout at all.
e 1 Display lower function values as they are discovered.
e 2 Display function and parameter values as well.

GTOL The gradient termination criterion. The method terminates when the relative gradient

falls below this value.

XTOL Termination criterion based on the values of the parameters. The method terminates

when the relative change in the parameters in two successive iterations is less than XTOL.

FTOL Termination criterion based on function values. The method terminates when the rela-

tive function drop in two successive iterations is less than FTOL.

ITER The number of BFGS iterations to perform. A value of —1 allows an unlimited number

of iterations.

50 Command description
MAD Specifies whether the MERLIN Automatic Derivatives are to be used when approximating
the gradient vector. Allowed values are:
e ON The MERLIN Automatic Derivatives are to be used.
e OFF Use the current derivative mode.
USEG Determines how to obtain the gradient vector for the initial (current) point. Allowed
values are:
e 0 Do not use the values in the gradient cache. Recalculate the whole gradient vector.
e 1 Instead of recalculating the gradient vector, use the values in the gradient cache.
USEH Determines the initial approximation to the Hessian matrix. Allowed values are:
e) The initial approximation is set to be the unit matrix.
e 1 The approximation from a previous BFGS, DFP, TRUST or HESSIAN command is used.
LS Specifies the conditions that terminate the line search. Allowed values are:
e STRONG The strong Wolfe-Powell conditions are used.
e WEAK The weak Wolfe-Powell conditions are used.
LSITER The maximum number of iterations that are allowed in the line search.
RHO The p parameter that defines an acceptable drop in function value.
SIGMA The o parameter used in the termination criteria for the line search.
CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

GCALLS

ITERDONE

INFO

Number of function evaluations that were performed.
Number of evaluations of the gradient vector.
Number of BFGS iterations that were performed.
Result code. Possible values are:

e 1 Target value has been reached.

Minimization related commands 51

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1

2) PRINT Printout level 1 {0,1,2}

3) GTOL G-convergence criterion 1.E-15 0. < real < 1.
4) XTOL X-convergence criterion 1.E-15 0. < real < 1.
5) FTOL F-convergence criterion 0. 0. <= real < 1.
6) ITER Iterations (-1 = Inf) -1 Any int >= -1

7) MAD Automatic derivatives 0ff {0n,0ff}

8) USEG Use/Recalculate gradient 0 {1,0}

9) USEH Use/Recalculate Hessian 0 {1,0}

10) LS Line search conditions Weak {Strong,Weak}
11) LSITER Max. LS iterations 30 Any int >= 1

12) RHO Line search rho 0.0001 0. <= real <= 1.
13) SIGMA Line search sigma 0.9 0. <= real <= 1.
14) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.6: The DFP panel.

e 2 The gradient criterion is satisfied.

e 3 All function evaluations have been used.

e 4 The X-convergence criterion is satisfied.

e 5 The function value has converged.

e 6 The Hessian matrix cannot be updated.

e 7 The specified number of iterations has been reached.
e 8 All variables are fixed.

e 9 Further progress is not possible.

6.3.4 DFP

Syntax classification: PAC

Purpose: Invokes the DFP minimization algorithm using line search and Choleski decomposition
for the Hessian. The associated panel is listed in 6.6. The panel parameters are the same as for
the BFGS command.

6.3.5 TOLMIN

Syntax classification: PAC

92

Command description

Ind
1)
2)
3)
4)
5)

Keyword Description Value Allowed values
NOC Number of calls 300 Any int >= 1
PRINT Printout level 1 {0,1,2}

ACC Termination accuracy 0. 0. <= real < 1.
MAD Automatic derivatives 0ff {0n,0ff}
CANCEL Cancel / Proceed 1 {0,1}

Figure 6.7: The TOLMIN panel.

Purpose: Invokes the BFGS minimization algorithm using line search and the Goldfarb—Idnani

Z"BZ = T decomposition for the Hessian. The associated panel is listed in figure 6.7. The panel

parameters are as follows:

NOC

PRINT

ACC

MAD

CANCEL

An approximate upper bound for the number of calls to the objective function.
Determines the amount of output from the minimization method. Allowed values are:

e) No printout at all.
e 1 Display lower function values as they are discovered.

e 2 Display function and parameter values as well.
Specifies the termination accuracy.

Specifies whether the MERLIN Automatic Derivatives are to be used when approximating

the gradient vector. Allowed values are:

o ON The MERLIN Automatic Derivatives are to be used.

e OFF Use the current derivative mode.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

GCALLS

INFO

Number of function evaluations that were performed.
Number of evaluations of the gradient vector.

Result code. Possible values are:

Minimization related commands 53

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1
2) PRINT Printout level 1 {0,1,2}

3) GTOL G-convergence criterion 1.E-15 0. < real < 1.
4) XTOL X-convergence criterion 1.E-15 0. < real < 1.
5) FTOL F-convergence criterion 0. 0. <= real < 1.
6) ITER Iterations (-1 = Inf) -1 Any int >= -1
7) MAD Automatic derivatives 0ff {0n,0ff}

8) USEG Use/Recalculate gradient 1 {1,0}

9) USEH Use/Recalculate Hessian 0 {1,0}

10) USER Use/Recalculate radius 0 {1,0}

11) RHO The rho-line parameter 0.0001 0. <= real <= 1.

12) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.8: The TRUST panel.
e 1 The specified accuracy has been satisfied.
e 2 Further progress is impossible due to rounding errors.
e 3 Further progress is impossible.
e 4 Some input parameters are incorrect.
e 5 Inconsistent equality constraints.
e 6 Inconsistent constrains/bounds.
e 7 All of the constrains cannot be satisfied.
e 8 All function evaluations have been used.
e 9 Target value has been reached.
6.3.6 TRUST

Syntax classification: PAC

Purpose: Invokes the BFGS minimization algorithm using a trust region method and Choleski

decomposition for the Hessian. The associated panel is listed in figure 6.8. The panel parameters

are as follows:

NOC

PRINT

An approximate upper bound for the number of calls to the objective function.
Determines the amount of output from the minimization method. Allowed values are:

e) No printout at all.

e 1 Display lower function values as they are discovered.

54 Command description
e 2 Display function and parameter values as well.
GTOL The gradient termination criterion. The method terminates when the relative gradient
falls below GTOL.
XTOL Termination criterion based on the values of the parameters. The method terminates
when the relative change in the parameters in two successive iterations is less than XTOL.
FTOL Termination criterion based on function values. The method terminates when the rela-
tive function drop in two successive iterations is less than FTOL.
ITER The number of BFGS iterations to perform. A value of —1 allows an unlimited number
of iterations.
MAD Specifies whether the MERLIN Automatic Derivatives are to be used when approximating
the gradient vector. Allowed values are:
o ON The MERLIN Automatic Derivatives are to be used.
e OFF Use the current derivative mode.
USEG Determines how to obtain the gradient vector for the initial (current) point. Allowed
values are:
e 0 Do not use the values in the gradient cache. Recalculate the whole gradient vector.
e 1 Instead of recalculating the gradient vector, use the values in the gradient cache.
USEH Determines the initial approximation to the Hessian matrix. Allowed values are:
e 0 The initial approximation is set to be the unit matrix.
e 1 The approximation from a previous BFGS, DFP, TRUST or HESSTAN command is used.
USER Determines the initial trust region radius. Allowed values are:
e 0 The trust region radius is set equal to 7 ||g||
e 1 The most recent value for the radius is used.
RHO The p parameter used in the termination criteria for the line search.
CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

Minimization related commands 55

FCALLS Number of function evaluations that were performed.
GCALLS Number of evaluations of the gradient vector.
ITERDONE Number of BFGS iterations that were performed.
RADIUS The final trust region radius.
INFO Result code. Possible values are:

e 1 The target value has been reached.

e 2 The gradient criterion is satisfied.

e 3 All function evaluations have been used.

e 4 The minimization parameters have converged.

e 5 The function value has converged.

e 6 The Hessian matrix cannot be updated.

e 7 The specified number of iterations has been reached.
e 8 All variables are fixed.

e 9 Further progress is not possible.

6.3.7 CONGRA

Syntax classification: PAC

Purpose: Invokes any of the three implemented conjugate gradient algorithms. These are:

e The Polak-Ribiere algorithm.
e The Fletcher-Reeves algorithm.

e The Generalized Polak—Ribiere algorithm.

The associated panel is listed in figure 6.9. The panel parameters are as follows:

NOC An approximate upper bound for the number of calls to the objective function.
PRINT Determines the amount of output from the minimization method. Allowed values are:

e 0 No printout at all.
e 1 Display lower function values as they are discovered.

e 2 Display function and parameter values as well.

o6

Command description

Ind
1)
2)
3)
4)
5)
6)
7)
8)
9)

10)

11)

12)

13)

14)

Keyword
NOC
PRINT
METHOD
GTOL
XTOL
FTOL
ITER
RESTART
MAD
USEG
LSITER
RHO
SIGMA
CANCEL

Description

Number of calls

Printout level

Conjugate gradient method
G-convergence criterion
X-convergence criterion
F-convergence criterion
Iterations (-1 = Inf)
N-step restart (No/Yes)
Automatic derivatives
Use/Recalculate gradient
Max. LS iterations

Line search rho

Line search sigma

Cancel / Proceed

0.001
0.1

Allowed values
Any int >= 1
{0,1,2}
{PR,FR,GPR}

0. < real < 1.
0. <real < 1.
0. <= real < 1.
Any int >= -1
{0,1}

{0n,0ff}

{1,0%

Any int >= 1

0. <= real <= 1.
0. <= real <= 1.
{0,1}

METHOD

GTOL

XTOL

FTOL

ITER

RESTART

MAD

Figure 6.9: The CONGRA panel.

Determines the method to use. Allowed values are:

e PR
e FR

Use the Polak—Ribiere formula.

Use the Fletcher—Reeves formula.

e GPR Use the generalized Polak—Ribiere method of Khoda, Liu and Storey.

The gradient termination criterion. The method terminates when the relative gradient
falls below GTOL.

Termination criterion based on the values of the parameters. The method terminates

when the relative change in the parameters in two successive iterations is less than XTOL.

Termination criterion based on function values. The method terminates when the rela-

tive function drop in two successive iterations is less than FTOL.

The number of iterations to perform. A value of —1 allows an unlimited number of

iterations.

Specifies whether the N—step restart should be taken. Allowed values are:

e 0 Do not use the N—step restart.

e 1 Reset the search direction to the steepest descent direction every N iterations.

Specifies whether the MERLIN Automatic Derivatives are to be used when approximating

the gradient vector. Allowed values are:

e ON

The MERLIN Automatic Derivatives are to be used.

Minimization related commands 57

USEG

LSITER

RHO

SIGMA

CANCEL

e OFF Use the current derivative mode.

Determines how to obtain the gradient vector for the initial (current) point. Allowed

values are:

e 0 Do not use the values in the gradient cache. Recalculate the whole gradient vector.

e 1 Instead of recalculating the gradient vector, use the values in the gradient cache.
The maximum number of iterations that are allowed in the line search.

The p parameter used in the termination criteria for the line search.

The o parameter used in the termination criteria for the line search.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

GCALLS

ITERDONE

INFO

Number of function evaluations that were performed.
Number of evaluations of the gradient vector.

Number of conjugate gradient iterations that were performed.
Result code. Possible values are:

e 1 Target value has been reached.

e 2 The gradient criterion is satisfied.

e 3 All function evaluations have been used.

e 4 The X-convergence criterion is satisfied.

e 5 The function value has converged.

e 7 The specified number of iterations has been reached.
e 8 Further progress is not possible.

e 9 All variables are fixed.

o8 Command description

Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1
2) PRINT Printout level 1 {0,1,2}
3) GTOL G-tolerance 0 0. <= real < 1.
4) XTOL X-tolerance 0. 0. <= real < 1.
5) FTOL F-tolerance 0. 0. <= real < 1.
6) FACC Function accuracy 1.E-15 0. <real < 1.
7) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.10: The LEVE panel.

6.3.8 LEVE

Syntax classification: PAC
Purpose: Invokes a Levenberg—Marquardt type of algorithm for a sum of squares objective function.
The associated panel is listed in figure 6.10. The panel parameters are as follows:
NOC An approximate upper bound for the number of calls to the objective function.
PRINT Determines the amount of output from the minimization method. Allowed values are:

e) No printout at all.
e 1 Display lower function values as they are discovered.

e 2 Display function and parameter values as well.

GTOL The gradient termination criterion. The method terminates when the relative gradient
falls below GTOL.

XTOL Termination criterion based on the values of the parameters. The method terminates

when the relative change in the parameters in two successive iterations is less than XTOL.

FTOL Termination criterion based on function values. The method terminates when the rela-

tive function drop in two successive iterations is less than FTOL.
FACC An estimation of the relative error in the calculation of the objective function.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

Minimization related commands 59

Ind Keyword Description Value Allowed values
1) NOC Number of calls 10000 Any int >= 1
2) TARGET Target value -1.E+300 Any real
3) MAD Automatic derivatives 0ff {0On,0ff}

4) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.11: The AUTO panel.

FCALLS Number of function evaluations that were performed.
JCALLS Number of evaluations of the Jacobian matrix.
ITERDONE Number of LEVE iterations that were performed.
INFO Result code. Possible values are:

e 0 Some input parameters were incorrect.
e 1 The function value has converged.

e 2 The X-convergence criterion is satisfied.
e 3 F and X-convergence has been achieved.
e 4 The gradient criterion is satisfied.

e 5 All function evaluations have been used.
e 6 Further progress is not possible.

e 7 Further progress is not possible.

e 8 Further progress is not possible.

e 9 Target value has been reached.

6.3.9 AUTO

Syntax classification: PAC

Purpose: Invokes a multi algorithm based strategy. The associated panel is listed in figure 6.11.

The panel parameters are as follows:

NOC An approximate upper bound for the number of calls to the objective function.

TARGET Specifies a target value. When the value of the objective function falls below this value,

the AUTO procedure terminates.

MAD Specifies whether the MERLIN Automatic Derivatives are to be used when approximating

the gradient vector. Allowed values are:

60 Command description
Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1
2) NOP Number of points 1 Any int >= 1
3) TARGET Target value 16.913 Any real
4) FILE File name INIPO Any string
5) TYPE File type Text {Text,Bin}
6) CANCEL Cancel / Proceed 1 {0,1}
Figure 6.12: The ACCUM panel.
e ON The MERLIN Automatic Derivatives are to be used.
e OFF Use the current derivative mode.
CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

FCALLS

GCALLS

INFO

Number of function evaluations that were performed.
Number of evaluations of the gradient vector.
Result code. Possible values are:

e 1 All function evaluations have been used.
e 2 Further progress is not possible.

e 3 Target value has been reached.

6.3.10 ACCUM

Syntax classification: PAC

Purpose: Picks points at random and stores them in a file if the corresponding function value is

lower than a preset number. The associated panel is listed in figure 6.12.

Restriction: All free variables must be bounded from both above and below. The panel parameters

are as follows:

NOC

An upper bound to the number of calls to the objective function.

Minimization related commands 61

NOP The number of points to accumulate.

TARGET Sets the target value. The points & for which f(z) < TARGET are stored in the file
specified by the FILE keyword.

FILE The file to store the accumulated points.
TYPE The file type. Allowed values are:

e TEXT for a MERLIN text file. Information is stored in human-readable, ASCII form.
Slower but portable.

e BIN for a MERLIN binary file. Information is stored in binary, machine—dependent

form. Faster, but less portable.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.
The following parameters can be returned to MCL programs:

FCALLS Number of function evaluations that were performed.
POINTS Number of points that have been accumulated.
INFO Result code. Possible values are:

e (0 The command terminated normally.

e —1 An end-of-file condition occurred in the input file, while reading the panel

parameters.

e —2 Some other error occurred (for example some panel parameters are incorrect).

6.3.11 TARGET

Syntax classification: UNC
Syntax: TARGET target_value

Purpose: Sets the target value used as a termination criterion by the optimization algorithms.

62 Command description

6.3.12 NOTARGET

Syntax classification: SIC

Purpose: Clears a target value earlier set by a TARGET command.
6.3.13 ADJUST

Syntax classification: SIC

Purpose: Constructs search steps for the ROLL method without using any gradient information. It

is based on the alternating variables method. In addition ADJUST performs a minor optimization.

6.3.14 STEPALL

Syntax classification: SIC

Purpose: Constructs search steps for the ROLL method using gradient information. It is based on

the method of steepest descent. In addition STEPALL performs a minor optimization.

6.3.15 STEP

Syntax classification: RAVAC
Purpose: Facilitates setting the search steps for the ROLL method.

Examples: To set the step for the x; variable to 0.1 and for the variables x3 through x4 to 2.5, use
the following:
STEP 1 0.1 3-6 2.5

6.3.16 STEPDIS

Syntax classification: RAC
Purpose: Displays the current search steps for the ROLL method.
6.4 Flags and related commands

6.4.1 FLAG

Syntax classification: RAVAC

Modes of operation and related commands 63

Purpose: Assigns values to the numeric MERLIN flags. The default value for these flags is zero.

6.4.2 FLAGDIS

Syntax classification: RAC

Purpose: Displays the values of the specified numerical MERLIN flags. Without arguments the
values of all MERLIN numerical flags are displayed.

6.4.3 CFLAG

Syntax classification: RAVAC

Purpose: Assigns values to the MERLIN character flags. The default value for these flags is a blank

character.

6.4.4 CFLAGDIS

Syntax classification: RAC

Purpose: Displays the values of the specified MERLIN character flags. Without arguments the
values of all MERLIN character flags are displayed.

6.5 Modes of operation and related commands

6.5.1 FAST, QUAD, NUMER, ANAL

Syntax classification: SIC
Purpose: Set the way the gradient vector is calculated

FAST Forward differences are used to estimate the derivatives. This costs one function evaluation

per gradient component:

df flz+h)— f(z)
dr ~ h

with h = /pmax{l,|z|}

QUAD Central differences are used to estimate the derivatives. This costs two function evaluations
per gradient component:

df _ flx+h)—f(z—h)
dr = 2h

with h = ¥npmax{l, |z|}

64 Command description

NUMER A high order symmetric formula is used to estimate the derivatives. This costs at least

six function evaluations per gradient component:

df _64f(x+h)—flz—h) 20f(z+2h)— f(z—2h) +if(:zc—i—élh)—f(:Jc—4h)
dz ~ 45 2h 45 4h 45 8h

ANAL The user written code (SUBROUTINE GRANAL) is used to calculate the derivatives.

6.5.2 MIXED

Syntax classification: RAVAC
Purpose: Allows different modes to be assigned to specified gradient components.

Examples: To calculate the first 3 components in ANAL mode, the fourth in NUMER, etc. use:
MIXED 1-3 ANAL 4 NUMER 5 FAST 6 QUAD
or abbreviating:
MIXED 1-3 A4 N5 F 6 Q

in an obvious correspondence.

6.5.3 JNUMER, JANAL

Syntax classification: SIC

Purpose: Make a choice for the manner the Jacobian is calculated.

JNUMER selects numerical estimation using forward differences.

JANAL selects the user supplied code (SUBROUTINE JANAL).

6.5.4 HESSIAN

Syntax classification: PAC
Purpose: Calculates and manipulates the Hessian matrix. The associated panel is listed in figure
6.13. The panel parameters are as follows:

DO Determines the action of the command. Allowed values are:

e C Calculate the Hessian matrix.
e D Decompose an already calculated Hessian matrix to its Choleski factors.

e M Compose the Hessian matrix from its Choleski factors.

Modes of operation and related commands 65

Ind Keyword Description Value Allowed values
1) DO Desired Action c {c,d,m,p,r,w}
2) USE Function/Gradient/Anal f {f,g,a}

3) MODE1 Function/Gradient/Anal f {f,g,at

4) MODE2 Function/Gradient/Anal g {f,g,a}

5) FILE File to write to HESSTAN Any string
6) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.13: The HESSIAN panel.

e P Compare two methods of calculating the Hessian matrix.
e R Read the Hessian matrix from a file.

e W Write the Hessian matrix to a file.

USE If the calculation of the Hessian was requested, USE determines the method of calcula-

tion. Allowed values are:

e F Use function values only:

82f($,y) ~ [f(:l?-i—h,y-i—&) _f($+h7y)] — [f($7y+5) _f($7y)]

ordy ho
For the diagonal elements:

&Pf flz+2h) = 2f(z+h) + f(z)
dz2 "~ h2
with A = &nmax{l, |z|} and similarly for 4.
e G Use the user supplied SUBROUTINE GRANAL:

*f(z,y) _ 1{[3f(w,y+5) ~ Of(z,y)

1 [8f(w+h,y)
ordy 2 o or |6

dy

For the diagonal elements:

?f 1 2ot 31

dz? " h ox ox
with b = \/pmax{1, |z|} and similarly for é.
e A Use the user supplied SUBROUTINE HANAL.

MODE1 If comparison of two methods for calculating the Hessian matrix was requested, MODE1

specifies the first mode of calculation. Allowed values are:

e F Use function values only.

e G Use the the user supplied SUBROUTINE GRANAL that returns the first partial deriva-

tives.

66 Command description

e A Use the user supplied SUBROUTINE HANAL that returns the Hessian matrix.

MODE2 If comparison of two methods for calculating the Hessian matrix was requested, MODE2

specifies the second mode of calculation. Allowed values are:

e F Use function values only.

e G Use the the user supplied SUBROUTINE GRANAL that returns the first partial deriva-

tives.

e A Use the user supplied SUBROUTINE HANAL that returns the Hessian matrix.
FILE The file to write to, or read from the Hessian matrix.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.5.5 GRADDIS

Syntax classification: RAC
Purpose: Displays the values of the gradient components and the mode used for their calculation.

Examples: GRADDIS !/F

6.5.6 GRADCHECK

Syntax classification: UNC

Syntax: GRADCHECK mode; modes | index_specification ... |
GRADCHECK mode | indez_specification ...]

Purpose: Checks the derivatives calculated using mode; against those calculated using modes and
displays the result for the parameters specified by the index_specification. If the second form of the
command is used, the derivatives are checked against the current derivative mode. mode;, modey
and mode can be one of ANAL, FAST, QUAD or NUMER. If no index_specification is given, the results

are displayed for all minimization parameters.

Examples: GRADCHECK ANAL QUAD
GRADCHECK ANAL NUMER 1-6

Modes of operation and related commands 67

Ind Keyword Description Value Allowed values
1) FQ Fast ==> Quad threshold 0.0001 0. <= real < 1.
2) QN Quad ==> Numer threshold 1.E-7 0. <= real < 1.
3) RECALC Recalculate on change 1 {0,1}

4) PRINT MAD printout (0ff/On) 0 {0,1}

Figure 6.14: The MAD panel.

6.5.7 JCOMPARE

Syntax classification: SIC

Purpose: Compares the numerically estimated Jacobian to the one calculated by the user—supplied

code.

6.5.8 GNORM

Syntax classification: SIC

Purpose: Calculates the Ly, Lo and Ly, gradient norms, along with the RMS gradient, defined as:

N
L, = Z |9
i=1

N
Ly=\|>_ 9}
=1

Lo = max|g;|, i=1,2,...N

6.5.9 MAD

Syntax classification: PAC

Purpose: Sets the thresholds for automatically switching derivative modes from FAST to QUAD and
from QUAD to NUMER. The associated panel is listed in figure 6.14. The panel parameters are as

follows:

FQ The FAST to QUAD transition threshold. When a gradient component that is calculated
using mode FAST, falls below this value, its mode is set to QUAD.

68 Command description

QN The QUAD to NUMER transition threshold. When a gradient component that is calculated
using mode QUAD, falls below this value, its mode is set to NUMER.

RECALC Determines whether a recalculation of the partial derivative should occur, each time a

mode transition takes place. Allowed values are:

e 0 Do not recalculate, each time a transition occurs.

e 1 Recalculate using the new derivative mode.

PRINT Determines whether the user should be notified when a change in the gradient mode

occurs. Allowed values are:

e 0 No informative messages.

e 1 Display an informative message each time a gradient mode changes. This can be

annoying, especially for an objective function with a large number of parameters.

6.5.10 IAF, BATCH

Syntax classification: SIC

Purpose: IAF sets an error tolerant mode, suitable for interactive work. BATCH sets the strict mode,

that causes MERLIN to abort on errors and is suitable for unattended (batch) processing.

6.5.11 NOBACK, LASTBACK, FULLBACK

Syntax classification: SIC

Purpose: Set the backup mode.

NOBACK keeps no backup records.
LASTBACK keeps only the most recent record.

FULLBACK keeps a history of all records resulting after the completion of the issued minimization

commands.

A backup record contains the values of the attributes of the minimization parameters.

Modes of operation and related commands 69

Ind Keyword Description Value Allowed values
1) FILE Backup file name BACKUP Any string

2) TYPE File type Text {Text,Bin}

3) MODE Backup mode No {Full,Last,No}
4) WHEN When to Backup (MXDL) mxd Any string

5) SAFE Safe (but slow) backup No {Yes,No}

6) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.15: The BACKUP panel.

6.5.12 BACKUP

Syntax classification: PAC

Purpose: Controls the MERLIN backup mechanism. Prevents loss of data from abnormal program

termination. The associated panel is listed in figure 6.15. The panel parameters are as follows:

FILE The backup file name.
TYPE The file type. Allowed values are:
e TEXT for a MERLIN text file. Information is stored in human-readable, ASCII form.
Slower but portable.
e BIN for a MERLIN binary file. Information is stored in binary, machine-dependent
form. Faster, but less portable.

MODE Specifies the amount of information that is kept in a backup file. Allowed values are:

e NO Backups are not performed.

e LAST The most recent backup record overwrites the previous contents of the backup
file.

e FULL The backup records are appended to the end of the backup file.
WHEN Specifies when a backup record is to be written to the backup file. Allowed values are:

e M A backup record is written when a minimization routine terminates.

e X A backup record is written each time the minimization parameters are assigned
new values (through POINT, INIT or PICK).

e D A backup record is written each time the fix status, symbolic name, upper or lower

bounds of a parameter is changed.

70 Command description

e L. A backup record is written each time a minimization routine discovers a new lower
function value. This setting is only recommended for extremely time consuming

minimization sessions.
Any combination of the above values is allowed.

SAFE Specifies whether the slow (but safe) backup method should be used. Allowed values

are:

e YES Each time a backup record is written to the backup file, its contents are flushed
to disk, thus preventing loss of backup records if the program terminates ab-

normally.

e NO Just write the backup records to the file.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.5.13 NOPRINT, HALFPRINT, FULLPRINT

Syntax classification: SIC

Purpose: Set the printout mode.

FULLPRINT allows the full output to be displayed.
HALFPRINT allows only warnings and error messages.

NOPRINT suppresses all output.

6.5.14 GENERAL, SOS

Syntax classification: SIC

Purpose: Determine which form for the objective function is to be used.

GENERAL Makes calls the FUNCTION FUNMIN.

S0S Makes calls to SUBROUTINE SUBSUM.

The default setting depends on the number of terms M, supplied when SUBROUTINE MERLIN is
called. When M = 0 the default is set to GENERAL; SOS otherwise.

Aliasing and related commands 71

6.5.15 EVALUATE, NOEVAL

Syntax classification: SIC

Purpose: NOEVAL disallows evaluation of the objective function. EVALUATE allows the evaluation of

the objective function, if it was disallowed, and in addition forces one evaluation.

6.5.16 MODEDIS

Syntax classification: SIC

Purpose: Displays the current operation modes.

6.5.17 LIMITS

Syntax classification: SIC

Purpose: Displays the values of several installation parameters.

6.6 Aliasing and related commands

6.6.1 ALIAS

Syntax classification: UNC
Syntax:ALTAS alias_name command
Purpose: Renames a command for the current run.

Examples: To create an alias for the command GRADDIS use:
ALTAS GD GRADDIS.

6.6.2 UNALIAS

Syntax classification: UNC
Syntax: UNALIAS alias-name
Purpose: Clears an alias entry.

Examples: To clear the previously defined alias GD for the command GRADDIS use:
UNALTAS GD

72 Command description

6.6.3 ALIASDIS

Syntax classification: SIC

Purpose: Prints out all the aliases and their command equivalences.

6.7 Termination and post—processing

6.7.1 STOP

Syntax classification: UNC
Syntax: STOP [NOEPILOG |

Purpose: Terminates the current run, by issuing a Fortran STOP statement.

6.7.2 RETURN

Syntax classification: UNC
Syntax: RETURN [NOEPILOG]

Purpose: Returns the control to the calling program (i.e. to the program that calls SUBROUTINE
MERLIN). It executes a Fortran RETURN statement.

6.7.3 QUIT

Syntax classification: UNC
Syntax: QUIT integer_flag [NOEPILOG]

Purpose: It sets a value to the output flag IQUIT of SUBROUTINE MERLIN and then executes a Fortran
RETURN statement. The allowed values for the return_flag are positive. The RETURN command
assigns a zero value to this flag without prompting. This flag can be used by the main program
as a directive for a required user—programmed action, referred to as post-processing. All the above
termination commands may take an optional argument that inhibits the execution of an epilog, if

one exists.

Examples: QUIT 4
STOP NOEPILOG
RETURN NOEPILOG
QUIT 7 NOEPILOG

File manipulation commands 73

Ind
1)
2)
3)
4)

Keyword Description Value Allowed values
FILE Memo file name STORE Any string
TYPE File type Text {Text,Bin}
OPEN Keep memo file open 0 {0,1}

CANCEL Cancel / Proceed 1 {0,1}

Figure 6.16: The MEMO panel.

6.8 File manipulation commands

6.8.1 MEMO

Syntax classification: PAC

Purpose: Appends a MERLIN record with the values and attributes of the minimization parameters

to a specified file. The associated panel is listed in figure 6.16. The panel parameters are as

follows:

FILE

TYPE

OPEN

CANCEL

The file to write to.

The file type. Allowed values are:

e TEXT for a MERLIN text file. Information is stored in human-readable, ASCII form.
Slower but portable.

e BIN for a MERLIN binary file. Information is stored in binary, machine—dependent

form. Faster, but less portable.

Specifies whether the MEMO file should remain open after the MEMO command completes.
Allowed values are:

e 0 Close the memo file.

e 1 Leave the memo file open. Subsequent MEMO commands will run faster but will be

less safe against a system failure.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

74 Command description

Ind Keyword Description Value Allowed values

1) FILE File to write to DUMP Any string

2) WHAT What to write X {x,1,r,f,s,n}

3) NPL Numbers per line 0 Any int >= 0

4) APPEND Append to the file No {Yes,No}

5) FROM Index to start from 1 Any int >= 1

6) TO Index to end to 2 Any int >= 1

7) VALUE Write value Never {Before,After,Never}
8) FORMAT Format, eg: E20.10 * Any string

9) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.17: The DUMP panel.

6.8.2 DUMP

Syntax classification: PAC

Purpose: Stores the current values of the minimization parameters or any of their attributes in a

file. The associated panel is listed in figure 6.17. The panel parameters are as follows:

FILE The file to write to.
WHAT Specifies what to write. Allowed values are:

e X Write the current point.
e L. Write the left margins.
e R Write the right margins.
e F Write the fix statuses (1 for a free variable, 0 for a fixed one).
e S Write the search steps used by the ROLL command.
e N Write the symbolic names of the parameters.
NPL Specifies how many numbers will be written on each line of the file. This does not apply

to symbolic names, which are always written one per line. Setting NPL to 0, lets the

system decide for the actual numbers per line.

APPEND In case the specified file exists, APPEND determines what to do with its previous contents.

Allowed values are:

e NO The previous contents of the file are overwritten.

e YES The new values are appended at the end of the file.

FROM Specifies the index to start writing from.

File manipulation commands 75

TO

VALUE

FORMAT

CANCEL

Specifies the index to end writing to.

Specifies whether the value of the objective function is to be written. Allowed values
are:

e BEFORE The value of the objective function is written before the actual data.

e AFTER The value of the objective function is written after the actual data.

e NEVER The value of the objective function is not written.

This is the format to be used when writing data to the file. You may specify any valid
Fortran format, or * to use a free format. Note that the format must be consistent with

the setting of NPL, containing the appropriate number of format specifiers. Symbolic

names are always written one per line using an A format.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.8.3 DISCARD

Syntax classification: UNC

Syntax: DISCARD file_name [TEXT | BIN |

Purpose: Writes a MERLIN record with the values and attributes of the minimization parameters

to a specified file. The file is overwritten. The optional parameter at the end of the command

specifies the file type.

Examples:

DISCARD DATAFILE
overwrites the file DATAFILE with the values and attributes of the minimization param-

eters.

6.8.4 DELETE

Syntax classification: UNC

Syntax: DELETE file_name; file_names ...

Purpose: Deletes one or more files.

Examples:

DELETE DATAFILE store
deletes the files DATAFILE and store.

76 Command description

Ind Keyword Description Value Allowed values
1) FILE File name to inspect BACKUP Any string

2) TYPE File type Text {Text,Bin}

3) DIR Direction (Forw./Backw.) 1 {1,-1}

4) PRINT Print Nothing/Value/Point 1 {0,1,2}

5) FROM Record to start from 0 Any int >= 0
6) TO Record to end to 0 Any int >= 0
7) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.18: The INSPECT panel.

6.8.5 REWIND

Syntax classification: UNC
Syntax: REWIND file_name; file_names ...
Purpose: Rewinds one or more files. Mainly used in MCL programs.
Examples: REWIND DATAFILE store
rewinds the files DATAFILE and store.

6.8.6 GOEOF

Syntax classification: UNC
Syntax: GOEOF file_name; file_names ...
Purpose: Positions one or more files to the end of information. Mainly used in MCL programs.

Examples: GOEOF DATAFILE store
positions the files DATAFILE and store to the end of information.

6.8.7 INSPECT

Syntax classification: PAC

Purpose: Displays the contents of a file containing MERLIN records (stored by the backup mech-
anism or the MEMO command). Inspection can proceed forwards or backwards and can display
parameter values, or function values only. The associated panel is listed in figure 6.18. The panel

parameters are as follows:

FILE The file to inspect.

Graphics and related commands 77

TYPE

DIR

PRINT

FROM

TO

CANCEL

The file type. Allowed values are:

e TEXT for a MERLIN text file. Information is stored in human-readable, ASCII form.
Slower but portable.

e BIN for a MERLIN binary file. Information is stored in binary, machine-dependent
form. Faster, but less portable.

Determines the direction of the inspection. Allowed values are:

ol The file is inspected forwards, from the beginning to the end.

e —1 The file is inspected backwards, from the end to the beginning.

The settings of FROM, T0 also affect the direction of inspection. For a forward inspection
FROM should be less or equal to TO, while for a backward inspection FROM should be
greater than or equal to TO. If these conditions do not hold, the selected direction is

automatically inverted.
Determines the amount of output during file inspection. Allowed values are:

e 0 No printout at all.
e 1 Display function values.

e 2 Display function and parameter values as well.
The record where inspection starts.
The record where inspection ends.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

The following parameters can be returned to MCL programs:

REC

Index of the last record that has been inspected.

6.9 Graphics and related commands

6.9.1 GRAPH

Syntax classification: PAC

78

Command description

Ind
1)
2)
3)
4)
5)
6)
7)

Keyword Description Value Allowed values
INDEX Variable index 1 Any int >= 1
NOP Number of points 30 Any int >= 1
FROM From -10000. Any real

TO To 10000. Any real

LINES Lines 17 Any int >= 1
COLS Columns 64 Any int >= 1
CANCEL Cancel / Proceed 1 {0,1}

Figure 6.19: The GRAPH panel.

Purpose: Displays a one-dimensional rough graph of the objective function with respect to one of its

parameters. The associated panel is listed in figure 6.19. The panel parameters are as follows:

INDEX

NOP

FROM

TO

LINES

COLS

CANCEL

The function is graphed with respect to this variable.

Number of points for the graph. Each point corresponds to an evaluation of the objective

function.

Along with TO, this parameter determines the interval over which the function is dis-

played. This interval refers to the variable specified by INDEX.

Along with FROM, this parameter determines the interval over which the function is

displayed. This interval refers to the variable specified by INDEX.
The number of lines to use.
The number of columns to use.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.9.2 PSGRAPH

Syntax classification: PAC

Purpose: Produces a Postscript graph of the objective function, or of a set of X-Y data points.

The associated panel is listed in figure 6.20. The panel parameters are as follows:

WHAT

Specifies what to plot. Allowed values are:

Graphics and related commands

79

Ind
1)
2)
3)
4)
5)
6)
7)
8)
9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

Keyword
WHAT
FILE
INDEX
NOP

FROM

TO
DATAFILE
SYMBOL
XTITLE
YTITLE
FONTSIZE
GRID
FRAME
CONNECT
XTICKS
YTICKS
PAPER
CANCEL

Description Value
What to plot (Func/Data) f
Output file name POST
Variable index 1
Number of points 30
From -1000.
To 1000.
Data file to read DATA
Symbol (No/Yes) 1

X-axis title
Y-axis title
X and Y-title fontsize 16
Grid lines (On/0ff)

Frame (On/0ff)

Connect points (Yes/No)
Number of X-axis ticks
Number of Y-axis ticks
Paper (A4/B5/USLet/USLeg)
Cancel / Proceed

=, O OOl » kO

Allowed values

{f,d}
Any string

Any int >= 1

1 <= int <=
Any real
Any real
Any string
{0,1}

Any string
Any string
5 <= int <=
{1,0}
{1,0}
{1,0}

0 <= int <=
0 <= int <=
{0,1,2,3}
{0,1}

1000

30

15
15

FILE

INDEX

NOP

FROM

TO

DATAFILE

SYMBOL

Figure 6.20: The PSGRAPH panel.

e F Plots the objective function with respect to one of its variables.

e D Plots X-Y curves from data points stored in a file.

The file to dispose the PostScript graph.

The objective function is plotted with respect to this variable.

Number of points (evaluations) in case one wants to plot the objective function.

Along with TO, this parameter determines the interval over which the function is plotted.
This interval refers to the variable specified by INDEX.

Along with FROM, this parameter determines the interval over which the function is
plotted. This interval refers to the variable specified by INDEX.

In case one wants to plot a set of data points, this is the file containing these points.

The points should be stored column wise, with the first column being the X-values

and the rest of the columns being sets of Y—values that correspond to different curves.

Spaces or tabs can be used to separate the numbers in a line.

Specifies whether a symbol should be plotted at each data point. Allowed values are:

e 0 Do not plot a symbol.

80

Command description

XTITLE

YTITLE

FONTSIZE

GRID

FRAME

CONNECT

XTICKS

YTICKS

PAPER

CANCEL

e 1 Plot a symbol (an x) at each data point.

The X-axis title.

The Y-axis title.

The X and Y—axis titles are printed using the Times—Roman font and this font size.
Specifies whether grid lines should be plotted. Allowed values are:

e 0 Do not plot grid lines.
e 1 Plot grid lines.

Specifies whether a frame should be plotted around the graph. Allowed values are:

e 0 Do not plot a frame around the graph.

e 1 Plot a frame around the graph.

Specifies whether the data points should be connected by a straight line or not. Allowed

values are:

e 0 Do not connect the data points.

e 1 Connect the data points using straight lines.
Number of X-axis ticks.

Number of Y-axis ticks.

Specifies the paper size. Allowed values are:

e 0 A4 paper size (8.26” x 11.69”).

e 1 B5 paper size (7.16” x 10.12).

e 2 US Letter paper size (8.57 x 117).

e 3 US Legal paper size (8.5” x 147).

This parameter controls if the intended procedure will be executed or canceled. If any
changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

Panel related commands 81

6.10 Panel related commands

6.10.1 PANELON

Syntax classification: UNC
Syntax: PANELON | panel_name; panel_names ...]
Purpose: Activates one or more panels. Without any arguments it turns on all MERLIN panels.

Examples: PANELON ROLL BFGS PICK

6.10.2 PANELOFF

Syntax classification: UNC
Syntax: PANELOFF [panel_name; panel_namesy ...]
Purpose: Deactivates one or more panels. Without any arguments it turns off all MERLIN panels.

Examples: PANELOFF BFGS PICK

6.10.3 PSTATUS

Syntax classification: UNC
Syntax: PSTATUS [panel_name; panel_namesy ...]

Purpose: Displays the status of some or all MERLIN panels. A panel can be active (on) or inactive

(off). Without any arguments the status of all MERLIN panels is displayed.

6.10.4 PDUMP

Syntax classification: UNC
Syntax: PDUMP file_name [panel_name; panel_namesy ...]

Purpose: Writes to a file the current values of the parameters of one or more panel commands. The
file can be used later as a macro to restore the values of the panel parameters. If no panel names
are present in the command line, the parameters of all MERLIN panel commands are written to the
file.

82 Command description

6.11 Output redirection and related commands

Almost all MERLIN commands produce output. This output can be redirected to a file using the

Unix like > and >> redirection symbols:

command argument; arguments ... > file_name

will dispose the command’s output to the file file_name. The file is overwritten.
command argument, argumenty ... >> file_name

will append the command’s output to the file file_name.

6.11.1 HIDEOUT

Syntax classification: UNC
Syntax: HIDEQUT file_name | APPEND |

Purpose: Redirects all subsequent MERLIN output to the specified file. The optional argument
APPEND causes HIDEQUT to append the output to the file, instead of overwriting it. The effect of a
HIDEOUT command is canceled by REVEAL. Nested pairs of HIDEQUT-REVEAL commands are allowed.

6.11.2 REVEAL

Syntax classification: SIC

Purpose: Cancels the effect of the most recent HIDEOUT command.

6.12 Macro and McL related commands

6.12.1 MACRO

Syntax classification: SIC

Purpose: MACRO is an interactive command, that assists the user in preparing a macro. It initiates
a macro composing session that prompts for the macro name and the constituent commands, and
finally appends the resulting macro in file MACROF. To terminate the macro composition one must
use the CLEAR command.

Data fitting related commands 83

Ind Keyword Description Value Allowed values
1) DO Desired action W {c,r,w}

2) PROB Confidence Probability 0.6827 0. < real < 1.
3) FILE File name COVAR Any string

4) CANCEL Cancel / Proceed 1 {0,1}

Figure 6.21: The COVARIANCE panel.

6.12.2 CLEAR

Syntax classification: SIC

Purpose: Used to terminate a macro composing session initiated by command MACRO. It has no

effect outside a MACRO session.

6.12.3 RUNMCL

Syntax classification: UNC
Syntax: RUNMCL file_name
Purpose: Initiates execution of a precompiled MCL program, that resides in the specified file.

Equivalent syntax: -file_name

6.13 Data fitting related commands

6.13.1 COVARIANCE

Syntax classification: PAC
Purpose: Calculates the covariance matrix for a least squares fit. The associated panel is listed in
figure 6.21. The panel parameters are as follows:

DO Specifies the action to be taken. Allowed values are:

e C Calculate the covariance matrix.
e R Read the covariance matrix from a file.

e W Calculate and store the covariance matrix in a file.

PROB The probability that is used to define the confidence region.

84 Command description

FILE The file to store (or read from) the covariance matrix. The matrix is stored column
wise and may be later used by the CONFIDENCE command.

CANCEL This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

6.13.2 CONFIDENCE

Syntax classification: RAC

Purpose: Displays the equation defining the confidence region for a least squares fit.

6.14 Getting help

There are two commands that provide useful information on the usage of MERLIN.

6.14.1 LIST

Syntax classification: SIC

Purpose: Lists alphabetically all MERLIN commands. The command’s output is listed in figure
6.22.

6.14.2 HELP

Syntax classification: UNC
Syntax: HELP comand_name
Purpose: Provides on-line instructions for the usage of all MERLIN commands.

Examples: HELP POINT produces the output listed in figure 6.23.

Getting help

Merlin commands

ACCUM ADJUST ALIAS ALTIASDIS ANAL AUTO
BACKUP BATCH BFGS CFLAG CFLAGDIS CLEAR
CONFIDENCE CONGRA CONTROL COVARIANCE DELETE DFP
DISCARD DUMP ECHO EPILOG EVALUATE FAST
FIX FIXALL FLAG FLAGDIS FULLBACK FULLPRINT
GENERAL GNORM GODFATHER GOEOF GRADCHECK GRADDIS
GRAPH HALFPRINT HELP HESSIAN HIDEOUT HISTORY
IAF INIT INSPECT JANAL JCOMPARE JNUMER
LASTBACK LDEMARGIN LEVE LIMITS LIST LMARGIN
LOOSALL LOOSE MACRO MAD MEMO MIXED
MODEDIS NOBACK NOEVAL NONAME NOPRINT NOTARGET
NUMER PANELOFF PANELON PDUMP PICK POINT
PSGRAPH PSTATUS QUAD QUIT RDEMARGIN RESET
RETURN REVEAL REWIND RMARGIN ROLL RUNMCL
SHORTDIS SIMPLEX S0S STEP STEPALL STEPDIS
STOP TARGET TERMDIS TITLE TOLMIN TRUST
UNALIAS VALDIS

Use the HELP command to obtain more information.

Figure 6.22: Output from the LIST command.

Syntax: POINT index_specification value ...

Description:
POINT assigns values to the minimization parameters.

MCL equivalent: POINT (X.index=value [; X.index=value ...])

Examples: POINT 1 1.5 2 -3.65
POINT 1-8 12.5

See also: SHORTDIS, INIT.

Figure 6.23: Sample output from the HELP command.

86 Command description

tolmin <cr>

TOLMIN
TOLMIN Panel
Ind Keyword Description Value Allowed values
1) NOC Number of calls 300 Any int >= 1
2) PRINT Printout level 1 {0,1,2}
3) AcC Termination accuracy 0. 0. <= real < 1.
4) MAD Automatic derivatives 0ff {0On,0ff}
5) CANCEL Cancel / Proceed 1 {0,1}

Enter changes:
mad ? <cr>

MAD: Specifies whether the Merlin Automatic Derivatives are to be used
when approximating the gradient vector. Allowed values are:
ON The Merlin Automatic Derivatives are to be used.
OFF Use the current derivative mode.

Figure 6.24: Requesting help on panel keywords.

6.14.3 Help on panel keywords

When a panel with several keywords appears, one can obtain information for their meaning on-line
by entering a keyword (or an index) followed by a question mark. As an example we list the user’s
input and the corresponding output in figure 6.24. If a single question mark is entered at the panel’s

prompt, information for all the parameters is issued.

6.15 Odds and ends

6.15.1 ECHO

Syntax classification: UNC
Syntax: ECHO any_message

Purpose: Displays its arguments. It can be used inside macros, to issue informative messages.

Odds and ends 87

Ind Keyword Description Value Allowed values
1) DISKMAC Macros on regular files 1 {0,1%}

2) ECHOMAC Macro start/end messages 1 {0,1}

3) ECHOPRO Prolog/epilog messages 1 {0,1}

4) MCLKEYS List MCL keywords 0 {0,1}

5) ECHOCOM Echo commands 1 {0,1%}

6) KEEPIN Keep input file 1 {0,1}

7) KEEPOUT Keep output file 1 {0,1}

8) MCLBUF Use buffered MCL 1 {0,1}

Figure 6.25: The CONTROL panel.

Examples: ECHO —---- Minimization starts now !!!

ECHO ’A very long message’

6.15.2 EPILOG

Syntax classification: UNC
Syntax: EPILOG epilog_command

Purpose: Defines a command to be executed after a STOP, RETURN or QUIT is issued by the user. A
blank argument (ie: EPILOG > ’) clears the epilog command. The current epilog can be displayed
using MODEDIS.

6.15.3 CONTROL

Syntax classification: PAC

Purpose: Sets the parameters that control some MERLIN features. The associated panel is listed in

figure 6.25. The panel parameters are as follows:

DISKMAC Determines whether MERLIN should check in plain disk files for macros not present in
the macro file MACROF. For example if the macro .abc is not present in the macro file,
MERLIN would check for the existence of file abc. Allowed values are:
e 0 Do not check for macros on disk files.
e 1 Check for macros on disk files.

ECHOMAC This setting affects the printing of informative messages indicating that a macro has

started / stopped executing. Allowed values are:

88

Command description

ECHOPRO

MCLKEYS

ECHOCOM

KEEPIN

KEEPOUT

MCLBUF

e 0 Do not issue informative messages.

e 1 Issue informative messages.

Determines whether informative messages are printed each time the MERLIN prolog /

epilog begins or ends execution. Allowed values are:

e 0 Do not issue informative messages.

e 1 Issue informative messages.

Specifies whether the McL specific keywords and their values (that are normally returned
to an MCL program) should be printed after a panel command terminates. MCL specific
keywords are identified in the panel description file by the trailing question mark, eg:

INFO? Allowed values are:

e 0 Do not print the McCL specific keywords.
e 1 Print the McL specific keywords.

Controls printing of the current command before executing it. Allowed values are:

e 0 Do not print the name of current command.

e 1 Print the name of current command.

Controls the handling of the MERLIN input file when MERLIN execution ends. Allowed

values are:

e 0 Delete the MERLIN input file when MERLIN execution ends.

e 1 Do not delete the MERLIN input file when MERLIN execution ends.
This setting only applies when the configuration directive INPUT_FILE has been used.

Controls the handling of the MERLIN output file when MERLIN execution ends. Allowed

values are:

e 0 Delete the MERLIN output file when MERLIN execution ends.

e 1 Do not delete the MERLIN output file when MERLIN execution ends.
This setting only applies when the configuration directive OUTPUT FILE has been used.

Determines whether an McCL program should run in buffered or unbuffered mode. While
in buffered mode, MERLIN will attempt to read in all of the object file specified in the
RUNMCL command and keep it in memory. If the program is too large to fit in the buffer,
MERLIN reverts to the unbuffered mode. In the later case, the RUNMCL command will

inform the user. Allowed values are:

e 0 Run McL programs unbuffered.
e 1 Use the buffer.

Odds and ends 89

Ind
1)
2)
3)
4)

Keyword Description Value Allowed values
FILE History file name HISTORY Any string
STATUS History status 0ff {On,0ff}

OLD 01d file (Append/Delete) A {A,D}

CANCEL Cancel / Proceed 1 {0,1}

Figure 6.26: The HISTORY panel.

6.15.4 HISTORY

Syntax classification: PAC

Purpose: Controls the MERLIN history mechanism. When history is active, all MERLIN commands

are stored in a file. The file can be used as a macro to repeat a sequence of commands. The

associated panel is listed in figure 6.26. The panel parameters are as follows:

FILE

STATUS

OLD

CANCEL

The file to store the MERLIN commands.
Determines the status of the history mechanism. Allowed values are:

o ON The history mechanism is turned on.

e OFF The history mechanism is turned off.

Specifies what happens if the history mechanism is turned on, and the history file, exists

already. Allowed values are:

e A Append to the already existing file.

e D Overwrite the previous contents of the history file.

This parameter controls if the intended procedure will be executed or canceled. If any

changes to any of the panel parameters have been entered they are recorded anyway.

e 1 is the default value and the process advances normally.

e 0 cancels the action initially intended.

90

Command description

Chapter 7

Extensions

7.1 Why extend

After working with MERLIN for a while, one realizes the need for incorporating his own code
fragments into MERLIN. For example one may want to write to a file the resulting minimization
parameters using a strange format, produce a graph for a plotter, or even add his own minimization
routine. The possibilities are infinite. We decided to incorporate a mechanism for uniformly
extending MERLIN, without having to modify the body of the program. Any extensions added, are

automatically recognized by McL programs as well. The procedure involves three steps:
e The user has to provide a subroutine that performs the desired operations. A user subroutine,
that is used as a MERLIN extension, is termed a plug—in module.

e A unique name must be chosen for the plug—in. This name must be declared in the MERLIN

configuration file.
e In case the plug—in obtains its input using the panel mechanism, one must make the corre-

sponding entries in the panel description file.

These steps are further explained in the following sections.

7.2 Writing the plug—in module

Let us assume that one wants to create an alternative to SHORTDIS: a plug—in module that will
print the value of the parameters, their names (if any) and their first partial derivatives. A sub-
routine that performs the desired operation is shown in figure 7.1. Sample output (for the two

parameter Rosenbrock function) is demonstrated in figure 7.2. As is clear from the example, to

91

92 Extensions

Source code Short description

SUBROUTINE NEWSH
CHARACTER*10 NI

CALL GETIQU(IUINP,IUOUT) Find out the output unit number (IUQUT)

CALL GETDIM(N,M) Find out the number of parameters (N)

DO 10,I=1,N Loop over all parameters
CALL GETX1(I,XI) Get the value of the I'" parameter (XI)
CALL GETNM1(I,NI) Get the name of the I'" parameter (NI)
CALL GETG1(I,GI) Get the I'" component of the gradient (GI)

WRITE (IUOUT,20) I, NI, XI, GI | Print them all out
10 CONTINUE
20 FORMAT (2X,15,2X,A,2(2X,1PE14.7))
END

Figure 7.1: Sample plug—-in module: an alternative to SHORTDIS. It uses the glue routines GETIOU,
GETDIM, GETX1, GETNM1 and GETG1.

1 Rho 4.0000000E+00 1.9206000E+04
2 Sigma 4.0000000E+00 -2.4000000E+03

Figure 7.2: Output from the sample plug-in module NEWSH.

Naming the plug—in module 93

access information about the minimization parameters and the MERLIN operating environment we
use a number of routines: GETDIM, GETIOU, GETX1, GETNM1, GETG1. These are termed glue routines
and their purpose is to provide a standard programming interface to the internal MERLIN data

structures. There are more glue routines; a complete list is given in chapter 9.

After writing the subroutine, one must insert a call to it in one of the empty plug—in subroutines

provided in MERLIN. For example:

SUBROUTINE PLUG1
CALL NEWSH
END

There are 50 empty subroutines (PLUG1 ... PLUG50) that can be used to accommodate plug-in
modules. Naturally, the file containing SUBROUTINE PLUG1 has to be recompiled.

7.3 Naming the plug—in module

Plug—in modules are referenced through a symbolic name chosen by the user. The name for the
plug in module must be declared in the MERLIN configuration file using the PLUG configuration
directive. It can be up to 10 characters long and must be unique among all MERLIN commands
and other plug—in modules. For the above example we chose the name NEWSH. The corresponding

entry in the configuration file should be:
PLUG 1 NEWSH

The plug—in can be invoked using the name NEWSH. In addition all other MERLIN features, such as
command aliasing, output redirection etc., hold for the new plug—in as well. The new plug—in is

also recognized by the McCL compiler.

7.4 Adding on—line help

The help texts for all non—panel commands reside in the MERLIN help file named HELP.' The
structure of the help file is shown in figure 7.3. help_text,, help_texts, ...are multi line help texts
that appear whenever requested by a HELP command. initial_help_text appears whenever a HELP
command without any arguments is issued. Part of the help file that corresponds to the sample

plug—in module NEWSH is shown in figure 7.4.

!The default name can be changed using the HELP_FILE configuration directive.

94 Extensions

initial_help_text
**xxcommand_name;
help_text;
**x*xcommand_namey

help_texty

Figure 7.3: The structure of the MERLIN help file.

*xxNEWSH

NEWSH is a sample plug-in module that demonstrates the use of
the Merlin glue routines. It does not require any command line
arguments and its output resembles the SHORTDIS command.

Figure 7.4: Help text for the sample plug-in module NEWSH.

7.5 Plug—ins with command line arguments

Plug—in modules can take advantage of any arguments in the MERLIN command line. A more
elaborate example is presented in figure 7.5: a plug-in module that will write the value of the
parameters, their names (if any) and their first partial derivatives to a user specified file. The file

name will be given as a command line argument. If we use the second empty plug—in subroutine:

SUBROUTINE PLUG2
CALL FILESH
END

and choose the name FILEDIS, then an appropriate entry in the configuration file would be:
PLUG 2 FILEDIS
The plug—in module should then be invoked with exactly one argument, the file name:

FILEDIS some_file

7.6 Plug—ins with a panel

Plug—in modules can use the panel mechanism to obtain input and to communicate values to

McL programs. Figure 7.6 presents a trivial example of a plug-in module that writes some of

Plug-ins with a panel 95

Source code Short description
SUBROUTINE FILESH
CHARACTER*10 NI
CHARACTER*80 FNAME
CALL GETIOU(IUINP,IUOUT) Find out the output unit number (IUOUT)
CALL ARGNO(NARG) Find out number of arguments (NARG)
IF (NARG.NE.1) THEN If incorrect number of arguments
WRITE (IUQUT,*) ’One arg please’
CALL SETCOD(-2) Indicate an error
RETURN
END IF
CALL GETARG(1,FNAME,LENF) Get the first argument
NU = NUNIT() Request a free unit number
OPEN (NU,FILE=FNAME) Open the file
CALL GETDIM(N,M) Find out the number of parameters (N)
DO 10,I=1,N Loop over all parameters
CALL GETX1(I,XI) Get the value of the I'" parameter (XI)
CALL GETNM1(I,NI) Get the name of the I'" parameter (NI)
CALL GETG1(I,GI) Get the I'" component of the gradient (GI)
WRITE (NU,20) I, NI, XI, GI Print them all out
10 CONTINUE
CLOSE (NU) Close the file
CALL SETCOD(0) Indicate no error
20 FORMAT (2X,I5,2X,A,2(2X,1PE14.7))
END

Figure 7.5: Sample plug—in module that takes advantage of command line arguments. It uses the
glue routines GETIOU, ARGNQO, SETCOD, GETARG, NUNIT, GETDIM, GETX1, GETNM1 and GETG1.

96 Extensions

the minimization parameters to a file. In addition it can return to a requesting MCL program the

number of lines written to the file. The third empty plug—in subroutine is used for this example:

SUBROUTINE PLUG3
CALL PEXA
END

The name of the plug—in (PEXA) is declared in the configuration file as:
PLUG 3 PEXA

The PEXA panel as presented by MERLIN when the command is invoked, is shown in figure 7.8.
The panel uses three keywords: FROM, TO and FILE. The following section describes the format
of the panel description file and explains how to make the appropriate entries. Part of the panel

description file that correspond to the PEXA sample plug-in, is shown in figure 7.7.

7.7 The panel description file

All MERLIN panels and their corresponding keywords along with their default values are stored
in the panel description file. Its default name is PDESC and can be changed through the configu-
ration directive PDESC_FILE. MERLIN commands and user plug—in modules share the same panel

description file. Note that the panel description file must be present in order for MERLIN to operate.

The format of the panel description file is explained in the following sections. Lines starting with

% (comments) and blank lines are ignored.

7.7.1 Declaring the panel name

The description of a panel starts with a .panel line, and extends until another .panel line or the

end of the description file is encountered. The format of a .panel line is:

.panel panel_-name panel_status

panel_-name The MERLIN command that this panel corresponds to. In case of a plug—in module,
it is the name assigned to the plug—in through the PLUG configuration directive. It

must be up to 10 characters long, and is case insensitive.
panel_status Initial setting for the panel status. It can be either on or off. The panel status is

changed by the PANELON and PANELOFF commands.

Examples: .panel bfgs on

.panel memo off

The panel description file

97

Source code

Short description

10

SUBROUTINE PEXA
CHARACTER*80 FNAME

CALL CHANGE(MERR)

IF (MERR.NE.O) THEN
CALL SETCOD(MERR)
RETURN

END IF

CALL GETPI(’FROM’,NFROM)
CALL GETPI(’TO’,NTO)
CALL GETPS(’FILE’ ,FNAME,LEF)

NU = NUNIT()

OPEN (NU,FILE=FNAME)

DO 10,I=NFROM,NTO
CALL GETX1(I,XI)
WRITE (NU,*) XI

CONTINUE

CLOSE (NU)

NL = NTO-NFROM+1
CALL SETPI(’LINES’,NL,IERR)
CALL SETCOD(0)

END

Present the panel and accept changes
Check if any error occurred

Indicate an error

Get index to start from (NFROM)
Get index to end to (NTO)
Get the file name (FNAME)

Obtain a free unit number (NU)
Open the file

Loop over the specified parameters
Get the I'M parameter (XI)

Write the parameter

Close the file

Calculate the number of lines written (NL)

Return the number of lines written

Indicate no error

Figure 7.6: Sample plug-in module that exploits the panel mechanism. It uses the glue routines
CHANGE, SETCOD, GETPI, GETPS, NUNIT, GETX1 and SETPI.

98 Extensions

.PANEL PEXA ON

FROM I [1,inf) 1 ’Index to begin from’
TO I [1,inf) 1 ’Index to end to’
FILE S {any} ’SAMPLE’ ’File to write to’
LINES? I [1,inf) 1 ’Lines written’

.HELP

The PEXA plug-in module disposes some of the minimization parameters
in a file.

.END

.HELP FROM

FROM specifies the index to start writing from.

.END

.HELP TO

TO specifies the index to end writing to.

.END

.HELP FILE

FILE specifies the file to write to.

.END

Figure 7.7: Part of the panel description file corresponding to the PEXA sample plug—in module.

PEXA Panel
Ind Keyword Description Value Allowed value
1) FROM Index to begin from 1 Any int >= 1
2) TO Index to end to 1 Any int >= 1
3) FILE File to write to SAMPLE Any string

Figure 7.8: The panel of the PEXA sample plug—in module as presented by MERLIN.

The panel description file 99

7.7.2 Declaring the keywords

After declaring the panel name, all keywords that appear in the panel must be described. If neces-

sary, the description of a keyword can be split across several physical lines using the continuation

character & at the end of each continued line. The description of a keyword has the form:

keyword keyword_type allowed_values default_value short_description

keyword

keyword_type

allowed_values

The keyword name. It must be up to 10 characters long and is case insensitive.

It must be unique in the current panel. Keywords of type I or R may be followed

by a question mark to designated an MCL returned keyword. The values of MCL

returned keywords, are set by the plug—in module and are accessible by an McL

program.

A single character indicating the keyword type, i.e. what kind of values are

associated with the keyword. Possible keyword types are:

oI
o R
e C

The keyword is associated with integer numbers.
The keyword is associated with floating point numbers.

The keyword is associated with character strings. MERLIN uses case in-
sensitive comparisons to determine whether an allowed value has been

assigned to the keyword.

The keyword is associated with character strings. MERLIN uses case sensi-
tive comparisons to determine whether an allowed value has been assigned

to the keyword.

A description of the values allowed for the keyword in one of the following

forms:

For keywords of type I or R an interval of allowed values in the form:

Is Il , ul rs

ls is either (for an open interval or [for a closed interval.
rs is either) for an open interval or] for a closed interval.

ll, ul The lower and upper limits of the interval correspondingly. They
must be integer or floating point numbers according to the corre-
sponding keyword type. The symbols inf and -inf can be used

to designate plus or minus infinity. Note that always Il < wul.
Examples: (0,1) [0,inf) (-inf,inf) (0.5,2.5] [-10,10]

A set of allowed values in the form:

100 Extensions

{ valuey, valuey, ...value, ¥

The values in the set must be integer or floating point numbers, or char-
acter strings (enclosed in quotes), according to the corresponding keyword
type. In the case of keywords of type C or S, the special entry {any} will
cause any value to be accepted.

Examples: {1,2,3} {any} {’a’,’b’,’c’} {’on’,’o0ff’}

default_value The default value for the keyword. It should be one of the allowed values.

short_description A short description of the keyword that will appear in the panel. It must be

enclosed in a pair of single quotes.

Examples: NOC I [1,inf) 300 ’Number of calls’
PRINT I {0,1,2} 1 ’Printout level’
FILE S {any} HESSTAN’ ’File to write to’
WHAT C {’F’,’D’} B ’What to plot (Fun/Data)’
INFO? I [0,inf) 0 ’Result code’

7.7.3 Adding help texts

An explanatory help text for the command itself and for each of the keywords can be included in
the panel description file. The help text for the command itself is displayed using the MERLIN HELP

command:

HELP command

The help text for a specific keyword is displayed using a question mark after its name:
command keyword ?

Help texts for all panel commands as well for all of their keywords is included in the distributed
panel description file. Note that the help texts for all non—panel commands reside in the MERLIN
help file. The help texts in the panel description file have the form:

.help [keyword |
help_text

.end
keyword The name of a keyword which if present associates the help text with the keyword. If
keyword is omitted, the help text is associated with the command itself.

help_text A multi line help text. All lines in between .help and .end, including blank lines and

lines starting with the percent character, are considered as part of the help text.

Chapter 8

The MERLIN-MCL configuration file

8.1 General description

The purpose of the configuration file is to set system dependent parameters (such as the largest
floating point number) and control the various defaults (such as the printout level, processing mode,
etc.) in a portable way. The configuration file is read by both, MERLIN and McL and its default

name CONFIG can be changed during installation.

Each line of the configuration file contains a configuration directive and optionally one or more

parameters:
directive parameter; parameters ... parametery

Lines starting with the percent character (comments) and blank lines are ignored. Directives and
parameters are case insensitive, with the exception of filenames, which must adhere to the local
operating system conventions and can be up to 80 characters long. Arguments with space or tab
characters must be enclosed in a pair of single quotes. A quote is generated using the escape
sequence \’. Leading and trailing spaces and tabs are ignored outside a pair of single quotes. In
case of multiple instances of a directive, the last one takes effect. PLUG is an exception, where

multiple PLUG directives are used to define various user plug—in modules.

If an error occurs while reading the configuration file, McL will print appropriate messages and
abort execution. MERLIN will return control to the calling program, indicating the problem through

the return flag IQUIT. Possible values are:

IQUIT = —3 Some errors occurred while parsing the configuration file. Moreover the MERLIN
output file could not be opened.

IQUIT = —4 Some error occurred while parsing the configuration file. The error is related to the

101

102 The MERLIN-MCL configuration file

directives QOUTPUT_FILE, OUTPUT_UNIT or OUTPUT_PRECONN that control the output
file.

IQUIT = —5 The configuration file has been successfully parsed. The output file could not be

opened however.

IQUIT = —6 Some error occurred while parsing the configuration file. The error is not related
to the directives OUTPUT_FILE, OUTPUT_UNIT or OUTPUT_PRECONN that control the
output file.

Table 8.1 summarizes the defaults for all configuration directives in case some of them are omitted,

or a configuration file is not used.

8.2 Directives that control MERLIN input—output

8.2.1 MERLIN input—output units and files

Usually a Fortran statement of the form

READ (*,*) x

expects its input from the keyboard. Likewise the statement
WRITE (*,%) x

displays its output to the screen of a terminal. Fortran compilers have a pair of unit numbers (for
example 5 and 6) that refer to the keyboard and terminal screen correspondingly and accomplish the
same effect. These are referred to as the standard input and output unit numbers correspondingly.

For example:

READ (5,%) x
WRITE (6,%) x

Some operating systems use unit numbers other than 5 and 6, or allow the user to assign its own
unit numbers to the input—-output devices. Some others require a Fortran OPEN statement before
the device can be used for input—output operations. In addition, one may want to use regular disk
files for input and output instead of the usual devices. This section describes the configuration

directives that control the way MERLIN handles its input and output.

8.2.2 INPUT_FILE

Syntax: INPUT FILE file_name

Directives that control MERLIN input—output

103

Configuration directive

Default value

INPUT_FILE
QUTPUT_FILE
INPUT_UNIT
OUTPUT_UNIT
INPUT_PRECONN
QUTPUT_PRECONN
HEADER
PRINTOUT
PDESC_FILE
MACRO_FILE
HELP_FILE
MCL_ERROR_FILE
MCL_OBJECT_FILE
HAS_APPEND
SIZE REAL
SIZE_INT
SIZE_CHAR
UNIT_RANGE
ONEQF

FILE

MODE

PROLOG

EPILOG

PLUG

BIGGER
SMALLER
MACHINE DIGITS

None.

None.

)

6

yes

yes

on

full

PDESC

MACROF

HELP

ERROR

The standard output unit
no

4

4

1

50 80

return

Not applicable

iaf

No prolog is executed
No epilog is executed
Not applicable

1036

10-36

As determined at MERLIN startup

Table 8.1: Default values for all configuration directives.

104 The MERLIN-MCL configuration file
Purpose: INPUT_FILE specifies that MERLIN should read its input from file_name instead of the
standard input unit.
Default: Nome. If this directive is omitted, MERLIN reads its input from the standard input unit.
Used by: MERLIN only.
Examples: INPUT_FILE test

INPUT_FILE ’sample input’
INPUT_FILE c:\merlin\in\sample.in

8.2.3 OUTPUT_FILE

Syntax:

Purpose:

Default:

Used by:

Examples:

OUTPUT_FILE file_name [APPEND |

QOUTPUT_FILE specifies that MERLIN should dispose its output to file_name instead of
the standard output unit. If the optional argument APPEND is present and file_name
exists already, output will be appended at the end of the file.

None. If this directive is omitted, MERLIN disposes its output to the standard output

unit.
MERLIN only.

OUTPUT_FILE fit.out append
QUTPUT_FILE ..\results\runO1l

8.2.4 INPUT_UNIT

Syntax:

Purpose:

Default:

Used by:

Examples:

INPUT_UNIT unit_number

INPUT_UNIT specifies the Fortran unit number that refers to the standard input device

(keyboard), i.e. a Fortran statement of the form
READ (unit_number,*) x

should be able to receive input from the keyboard.

If this directive is omitted, unit_number defaults to 5. This value is suitable for most

compilers running under Unix.
MERLIN only.

INPUT_UNIT 9

Directives that control MERLIN input—output 105

8.2.5 OUTPUT_UNIT

Syntax:

Purpose:

Default:

Used by:

Examples:

QUTPUT_UNIT wunit_number

OUTPUT_UNIT specifies the Fortran unit number that refers to the standard output device

(terminal), i.e. a Fortran statement of the form
WRITE (unit_number,*) x

should be able to write output to the terminal.

If this directive is omitted, unit_number defaults to 6. This value is suitable for most

compilers running under Unix.
MERLIN only.

OUTPUT_UNIT 9

8.2.6 INPUT_PRECONN

Syntax:

Purpose:

Default:
Used by:

Examples:

INPUT_PRECONN preconnect

Specifies whether the Fortran input unit, as specified by the INPUT_UNIT directive, is
preconnected to the corresponding input device. Preconnected input units need no
Fortran OPEN statements before they can be used for input. preconnect may be either

yes or no.
If this directive is omitted, INPUT_PRECONN yes is assumed.
MERLIN only.

INPUT_PRECONN yes

8.2.7 OUTPUT_PRECONN

Syntax:

Purpose:

Default:

Used by:

Examples:

OUTPUT_PRECONN preconnect

Specifies whether the Fortran output unit, as specified by the OUTPUT_UNIT directive, is
preconnected to the corresponding output device. Preconnected output units need no
Fortran OPEN statements before they can be used for output. preconnect may be either

yes or no.
If this directive is omitted, OUTPUT_PRECONN yes is assumed.
MERLIN only.

OUTPUT_PRECONN yes

106 The MERLIN-MCL configuration file

8.2.8 HEADER

Syntax: HEADER header_status

Purpose: Determines whether the informative messages that are normally printed during MERLIN
startup will be issued. The messages involve version of the program, authors and e-mail

contact. header_status can be either on or off.
Default: HEADER on, i.e. messages will be printed.
Used by: MERLIN only.

Examples: HEADER off

8.2.9 PRINTOUT

Syntax: PRINTOUT printout_level

Purpose: Specifies the amount of output that will be issued, while MERLIN starts, and until the
MERLIN prompt is reached for the first time. This setting also affects the output of
the prologue command. printout_level can be full, half or no. The three possible ar-
guments are analogous to the MERLIN commands FULLPRINT, HALFPRINT and NOPRINT
that change the printout mode after MERLIN has started. PRINTOUT no suppresses all
output. With PRINTOUT half only error messages are issued. PRINTOUT full allows
all output to be printed.

Default: If this directive is omitted, PRINTOUT full is assumed.
Used by: MERLIN only.

Examples: PRINTOUT half

8.3 File related directives

8.3.1 PDESC_FILE

Syntax: PDESC_FILE file_name
Purpose: Sets the name of the MERLIN panel description file to file_name.

Default: If this directive is omitted, the name of the MERLIN panel description file defaults to
PDESC.

Used by: MERLIN and McCL.

File related directives 107

Examples:

PDESC_FILE enhanced-PDESC
PDESC_FILE /usr/local/merlin/pdesc

8.3.2 MACRO_FILE

Syntax:
Purpose:
Default:

Used by:

Examples:

MACRO_FILE file_name

Sets the name of the MERLIN macro file to file_name.

If this directive is omitted, the name of the MERLIN macro file defaults to MACROF.
MERLIN only.

MACRO_FILE macrol
MACRO_FILE HD:merlin:supermac

8.3.3 HELP_FILE

Syntax:
Purpose:
Default:

Used by:

Examples:

HELP_FILE file_name

Sets the name of the MERLIN help file to file_name.

If this directive is omitted, the name of the MERLIN help file defaults to HELP.
MERLIN only.

HELP_FILE extrahelp

8.3.4 MCL_ERROR_FILE

Syntax:

Purpose:

Default:

Used by:

Examples:

MCL_ERROR_FILE file_name

Sets the name of the default McL error file to file-name. When the an error file
(E=file_name) is not supplied when the MCL compiler is invoked, the error file defaults
to this value. Setting file_name to an empty string (MCL_.ERROR_FILE ’ ’) causes all

compiler diagnostics to be printed on the standard output unit.

If this directive is omitted, all compiler diagnostics are printed on the standard output

unit.
McL only.

MCL_ERROR_FILE errors
MCL_ERROR_FILE errs/jobl

108

The MERLIN-MCL configuration file

8.3.5 MCL_OBJECT_FILE

Syntax:

Purpose:

Default:

Used by:

Examples:

MCL_OBJECT_FILE file_name

Sets the name of the default McL object file to file_name. When the an object file
(B=file_name) is not supplied when the McCL compiler is invoked, the object file defaults

to this value.

if this directive is omitted, MCL_OBJECT.FILE defaults to MOC (standing for MERLIN
Object Code).

McL only.

MCL_OBJECT_FILE myprog

8.3.6 HAS_APPEND

Syntax:

Purpose:

Default:

Used by:

Examples:

HAS_APPEND append_status

Specifies whether your Fortran compiler supports the APPEND extension in an OPEN
statement. More specifically, whether the following is a valid Fortran statement

OPEN (UNIT=unit_-number, FILE=file_name, ACCESS=’APPEND’)

The APPEND extension allows much faster updating of large text files, eg those produced
by the MERLIN backup mechanism, or by the MEMO command. append_status cane be

either yes or no.

If this directive is omitted, it defaults to HAS_APPEND no, i.e. the APPEND extension is

not used.
MERLIN only.

HAS_APPEND yes

8.3.7 SIZE REAL

Syntax:

Purpose:

SIZE_REAL n

Specifies that a floating point Fortran variable occupies n storage locations in an un-
formatted file. Floating point refers to a real or double precision variable, depending
on the installation. n is used to calculate the appropriate RECL specifier when opening
a MERLIN binary file

OPEN (UNIT=unit_-number, FILE=file_name, RECL=record_length)

File related directives 109

Default:

Used by:

Examples:

If this directive is omitted SIZE_REAL defaults to 4, which is appropriate for double

precision variables in most 32 bit computer systems.
MERLIN only.

SIZE REAL 4

8.3.8 SIZE_INT

Syntax:

Purpose:

Default:
Used by:

Examples:

SIZE_INT n

Specifies that an integer Fortran variable occupies n storage locations in an unformatted
file. n is used to calculate the appropriate RECL specifier when opening a MERLIN binary
file

OPEN (UNIT=unit_number, FILE=file_name, RECL=record_length)
If this directive is omitted SIZE_INTEGER defaults to 4.
MERLIN only.

SIZE_INTEGER 2

8.3.9 SIZE_CHAR

Syntax:

Purpose:

Default:
Used by:

Examples:

SIZE_CHAR n

Specifies that a CHARACTER*1 Fortran variable occupies n storage locations in an un-
formatted file. n is used to calculate the appropriate RECL specifier when opening a
MERLIN binary file

OPEN (UNIT=unit_-number, FILE=file_name, RECL=record_length)
If this directive is omitted SIZE_CHAR defaults to 1.
MERLIN only.

SIZE_CHAR 1

8.3.10 UNIT_RANGE

Syntax:

UNIT_RANGE from to

110 The MERLIN-MCL configuration file
Purpose: Defines an allowed range of Fortran unit numbers to be used by MERLIN. The purpose
of the unit range is to prevent MERLIN from interfering with files already open at the
timeSUBROUTINE MERLIN is called, or with files used within the user written modules
(FUNMIN, GRANAL, etc.).
Default: If this directive is omitted it defaults to UNIT_RANGE 50 80.
Used by: MERLIN only.
Examples: UNIT_RANGE 25 40
8.3.11 O0ONEQOF
Syntax: ONEOF action
Purpose: Determines the action MERLIN should take when an end—of-file condition occurs in the
input file. The specified action is taken only when MERLIN is running in interactive
mode. When in batch mode, MERLIN always returns to the calling program, setting
the IQUIT return flag to —10. action can be:
rewind MERLIN rewinds and re-reads the input file.
ignore MERLIN ignores the end-of-file condition and continues reading from the
input file.
return MERLIN immediately returns to the calling program, setting the IQUIT return
flag to —10.
Default: If this directive is omitted it defaults to ONEOF return.
Used by: MERLIN only.
Examples: ONEQOF ignore
8.3.12 FILE
Syntax: FILE file_name
file_contents
. .END
Purpose: Allows the contents of an arbitrary file to be included in the configuration file. Upon

MERLIN startup, all lines in between FILE and .. .END are copied in the file file_name.
If file_name exists already, its contents are overwritten. This directive can be used in

conjunction with the PROLOG directive.

Miscellaneous directives 111

Default: Three is no default value. If this directive is omitted, no file is created.
Used by: MERLIN and McCL.

Examples: FILE prl
POINT 1-8 4
SHORTDIS
. .END

8.4 Miscellaneous directives

8.4.1 MODE

Syntax: MODE processing-mode

Purpose: Specifies that MERLIN should start in interactive (iaf) or batch (batch) processing
mode. processing_mode can be either iaf or batch. The processing mode can be
changed by the IAF and BATCH commands.

Default: If this directive is omitted it defaults to MODE iaf.
Used by: MERLIN only.

Examples: MODE batch

8.4.2 PROLOG

Syntax: PROLOG prolog-command

Purpose: Specifies that prolg_command is a command to be executed after the configuration file
has been read; however before the first MERLIN prompt is displayed. prolog_command is
any valid MERLIN command, macro or MCL program invocation. Additional arguments
to the prolog_command are allowed as if it were issued interactively. As always the use
of single quotes is mandatory, if spaces are to be embedded. Note that only one prolog

command can be defined. If PROLOG is used more than once, the last one takes effect.
Default: Nome. If this directive is omitted, no prolog is executed.
Used by: MERLIN only.

Examples: PROLOG ’point 1- 5°
PROLOG ’.prl > prl.out’
PROLOG -an_mcl_prog
PROLOG .ini

112

The MERLIN-MCL configuration file

8.4.3 EPILOG

Syntax: EPILOG epilog-command
Purpose: Specifies that epilog_command is a command to be executed, before MERLIN relinquishes
control and either returns to the calling program (as a result of a RETURN or QUIT
command), or stops (as a result of a STOP command). epilog_command is any valid
MERLIN command, macro or MCL program invocation. Additional arguments to the
epilog_command are allowed as if it were issued interactively. As always the use of
single quotes is mandatory, if spaces are to be embedded. Note that only one prolog
command can be defined. After MERLIN starts, the epilog_command can be changed,
using the EPILOG command.
Default: Nome. If this directive is omitted, no prolog is executed.
Used by: MERLIN only.
Examples: EPILOG shortdis
EPILOG ’dump what x file results’
8.4.4 PLUG
Syntax: PLUG n plug_name
Purpose: Defines the names for user written plug-in modules. More specifically it defines that
plug_name should be used to reference the n'" plug-in. This directive should be used
when the user has programmed SUBROUTINE PLUGn. Note that plug name should not
coincide with any of the MERLIN commands. In case one wants to reference the plug—
in from an McCL program, the plug_name should not coincide with any of the McL
statements. (Including non—executable statements such as PROGRAM, LOOP, VAR, etc.)
Default: Nome. If this directive is omitted, no plug—in modules can be referenced, even if the
are embedded in the source code.
Used by: MERLIN and McCL.
Examples: PLUG 1 newsh

PLUG 7 supermin

8.4.5 BIGGER

Syntax:

BIGGER 3

Miscellaneous directives 113

Purpose:

Default:

Used by:

Examples:

Specifies that § is approximately the largest floating point number your machine can
handle. Note that according to installation, g refers to either real, or double precision

arithmetic.

If this directive is omitted, 3 defaults to 1036, which is suitable for most computers in

single precision.
MERLIN only.

BIGGER 1.E+300

8.4.6 SMALLER

Syntax:

Purpose:

Default:

Used by:

Examples:

SMALLER o

Specifies that o is approximately the smallest positive floating point number distin-
guishable from zero. Note that according to installation, o refers to either real, or

double precision arithmetic.

If this directive is omitted, o defaults to 10736, which is suitable for most computers

in single precision.
MERLIN only.

SMALLER 1.E-300

8.4.7 MACHINE_DIGITS

Syntax:

Purpose:

Default:

Used by:

Examples:

MACHINE DIGITS n

Specifies that during floating point operation approximately n significant digits are
taken into account. Note that according to installation, n refers to either real, or

double precision arithmetic.

The default value is determined and printed at MERLIN startup. Use this directive if

for some reason, MERLIN determines incorrectly the machine precision.
MERLIN only.

MACHINE DIGITS 7
MACHINE DIGITS 15

114 The MERLIN-MCL configuration file

Chapter 9

MERLIN glue routines

The following is a complete list of all MERLIN glue routines. Their purpose is to provide a standard
programming interface to the internal MERLIN data structures. By using the glue routines instead
of directly accessing the internal data structures, one avoids any knowledge of the internals of the
MERLIN source. Furthermore he ensures compatibility of any plug—in modules with future MERLIN

versions since the internal structures may change; the glue routines will not.

Most of the glue routines can be roughly classified as ‘get’ or ‘set’ routines. Get routines return
information from the MERLIN run—time environment. Set routines alter the MERLIN run—time

environment. For convenience the glue routines are divided in the following four categories:
e Parameter related: Glue routines that set or inquire data structures related to the minimiza-
tion parameters.
e Panel related: Glue routines that manipulate the panel data structures.

e Utility: Routines that are not specific to MERLIN; they are included here however as a pro-

gramming aid.

e Miscellaneous: The rest of the glue routines, that do not fall in one of the above categories.
In the description that follows, subprogram arguments are classified as:

e Input arguments: An initial value must be supplied when the glue routine is called. This

value remains intact during operation of the routine.

e Qutput arguments: An initial value need not be supplied when the glue routine is called.
These arguments will be assigned a value by the glue routine which will be returned to the

calling program.

115

116 MERLIN glue routines

e Input-output arguments: An initial value must be supplied when the glue routine is called.
These arguments will be assigned new values by the glue routine which will be returned to

the calling program.

For efficiency reasons, there is only a minimal validity check on the arguments. Note that REAL
variables and arrays should be replaced by DOUBLE PRECISION ones, for a double precision instal-

lation.

9.1 Parameter related glue routines

9.1.1 SUBROUTINE GETX

Definition: SUBROUTINE GETX (X)
REAL X (%)

Purpose: Returns the current values of all the minimization parameters.

Arguments: o X input—output
The current values of the minimization parameters with X(z) corresponding to

parameter z;. Array X should have at least N storage locations available.

9.1.2 SUBROUTINE GETX1

Definition: SUBROUTINE GETX1 (I, XI)
INTEGER I
REAL XI

Purpose: Returns the current value of one of the minimization parameters.

Arguments: e I input

Index of the minimization parameter to be returned.

e XI output
The value of the I*" minimization parameter.
9.1.3 SUBROUTINE SETX

Definition: SUBROUTINE SETX (X)
REAL X (%)

Parameter related glue routines 117

Purpose: Sets the current values of all the minimization parameters. This routine should always
be used in conjunction with SUBROUTINE SETVAL so that the current value of the

objective function corresponds to the current values of the minimization parameters.

Arguments: e X input
The values to set to the minimization parameters, with X (i) corresponding to ;.
The values X (4) should lie within their corresponding bounds. Moreover you are

not allowed to assign a value different than the current one to a fixed parameter.

9.1.4 SUBROUTINE SETX1

Definition: SUBROUTINE SETX1 (I, XI)
INTEGER I
REAL XI

Purpose: Sets the current value of one of the minimization parameters.

Arguments: e I input
Index of the parameter to set.
e XI input
The value to set to parameter x1. It must lie within its corresponding bounds.
Moreover you are not allowed to assign a value different than the current one if

parameter zy is fixed.

9.1.5 SUBROUTINE GETG

Definition: SUBROUTINE GETG (GRAD)
REAL GRAD(*)

Purpose: Returns the gradient vector, evaluated at the current point, using the derivative mode

currently in effect.

Arguments: e GRAD output
The gradient vector with GRAD (4) corresponding to gwi_. Array GRAD should have

at least N storage locations available. GRAD (%) is set to zero if parameter z; is
fixed.

9.1.6 SUBROUTINE GETG1

Definition: SUBROUTINE GETG1 (I, GI)
INTEGER I
REAL GI

118 MERLIN glue routines

Purpose: Returns one of the components of the gradient vector evaluated at the current point,

using the derivative mode currently in effect.

Arguments: e I input

Index of the parameter whose derivative is to be returned.

o GI output
The first partial derivative with respect to parameter zy. If parameter z; is fixed,

GI is set to zero.

9.1.7 SUBROUTINE GETHES

Definition: SUBROUTINE GETHES (H, LD, HOW)
REAL H(LD,*)
INTEGER LD
CHARACTER HOW

Purpose: Returns the Hessian matrix.

Arguments: e H output
The lower triangular part of H contains the second partial derivatives:
0% f

HG,5) = 0x;0%;
i0%;

i=1...N, j=1...

The contents of the rest of the matrix are undefined. Matrix H should have at
least N2 storage locations available.
e LD input
The leading dimension of matrix H with LD > N.
e HOW input
Determines how the Hessian matrix is to be calculated. Allowed values are:
— HOW = ’F’ or HOW = £’
Use only function values to approximate the Hessian matrix elements.
— HOW = °G’ or HOW = ’g’
Use only gradient values to approximate the Hessian matrix elements. This
value should be used only if SUBROUTINE GRANAL is available.
— HOW = A’ or HOW = ’a’
Call the user supplied SUBROUTINE HANAL.

Parameter related glue routines 119

9.1.8 SUBROUTINE GETJAC

Definition: SUBROUTINE GETJAC (FJ, LD)
REAL FJ(LD,*)
INTEGER LD

Purpose: Returns the Jacobian matrix, evaluated at the current point. The current Jacobian
mode, as defined by the JNUMER or JANAL commands is used.

Arguments: e FJ output
The Jacobian matrix stored as:

ofi

FI6i 1) —
J(@i,7) oz,

Matrix FJ should have at least M x NN storage locations available.

e LD input
The leading dimension of matrix FJ with LD > M.

9.1.9 SUBROUTINE GETMAR

Definition: SUBROUTINE GETMAR (MF, XL, XU)
DIMENSION MF (*)
REAL XL(*), XU(x)

Purpose: Returns the current upper and lower bounds for all minimization parameters. Bounds
are normally set by the LMARGIN and RMARGIN commands and reset by the LDEMARGIN
and RDEMARGIN commands. Each of the arrays MF, XL and XR should have at least IV

storage locations available.

Arguments: e MF output
For each minimization parameter x;, MF (i) indicates whether an upper, lower,

or both bounds have been set. Possible values are:

— MF(2) =0
Neither an upper, nor a lower bound has been set for parameter z;.
- MF(:) =1
An upper bound has been set for parameter z;.
- MF() = -1
A lower bound has been set for parameter x;.
- MF() =2

Both, an upper and a lower bound have been set for parameter x;.

120

MERLIN glue routines

XL output
XL (z) stores the lower bound on parameter z;. If z; has no lower bound, a large

negative number is returned.

XU output
XU (z) stores the upper bound on parameter z;. If z; has no upper bound, a large

positive number is returned.

9.1.10 SUBROUTINE GETMR1

Definition:

Purpose:

Arguments:

SUBROUTINE GETMR1 (I, MFI, XLI, XUT)
INTEGER I, MFI
REAL XLI, XUI

Returns the upper and lower bound for one of the minimization parameters.

o I input

Index of the parameter whose bounds are requested.

MFI output
Indicates whether the specified parameter has a lower, upper or both bounds.
Possible values are:
— MFI =0
Neither an upper, nor a lower bound has been set for parameter .
— MFI =1

An upper bound has been set for parameter xp.

— MFI = —1
A lower bound has been set for parameter xp.
— MFI = 2

Both, an upper and a lower bound have been set for parameter xp.

XLI output

The lower bound. If a lower bound has not been set, a large negative number is
returned.

XUI output

The upper bound. If an upper bound has not been set, a large positive number

is returned.

9.1.11 SUBROUTINE GETFIX

Definition: SUBROUTINE GETFIX (IX)

INTEGER IX(*)

Parameter related glue routines 121

Purpose: Returns the fix statuses for all the minimization parameters.

Arguments: e IX output
The fix statuses with IX(4) corresponding to the fix status of parameter z;.

Possible values are:

- IX@(#) =0
Parameter z; is fixed.
- IX() =1

Parameter z; is not fixed.

Array IX should have at least N storage locations available.

9.1.12 SUBROUTINE GETFX1

Definition: SUBROUTINE GETFX1 (I, IXI)
INTEGER I, IXI

Purpose: Returns the fix status for one of the minimization parameters.

Arguments: e I input
Index of the minimization parameter whose fix status is requested.

o IXI output

Fix status for parameter z1. Possible values are:

— IXI =0
Parameter 7 is fixed.
— IXI =1

Parameter 2 is not fixed.

9.1.13 SUBROUTINE GETNAM

Definition: SUBROUTINE GETNAM (NAME)
CHARACTER* (*) NAME (%)

Purpose: Returns the symbolic names of all the minimization parameters. Symbolic names can
be assigned using the GODFATHER command.

Arguments: e NAME output
NAME (¢) stores the symbolic name of parameter x;. Array NAME should have at
least N storage locations available, each of them being at least 10 characters

long. If no symbolic name has been set for parameter z;, NAME (%) is left blank.

122 MERLIN glue routines

9.1.14 SUBROUTINE GETNM1

Definition: SUBROUTINE GETNM1 (I, NAMEI)
INTEGER I
CHARACTER=* (*) NAMEI

Purpose: Returns the symbolic name of one of the minimization parameters.

Arguments: o I input
Index of the parameter whose name is requested.
e NAMEI output
The symbolic name of parameter 1. Variable NAMET should be at least 10 char-

acters long. If no symbolic name has been set for parameter xy, NAMEI is left
blank.

9.2 Panel related glue routines

These routines manipulate the values assigned to the keywords of the various panels. The GETP and
SETP series of subroutines always operate on the panel of the current command, while the GETPP

and SETPP series operate on any panel.

9.2.1 SUBROUTINE GETPI

Definition: SUBROUTINE GETPI (KEY, IVAL)
CHARACTER* () KEY
INTEGER IVAL

Purpose: Subroutine GETPI returns the integer value IVAL assigned to the keyword KEY in the

current panel.

Arguments: e KEY input
The keyword to search for. It must exist in the panel of the current command
and have an integer type, otherwise this routine will abort.
e IVAL output

The integer value that corresponds to the keyword.

9.2.2 SUBROUTINE GETPR

Definition: SUBROUTINE GETPR (KEY, RVAL)
CHARACTER* (*) KEY
REAL RVAL

Panel related glue routines 123

Purpose: Subroutine GETPI returns the floating point value RVAL assigned to the keyword KEY

in the current panel.

Arguments: e KEY input
The keyword to search for. It must exist in the panel of the current command
and have a real type, otherwise this routine will abort.
e RVAL output

The real value that corresponds to the keyword.

9.2.3 SUBROUTINE GETPS

Definition: SUBROUTINE GETPS (KEY, SVAL, LES)
CHARACTER* (*) KEY, SVAL
INTEGER LES

Purpose: Subroutine GETPS returns the character string SVAL assigned to the keyword KEY in

the current panel.

Arguments: e KEY input
The keyword to search for. It must exist in the panel of the current command
and have a string or character type, otherwise this routine will abort.
e SVAL output
The character that corresponds to the keyword. The length of SVAL should
should be sufficient in order to accommodate all possible strings (as defined in
the corresponding panel description file entry). If the declared length of SVAL
is less then needed, the returned string will be truncated to fit; without any

notification however.

e LES output
The effective length of SVAL.

9.2.4 SUBROUTINE GETPPI

Definition: SUBROUTINE GETPPI (PANEL, KEY, IVAL)
CHARACTER* (x) PANEL, KEY
INTEGER IVAL

Purpose: Subroutine GETPPI returns the integer value IVAL assigned to the keyword KEY in the
panel specified by PANEL.

Arguments: e PANEL input
The panel to be searched. It must be a valid panel, defined in the panel descrip-

tion file.

124 MERLIN glue routines

e KEY input
The keyword to search for. It must exist in the panel and have an integer type,

otherwise this routine will abort.

e IVAL output

The integer value that corresponds to the keyword.

9.2.5 SUBROUTINE GETPPR

Definition: SUBROUTINE GETPPR (PANEL, KEY, RVAL)
CHARACTER* (*) PANEL, KEY
REAL RVAL

Purpose: Subroutine GETPPR returns the floating point value RVAL assigned to the keyword KEY
in the panel specified by PANEL.

Arguments: e PANEL input
The panel to be searched. It must be a valid panel, defined in the panel descrip-
tion file.
e KEY input

The keyword to search for. It must exist in the panel and have a real type,

otherwise this routine will abort.

e RVAL output

The real value that corresponds to the keyword.

9.2.6 SUBROUTINE GETPPS

Definition: SUBROUTINE GETPPS (PANEL, KEY, SVAL, LES)
CHARACTER* (*) PANEL, KEY, SVAL
INTEGER LES

Purpose: Subroutine GETPPS returns the character string SVAL assigned to the keyword KEY in
the panel specified by PANEL.

Arguments: e PANEL input
The panel to be searched. It must be a valid panel, defined in the panel descrip-
tion file.
e KEY input

The keyword to search for. It must exist in the panel and have a string or

character type, otherwise this routine will abort.

Panel related glue routines 125

e SVAL output

The string or character value that corresponds to the keyword.

e LES output
The effective length of SVAL.

9.2.7 SUBROUTINE SETPI

Definition: SUBROUTINE SETPI (KEY, IVAL, IERR)
CHARACTER=* (*) KEY
INTEGER IVAL, IERR

Purpose: Subroutine SETPT assigns the integer number IVAL to the keyword KEY in the current

panel.

Arguments: e KEY input
The keyword to be associated with the integer value. It must exist in the panel

of the command currently being executed.
e IVAL input

An integer value to be associated with the keyword.

e IERR output

An error code indicating success or failure. Possible values are:

— IERR =0
The routine completed successfully.
— IERR = —1

The panel description file indicates that the value of IVAL is not allowed for
the given keyword.

9.2.8 SUBROUTINE SETPR

Definition: SUBROUTINE SETPR (KEY, RVAL, IERR)
CHARACTER* (*) KEY
REAL RVAL
INTEGER IERR

Purpose: Subroutine SETPR assigns the floating point number RVAL to the keyword KEY in the

current panel.

Arguments: e KEY input
The keyword to be associated with the real value. It must exist in the panel of

the command currently being executed.

126 MERLIN glue routines

e RVAL input

A real value to be associated with the keyword.

e IERR output
An error code indicating success or failure. Possible values are:
— IERR =0
The routine completed successfully.
— IERR = —1
The panel description file indicates that the value of RVAL is not allowed for
the given keyword.

9.2.9 SUBROUTINE SETPS

Definition: SUBROUTINE SETPS (KEY, SVAL, LES, IERR)
CHARACTER* (*) KEY, SVAL
INTEGER LES, IERR

Purpose: Subroutine SETPS assigns the character string SVAL to the keyword KEY in the current

panel.

Arguments: e KEY input
The keyword to be associated with the string value. It must exist in the panel
of the command currently being executed.
e SVAL input
A string to be associated with the keyword.
e LES input
Effective length of SVAL.
e IERR output
An error code indicating success or failure. Possible values are:
— IERR =0
The routine completed successfully.
— IERR = —1
The panel description file indicates that the value of SVAL is not allowed for
the given keyword.

9.2.10 SUBROUTINE SETPPI

Definition: SUBROUTINE SETPPI (PANEL, KEY, IVAL, IERR)
CHARACTER* (*) PANEL, KEY
INTEGER IVAL, IERR

Panel related glue routines 127

Purpose: Subroutine SETPPI assigns the integer number IVAL to the keyword KEY in the panel
specified by PANEL.

Arguments: e PANEL input
Name of the panel that contains the specified keyword.
e KEY input
The keyword to be associated with the integer value.
e IVAL input
An integer value to be associated with the keyword.
e IERR output
An error code indicating success or failure. Possible values are:
— IERR =0
The routine completed successfully.
— IERR = —1
The panel description file indicates that the value of IVAL is not allowed for
the given keyword.

9.2.11 SUBROUTINE SETPPR

Definition: SUBROUTINE SETPPR (PANEL, KEY, RVAL, IERR)
CHARACTER* (*) PANEL, KEY
REAL RVAL
INTEGER IERR

Purpose: Subroutine SETPPR assigns the floating point number RVAL to the keyword KEY in the
panel specified by PANEL.

Arguments: e PANEL input
Name of the panel that contains the specified keyword.
e KEY input
The keyword to be associated with the real value.
e RVAL input
A real value to be associated with the keyword.
e IERR output
An error code indicating success or failure. Possible values are:
— IERR =0
The routine completed successfully.
— IERR = —1
The panel description file indicates that the value of RVAL is not allowed for
the given keyword.

128 MERLIN glue routines

9.2.12 SUBROUTINE SETPPS

Definition: SUBROUTINE SETPPS (PANEL, KEY, SVAL, LES, IERR)
CHARACTER#* () PANEL, KEY, SVAL
INTEGER LES, IERR

Purpose: Subroutine SETPPS assigns the character string SVAL to the keyword KEY in the panel
specified by PANEL.

Arguments: e PANEL input
Name of the panel that contains the specified keyword.
e KEY input
The keyword to be associated with the string value.
e SVAL input
An integer value to be associated with the keyword.
e LES input
Effective length of SVAL.
e IERR output
An error code indicating success or failure. Possible values are:
— IERR =0
The routine completed successfully.
— IERR = —1
The panel description file indicates that the value of SVAL is not allowed for
the given keyword.

9.2.13 SUBROUTINE CHANGE

Definition: SUBROUTINE CHANGE (ICODE)
INTEGER ICODE

Purpose: This routine interacts with the user and handles panel I/O for all panel commands. It
presents the panel, accepts any user changes to the panel parameters, and stores the
new values in the appropriate data structures. Command line arguments are handled

as well.

Arguments: e ICODE output

An error code indicating success or failure. Possible values are:

— ICODE =0

The routine successfully processed all changes to the panel parameters.

Utility glue routines 129

— ICODE = —1
An end-of-file condition was encountered while trying to read from the
MERLIN input file.

— ICODE = any other value
Some other error has occurred, for example the given value for a keyword

was out of the allowed range.

9.3 Utility glue routines

9.3.1 SUBROUTINE UPPER

Definition: SUBROUTINE UPPER (CHA, LL)
CHARACTER* (*) CHA
INTEGER LL

Purpose: Converts a string of characters to upper case. Assumes the ASCII character set.

Arguments: e CHA input—output
On input the characters to be converted. On output lower case characters are
converted to their upper case equivalents.
o LL input
Effective length of CHA.

9.3.2 SUBROUTINE I2STR

Definition: SUBROUTINE I2STR (N, STR, LES)
INTEGER N, LES
CHARACTER* (*) STR

Purpose: Converts an integer to its string representation.

Arguments: e N input

The integer to be converted.

e STR output
Character variable containing the string representation of N. One must supply

adequate storage.

e LES output
Effective length of STR.

130

MERLIN glue routines

9.3.3 SUBROUTINE TOINT

Definition:

Purpose:

Arguments:

SUBROUTINE TOINT (STR, LE, N, IERR)
CHARACTER* (*) STR
INTEGER LE, N, IERR

Converts an integer from its string to its numeric representation. Leading or trailing

blank or tab characters in the string are ignored.

e STR input

The string to be converted.
e LE input

The effective length of STR.
o N output

The integer representation of STR.

e IERR output
An error code, indicating whether the conversion was successful. Possible values
are:
— IERR =0
Conversion was successful.
— IERR = —2

Conversion failed. STR does not contain a proper integer number.

9.3.4 SUBROUTINE TOREAL

Definition:

Purpose:

Arguments:

SUBROUTINE TOREAL (STR, LE, R, IERR)
CHARACTER* (*) STR

INTEGER LE

REAL R

Converts a real number from its string to its numeric representation. Leading or

trailing blank and tab characters are ignored. The number should be of the form:
[+ | -] int. frac exp

where int is the integer part (a sequence of digits), frac is the fractional part (another

sequence of digits) and ezp is the exponent. The integer part int or the fractional part

frac may be omitted, but not both. The exponent ezp should have the form:
E|le|D|d [+]-]int

e STR input

The string to be converted.

Utility glue routines 131

e LE input
Effective length of STR.
e R output

The converted real.

e IERR output
An error code, indicating whether the conversion was successful. Possible values
are:
— IERR =0
Conversion was successful.
— IERR = —2

Conversion failed. STR does not contain a proper real number.

9.3.5 FUNCTION ISCOMP

Definition: INTEGER FUNCTION ISCOMP (STR1, STR2)
CHARACTER*(*) STR1, STR2

Purpose: Performs a case insensitive comparison of the two character strings STR1 and STR2.

Returns 0 if they don’t match, non-zero if they match.

Arguments: e STR1 input

First string to be compared.

e STR2 input

Second string to be compared.

9.3.6 FUNCTION LENGTH

Definition: INTEGER FUNCTION LENGTH (STR)
CHARACTER* (*) STR

Purpose: Returns the effective length of a character variable. The effective length is defined as
the position of the last non—blank, non—tab character in the string. Note that this is

not the same as the declared length of a character variable.

Arguments: e STR input

A character variable of arbitrary length.

132 MERLIN glue routines

9.4 Miscellaneous glue routines

9.4.1 SUBROUTINE GETDIM

Definition: SUBROUTINE GETDIM (NOVAR, NOTERM)
INTEGER NOVAR, NOTERM

Purpose: Returns the number of parameters (dimensionality) of the objective function, and
the number of terms if the function is a sum of squared terms. These numbers are
provided by the user at the time SUBROUTINE MERLIN is called.

Arguments: e NOVAR output

Number of parameters of the objective function.

e NOTERM output
Number of terms if the function is a sum of squares. Otherwise NOTERM is set to
0.

9.4.2 SUBROUTINE ARGNO

Definition: SUBROUTINE ARGNO (NARGS)
INTEGER NARGS

Purpose: Returns the number of arguments in the current MERLIN command.

Arguments: e NARGS output
The number of arguments in the current MERLIN command. This number does

not include the command name itself.

9.4.3 SUBROUTINE GETARG

Definition: SUBROUTINE GETARG (NA, ARG, LENARG)
INTEGER NA, LENARG
CHARACTER=* (*) ARG

Purpose: Returns an argument from the MERLIN command line.

Arguments: e NA input
Index of the argument to be returned with 0 < NA < NARGS. (NARGS can be
obtained with a call to SUBROUTINE ARGNO). When NA = O the command name

itself is returned.

Miscellaneous glue routines 133

e ARG output
The NA'™M argument from the MERLIN command line. It must have adequate
length to accommodate all possible arguments.

e LENARG output
Effective length of ARG.

9.4.4 SUBROUTINE GETACC

Definition: SUBROUTINE GETACC (ACC)
REAL ACC

Purpose: Returns the relative machine accuracy as estimated by MERLIN, or as set by the
MACHINE DIGITS directive in the configuration file.

Arguments: e ACC output
The relative machine accuracy. It is the largest positive number for which under

the machine’s finite precision the following conditions hold:

1+ACC=1
1-ACC=1

9.4.5 SUBROUTINE GETMC

Definition: SUBROUTINE GETMC (BIG, SMALL)
REAL BIG, SMALL

Purpose: Returns some machine constants. These should be set in the MERLIN configuration

file, as they are system and installation dependent.

Arguments: e BIG output
The largest floating point number this machine can handle.
e SMALL output

The smallest positive non-zero floating point number this machine can handle.

9.4.6 SUBROUTINE GETCNT

Definition: SUBROUTINE GETCNT (NF, NFP, NG, NGP, NH, NHP, NJ, NJP)
INTEGER NF, NFP, NG, NGP, NH, NHP, NJ, NJP

Purpose: Returns the total and partial MERLIN counters. All MERLIN counters are initialized to
zero when MERLIN starts and are incremented when one of the user supplied subpro-
grams is called. In addition, the partial MERLIN counters are reset to zero each time

a RESET command is issued. There is no way to set the counters via a glue routine.

134

MERLIN glue routines

Arguments:

NF output
Total number of evaluations of the objective function since MERLIN started (calls
to the user supplied FUNCTION FUNMIN).

NFP output

Number of evaluations of the objective function since the last RESET command
was issued.

NG output

Total number of gradient evaluations (calls to the user supplied SUBROUTINE
GRANAL).

NGP output

Number of gradient evaluations since the last RESET command was issued.

NH output

Total number of Hessian evaluations (calls to the user supplied SUBROUTINE
HANAL).

NHP output

Number of Hessian evaluations since the last RESET command was issued.

NJ output

Total number of Jacobian evaluations (calls to the user supplied SUBROUTINE
JANAL).

NJP output

Number of Jacobian evaluations since the last RESET command was issued.

9.4.7 SUBROUTINE GETFLA

Definition:

Purpose:

Arguments:

SUBROUTINE GETFLA (I, F)
INTEGER I
REAL F

Returns the value assigned to one of the MERLIN flags.

o I input

Index of the flag whose value is requested.

e F output

Value of the I*! flag.

9.4.8 SUBROUTINE SETFLA

Definition: SUBROUTINE SETFLA (I, F)

INTEGER I

Miscellaneous glue routines 135

REAL F
Purpose: Assigns a value to one of the MERLIN flags.
Arguments: o I input

Index of the flag.

e F input
Value to be assigned to the I'" flag.

9.4.9 SUBROUTINE GETCFL

Definition: SUBROUTINE GETCFL (I, CFL)
INTEGER I
CHARACTER=* (*) CFL

Purpose: Returns the value of one of the MERLIN character flags.
Arguments: e I input

Index of the character flag whose value is requested.

e CFL output
Value of the T*" character flag. It should be at least 30 characters long.

9.4.10 SUBROUTINE SETCFL

Definition: SUBROUTINE SETCFL (I, CFL)
INTEGER I
CHARACTER* (*) CFL

Purpose: Assigns a value to one of the MERLIN character flags.

Arguments: e I input
Index of the flag.

e CFL input
Value to be assigned to the I'" character flag. Its effective length should be less

than 30 characters otherwise it will be truncated.

9.4.11 SUBROUTINE SETCOD

Definition: SUBROUTINE SETCOD (MERR)
INTEGER MERR

136

MERLIN glue routines

Purpose: Sets the error code to be returned to the MERLIN operating system upon termination

of a plug—in module.

Arguments: e

MERR input
The error code to be returned to the MERLIN operating system, upon termination
of the plug—in. Although in general a non—zero value indicates that something

went wrong, MERLIN uses the following conventions:

— MERR =0
No error occurred during execution of the plug—in.
— MERR = —1

An end-of-file condition was encountered while trying to read from the
MERLIN input unit.
— MERR = —2

Some other error occurred during execution of the plug—in.

By following the above conventions, one makes sure that an error condition
will be treated appropriately by the MERLIN error handling routines, taking
into account the current processing mode (IAF or BATCH). If a plug-in module

terminates without setting the error code, a value of zero is assumed.

Example: SUBROUTINE PLUG1

do something here

IF some error THEN

ELSE

CALL
END

MERR = -2
MERR = 0O
SETCOD (MERR)

9.4.12 FUNCTION ISMCL

Definition: INTEGER FUNCTION ISMCL ()

Purpose: Returns 1 if MERLIN is running an MCL program; 0 otherwise.

9.4.13 SUBROUTINE GETIOQU

Definition: SUBROUTINE GETIOU (NIN, NOUT)
INTEGER NIN, NOUT

Miscellaneous glue routines 137

Purpose: Returns the MERLIN input—output units. In order to maintain compatibility with the
rest of the environment, write operations on the MERLIN output unit should take in
account the printout levels as returned by SUBROUTINE GETPRL.

Arguments: e NIN output
The MERLIN input unit. Input should always be read from this unit.

e NOUT output
The MERLIN output unit. Output should always be written to this unit.

Example: LOGICAL STRO, WEAK
CALL GETPRL(STRO,WEAK)
CALL GETIOU(NIN,NOUT)
IF (STRO) WRITE (NQOUT,*) ’An informative message’
IF (WEAK) WRITE (NQOUT,*) ’An error message’

9.4.14 SUBROUTINE GETPRL

Definition: SUBROUTINE GETPRL (STRO, WEAK)
LOGICAL STRO, WEAK

Purpose: Returns a set of logical variables that control the display of MERLIN output. In order
to maintain consistency with the rest of the environment, the same conventions should

be used in a plug—in module.

Arguments: e STRO output

Logical variable that controls the display of normal output. Possible values are:
— STRO = .TRUE.
Normal output should be displayed.
— STRO = .FALSE.
Normal output should be inhibited.

e WEAK output

Logical variable that controls the display of error output. Possible values are:
— WEAK = .TRUE.
Error output should be displayed.

— WEAK = .FALSE.
Error output should be inhibited.

Example: See SUBROUTINE GETIQU.

138 MERLIN glue routines

9.4.15 SUBROUTINE GETVAL

Definition: SUBROUTINE GETVAL (VALUE)
REAL VALUE

Purpose: Returns the current value of the objective function. Note that you cannot request the
value of the objective function if it has not been evaluated at least once. You can test
this using the MERLIN call counters.

Arguments: e VALUE output

The current value of the objective function.

9.4.16 SUBROUTINE SETVAL

Definition: SUBROUTINE SETVAL (VALUE)
REAL VALUE

Purpose: Sets the current value of the objective function.

Arguments: e VALUE input
The current value of the objective function. Note that this value must correspond
to the current values of the minimization parameters (for example those set by
SUBROUTINE SETX).

9.4.17 SUBROUTINE GETEVM

Definition: SUBROUTINE GETEVM (IEV)
INTEGER IEV

Purpose: Returns the current function evaluation mode. The function evaluation mode can be
changed with the NOEVAL and EVALUATE commands.

Arguments: e IEV output
The function evaluation mode. Possible values are:
— IEV=0
Evaluation of the objective function has been disabled by a NOEVAL com-
mand.
— IEV =1

Evaluation of the objective function is enabled.

Miscellaneous glue routines 139

9.4.18 SUBROUTINE GETFFO

Definition: SUBROUTINE GETFFO (IFF)
INTEGER IFF

Purpose: Returns the form of the objective function. The form of the objective function
is chosen by initially supplying the appropriate subprogram (FUNCTION FUNMIN or
SUBROUTINE SUBSUM) and then by choosing it by the GENERAL and SOS commands

correspondingly.

Arguments: e IFF output
IFF indicates the form of the objective function. Possible values are:

— IFF =0
Command GENERAL has been issued, indicating that the user has prepared
the appropriate subprogram for a general function (FUNCTION FUNMIN).

— IFF =1
Command S0S has been issued, indicating that the user has prepared the ap-
propriate subprogram for a sum-of-squares function (SUBROUTINE SUBSUM).

9.4.19 SUBROUTINE GETTRG

Definition: SUBROUTINE GETTRG (TRG, ISTARG)
REAL TRG
INTEGER ISTARG

Purpose: Returns the current target value, as defined with a TARGET command. A common use
of target values is as a termination criterion in a minimization routine. The target
value can be set with the TARGET command and cleared with NOTARGET.

Arguments: e TRG output
The current target value. If there is no current target value (ISTARG = 0) the

value returned depends on the current function mode:
— TRG = A large negative number
When MERLIN operates on a general function.
— TRG =0
When MERLIN operates on sum—of-squares function.

e ISTARG output

Indicates whether a target value has been set. Possible values are:

— ISTARG =0

There is no target value currently in effect.

140

MERLIN glue routines

— ISTARG =1
A target value is in effect and is returned in variable TRG.

9.4.20 SUBROUTINE SETADE

Definition:

Purpose:

Arguments:

Example:

SUBROUTINE SETADE (TAUTO)
INTEGER IAUTO

Enables or disables the MERLIN automatic derivatives. A common use would be to
enable the MERLIN automatic derivatives before calling a minimization routine that
uses the gradient, and disable them immediately after. Note that while automatic
derivatives are in effect, their options are taken from the MAD panel. Most of the
MERLIN minimization commands have panel keywords that control the use of auto-

matic derivatives during minimization.

e TAUTO output
Specifies whether the MERLIN automatic derivatives should be enabled or dis-

abled. Possible values are:

— TAUTO =0
Automatic derivatives are disabled.
— IAUTO =1

Automatic derivatives are enabled.

CALL SETADE(1)
call some user minimization routine
CALL SETADE(0)

9.4.21 FUNCTION NUNIT

Definition:

Purpose:

INTEGER FUNCTION NUNIT ()

Function NUNIT will search a range of unit numbers in order to locate an unused unit (a
unit not assigned to an open file). Function NUNIT is a necessity since Fortran requires
both, a unit number and a file name in an OPEN statement. Nevertheless function
NUNIT and all of the MERLIN file handling routines rely on the Fortran INQUIRE
statement and especially on the OPENED, EXIST, NUMBER and IOSTAT specifiers. The
range of numbers to be searched can be set from the configuration file using the
UNIT_RANGE directive. For efficiency, the search for the unit number starts from the
number returned in the previous NUNIT call, not from the beginning of the available

range.

Miscellaneous glue routines 141

Example: NU = NUNIT()
IF (NU.EQ.-1) THEN

display error message

ELSE

OPEN (NU, FILE=some_file)

END TIF

9.4.22 SUBROUTINE BACKUP

Definition: SUBROUTINE BACKUP (WHEN)
CHARACTER WHEN

Purpose: Adds a record to the backup file according to the modes specified in the backup panel.

Arguments: e WHEN input

Character variable, indicating the reason for the backup. If it matches the ones

defined in the backup panel, then backup will proceed. MERLIN uses the following

conventions:

WHEN = M’ or WHEN = ’m’

A backup record is added when a minimization command terminates.

WHEN = ’X’ or WHEN = ’x’

A backup record is added before the current point is changed by a POINT,
INIT or PICK command.

WHEN = ’D’ or WHEN = ’d’

A backup record is added before one of the attributes (margin, fix status, or
symbolic name) of the minimization parameters is changed.

WHEN = L’ or WHEN = °’1°

A backup record is added when a lower value is discovered by one of the

minimization routines.

9.4.23 FUNCTION ISIAF

Definition: INTEGER FUNCTION ISIAF ()

Purpose: Returns 1 if the IAF processing mode is in effect; 0 otherwise. Processing modes are
switched using the IAF and BATCH commands.

142

MERLIN glue routines

9.4.24 FUNCTION ACSQ

Definition:

Purpose:

Arguments:

REAL FUNCTION ACSQ (X, N)
INTEGER N
REAL X(N)

All MERLIN minimization methods that operate on general functions (not on sum of
squares) call this routine. It contains a counter and updates some common block pa-
rameters. Its value is set equal to the user supplied FUNCTION FUNMIN or SUBROUTINE
SUBSUM, according to the functional form (GENERAL or SOS).

e X input
The minimization parameters with X(z) corresponding to x;.

e N input

Dimensionality of the objective function.

9.4.25 SUBROUTINE LSQFCN

Definition:

Purpose:

Arguments:

SUBROUTINE LSQFCN (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)

All MERLIN minimization methods that operate on functions that are sum of squares,
call this routine. It contains a counter and updates some common block parameters.
Its value is set equal to the user supplied SUBROUTINE SUBSUM.

e M input
Number of terms in the sum-of-squares.
e N input
Dimensionality of the objective function.
e X input
The minimization parameters with X(z) corresponding to x;.

e F output

Partial terms of the sum of squares with F(:) corresponding to f;.

Appendix A

MERLIN Quick Reference

143

) dd1s sda)s yoreas TT0Y 1) 0} Senjea sulissy T 9NIDO TIPUL JALS
79 10N onfea 1a31e) 9y} SIBA) LIDUVION
19 VL Spot}oW UOTYeZIWIUTM o1} I0] oNjeA 193Ie) € $)0Q anoa~12b4n3 IIHUVL
09 ¥ W}IIOZ[e UOTPRZIWIUT JNDDY 9} SOOAU] (pupwuiod pund) WNDOY
6C ny WYILI0Z[R UOTYRZITUIUINT QLAY) SOOAU] (puvpwwod jpund) pLAY
QC T WYILI0Z[R UOTYRZITUTUITT AT) SOOAU] (pupwwiod pupd) FATT
9% I8 UIYLI0Z[R UOTYRZITUTUIT YHTIWIS) SOOAU] (pupwiuod pund) YATINIS
cy 04 W}IIOZ[e UOTYRZIWITUIWE TI0Y 9Y} SONOAU] (puvwiuod jpund) 1104
ce HN0D W}IIOZ[R UOTJRZIWIUTW FYHNQD Y3 SONOAU] (pupwutod puvd) YYONOD
16 0L WIYILI0Z[® UOTYRZIUWITUTUI NTWT0L 9} SONOAU] (pupwuod pund) NIWI0L
ce qrL WIYILI0OZ[® UOTIRZIUITUTUI [SAYL) SOOAU] (pupwwod pund) 1LSNYIL
¢ aa WYILIOZ[R UOTYRZIWITUIW JJJ O3 SONOAU] (puvwiuod jpund) J4q
6% ag W}IIOZ[e UOTYRZIWITUIW SH.IF 9} SONOAU] (puvwwod jpund) spag
abv g 7 02499y w013d1.1959 (T SPUDUWULOD PIIDJ2L PUD UOUDZIULIULJT 7
5 SHY 0I9Z 0} SI9JUNOI [[ed [enred oY) sjosoy 1ASHY
a4 11 UOISSOS NITHATA JUQLIND Y} I0J 931} 1IOYS ® $I9G 01559 s1y3 40f 3)38.J, ATLIL
% Id 9l NITHAA ® WOIJ PIOJAI € SYIIJ (pupwiwiod pund) JOTd
0¥ LINT 9] ' WO} S9INLIYIe 118} 10 sonfea Iojowrered oY) speay] (puvwiuod jpund) LINI
ep NON s1ojourered o) WOIJ SOWRU OI[OUIAS 9} SOAOUIY] * Zapus INYNON
S aon s1ojourered oY) 0} soUreu I[OqUIAS SUIISSY WU TAPpUL YIHLVAA0DD
157 ¥S001 sxojourered [fe sas00T] TI¥S00T
oF VXId s1ojourered e SoXIq TIVXIA
ep 98001 s1ejourered o1} JO SUWOS SASOOT 't Zapus IS00T
i XId SoNTeA JULIIND IR} 0} sigjourered oY) JO SMOS SOXI] t ZIpul XId
i ay s1ojourered oy} wolj spunoq roddn oY) SoAOWINY 't Zapus NIDUYWAQH
¥ a1 s1ojowrered a1} WOIJ SPUNO(I9MO] d1) SOAOWUN] 't Zopur NIDUVWIAT
¥ WY s1ojeurered a1} uo spunoq Ioddn sjog 't 9nyna TIPUL NIDUYWY
¥ W1 s1ojeurered a1} UO SPUNO(I9MO] SIS ©* 9nIDa TIPUL NIDUVH'T
ov od sjourered oy) 0) sonfes sudissy o angoa Tapul INIOd
abv g 7 “024QQ Y ©013d1.4959 (T SPUDWULOD PIID]IL LITIULDUD]

9OUDIRJIY MOIN{Y) NITHAN

69 ovd wstueyoow dnyorq NITHHJN 98U} SeInsyuo)) (puvwwiod jpund) JNMDVE
<9 q0N sp1o2a1 dnxpeq dosy jou so0(] ADVAON
{9 V1 prooa1 dnypreq juedar jsour o) sdeoy] ADVELSYT
{9 gT1Ind sp102a1 dnyoeq e sdeayf MOVETIN
89 1vd uoryerado yojeq 399799 HDOLVd
<9 VI uorye1ado SATIDRIIIUL S}I[OS avI
obvg | a2uqqy wouydiiosa (] SpUDULLL0D POJY

L9 avi SOATIRATIO(] OT)RWOINY NITHATN O} $9INSYU0)) (pupwawtod jpund) qQyi
9 STH X1I)eW URISSOF] o} 0} paje[ol suoryerad() (pupwutod jpund) NYISSAH
29 ND suIou juatperd oy} sAerdsi(q WYOND
99 oayyd JURIPRIS 9} SUIPR[NO[RD JO SOPOU JUSISPIP om) sareduro)) zapup | Gopows Topous YDAHDAYHD
99 aavyd syuouodurod Juatpeid o) sAerdsi(q [- mopur | STAAVHD
19 or | oy} Aq perddns auo o) 0} URIQOIR[POIRUIIISS A[[RoLIdWINU dY) dreduIo) TUYJHO0OC
79 NC SOOUSISJIP pIemIo] Sulsn AJ[edIIoWNU Payeul)se ST UeIqOdel o], YANANC
79 vr URIQOOR[9} 93R[NO[RD 03 asn ST TYNYL ANILNOYANS porddns tosn oy, TYNVL
€9 NV | SPATIRALISOD oY) 9JRINOTRD 0} POsn ST TYNVHH ANILAOHENS UOILIM I9Sn J T, TYNY
79 IW | opouw JuaIoPIp © SUISN PaYet)se aq 03 JuauodIod JUIPRIS Yoed SMOT[Y 't apout TIPUL qAXIN
€9 AN SOATJRALISP O1[} 9)BWII)SO 0} PISn ST B[NULIO] OLIPPWUWAS IopIo IaYSIy v YANAN
€9 vnb SOAT)RATIOP ST} 9)BUIIISO 0} PIST oIk SDUSISHIP [BIIULD)) avab
€9 via SOAT}RALIOP 9T} 9)RUIIISD O} PISN dIR SAOUSIPIP PIeMIO] LSYd
abvg i 2499y w01 d1u289 (T SPUDULULOD PIID]IL 0IIDALLI (T

12 WIT SYTWI] NITHAN U-Pg a1y skerdsiq SLINIT
1. Ol uorjyerado Jo sepour JuarInd oY) sAe[dsiq SIAIA0n
i L (x)tf swiey py o) Jo senyea a1y sAerdsiq [" wopur | STAWYAL
P A onpeA JualInd oY) sAe[dsi(] SIATIVA
P HS s1ojourered o) JO $9INQLI}YR puR son[eA JuSIIND 9y} sAerdsi(y [- mapur | STATMOHS
abvg i 2499y w01 d1u289 (T SPUDWAULOD [DUOUDULLOSUT

) Vda1S poylewr TI0YH 9y} 10F sdajs YoIeas $1onIsuo)) TIVdILS
79 av poylew TI0Y oY) 10J sdols YoIeas s3OnIIsuo)) 1snrav
(4 adiLs sdays yoxeas TI0Y o) sAerdsi(q [zopur | SIAJALS

9OUDIRJIY MOIN{Y) NITHAN

18 A0TANVd spued po suing, [' pupwawosrppund | I10TANVI
18 NOTANYJ sppued uo suIng, [" pupwwoo-pound | NOTANYJ
Gl nd NITHIW ANILAOYANS Porred yey) ureidord oY) 03 [OIPU0D SUINDY [DOTIJHON | Hvpf-uingas 110D
cL L34 NITHIW ANILAOYANS Porred yey) ureidord oY) 03 [OIPU0D SUINDY [DOTIJION | NUALTY
L 0Ls TOTINDIOXD SIYRUTULIDT, [DOTIION] OIS
Q). ngd oy eyep X-X Aue 1o uonpunj o) jo yderd 4driogiso e soxe|y (pupwutod jpund) HIVEHSI
) EVAR) UO0T)OUNJ 9AT1109[(0 o1} Jo ydeid [euItLIo) YSNOI & SoyeIN (pupwuitod jpund) HIYED
) asviIv saserre paumgep Ayuaiind o) sAerdsiq SIASVITY
1. n UOT)TUTJOp Selfe U SOAOW] 2wDuU~SDYD SYITYNA
1. SYITY selfe Ue souyo(] PUDULULOD JWDU™SDYD SYITY
€9 @y1ao sep 1990vIRYD NITHAIN oY) sAerdsiq [" zopur | ST@HVTAD
€9 aov1d sSey NITHAIN oy sAe[dsi([= zopur | ST@DY14
€9 PAAER) s8eq 10100IRYD NITHATN 9Y) 0) Son[eA sudissy 't ANYDATLIIIDUDYD TIPUL DYTAD
29 DV1d S8R} NITHATN 93} 0} sonfes sudissy NP TIPUL HYTI
abog i “02.49QY ©013d1L283(T SPUDWULOD STLOIUD]]IISI

9/ MY 9] & SPUIMdY] -+ owou~agy ANIMIY
9/, 109 UOT)RULIOJUI-JO—PUS 97} 0} 9[Y € SUONISOJ o wwuTapf A0E09
9/ SNI 91 ® JO SHUIUOD A} S3adsuy (pupwiuod jpund) 1OAISNI
) TN o[® 01 sonquijye pue jutod JUSIIND 9Y) SOI0)G (puvwiuiod jpuvd) QRAN
i) na a1y e ur 9Inqriyye Aue 10 jurod JULIIND 9 SIILIN (puvwwod jpund) JuNA
¢y, qa YSIP WOIJ [® SOAOWIDI A[JUSURULIO 2w usaf AIATAA
¢y, 1a sonqripye pue jurod JUSIIND Y} YIM O] B SOILIMIDA() awpu2)y qUyISIA

i abo g i 0A4QQY w013d14283(T SPUDULULOD PID]AL 3]

1. 90N UOIIeN[RAD UOTIOUN] S[eSI(] TVAIO0N
1L A UOT)RN[RAS UOIJOUNJ SO[qRUY ALVNTVAL
0L 0S WASENS ANILA0YENS parddns 1osn oY) [[8d 0} NITHHIN S}ONIISU] S0s
02 q9 NIKWNNA NOILDONNA porddns 1osn oy) [[€d 03 NITHHIN SIONIISU] TVHINID
0L JON ndino [re sessoaddng INIdON
0. YU pofe[dsip aq 0} sodessoll I0110 A[UO SMO[[Y INTHdATVH
0L 41104 poderdsip aq 01 Indino iy smofy LNTHdTINA

9OUDIRJIY MOIN{Y) NITHAN

18
18
98
68
78
€8
€8
€8
(4]
78
78
(4]
(4]
18
18

dd
INOD
od
SIH
ANGD
AOD
nyg
10
OVI
SIT
TIH
A3Y
aIH
ad
ILSd

Soride ue seuyge(J

suorydo NITHAJ\ PosT SSO[oWos §10§
o8essour Aue sAedsi(q

UWISTURTDATI ATOISTY) SO[CRSIP / Sa[qeur]
S[RAIOIUT 9OUSPHYUOD SoJR[NI[R))

X1IJeUW 9OURLIBAOD 9} SOIR[NO[R))

urexdoxd TOTA Pordwiod & JO UOIINIOXD SOIRIITUT
90UeNDbAS UOTONIISUOD OIIRUIL B SO)RUIULIYT,
90UNDAS UOTIONIISUOD OINRUL € SO)RIITU]
SpuewImiod NITHAIN [[® SISTT

puewwiod NITHAJN Aue 10J s3x09 d[oY sonss]
LN0FATH JO 199[0 oY) S[eouR))

o[y e 0} INdIno NITHAIN SIOOIIPOY

9y ® 0} sivjourered [oued So)LIA

snje)s oued o) sAe[dsi(]

puvwwod-bopds HOTIdH

(pupwuiod jpund) TOULNOD
abvssaus~fiuv QHOH
(pupwutod jpund) RMOLSTH
Tt TIpur IDNIATANOD
(pupwutod puvd) IONYIUTADD
a)1f~2p02~192[q0 TOWNNY
Hva1o

OUDVI

ISIT

pUDWULO? JTIH

TVIATYH

[anddy | 2wwuapf LNOAATH

= pupwawod~ppund awou-apf | JWNAd

[- pupwwooppund | SNLYIS

9OUDIRJIY MOIN{Y) NITHAN

