
Applied Mathematics and Computation 231 (2014) 544–559
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
Supporting adaptive and irregular parallelism for non-linear
numerical optimization
0096-3003/$ - see front matter � 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.12.092

⇑ Corresponding author.
E-mail addresses: phadjido@mavt.ethz.gr (P.E. Hadjidoukas), voglis@cs.uoi.gr (C. Voglis), dimako@cs.uoi.gr (V.V. Dimakopoulos), lagaris@

(I.E. Lagaris), dpapageo@cc.uoi.gr (D.G. Papageorgiou).
P.E. Hadjidoukas a,⇑, C. Voglis b, V.V. Dimakopoulos b, I.E. Lagaris b, D.G. Papageorgiou c

a Chair of Computational Science, ETH Zurich, Zurich CH-8092, Switzerland
b Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece
c Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece

a r t i c l e i n f o a b s t r a c t
Keywords:
Irregular and multilevel parallelism
Adaptive task parallelism
Multicore clusters
Message passing
Numerical differentiation
Numerical optimization
Protein conformation
This paper presents an infrastructure for high performance numerical optimization on clus-
ters of multicore systems. Building on a runtime system which implements a programming
and execution environment for irregular and adaptive task-based parallelism, we extract
and exploit the parallelism of a Multistart optimization strategy at multiple levels, which
include second order derivative calculations for Newton-based local optimization. The run-
time system can support a dynamically changing hierarchical execution graph, without any
assumptions on the levels of parallelization. This enables the optimization practitioners to
implement, transparently, even more complicated schemes. We discuss parallelization
details and task distribution schemes for managing nested and dynamic parallelism. In
addition, we apply our framework to a real-world application case that concerns the pro-
tein conformation problem. Finally, we report performance results for all the components
of our system on a multicore cluster.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Numerical optimization is an indispensable tool that has been widely applied on many scientific problems. An important
feature of optimization problems is their long execution time which is attributed to the high computational demands and the
possibly multiple local minima of the objective function to minimize. There are several applications where the time for a
single function call is substantial. Parallelization can drastically reduce the required processing time to find a solution.
The inherent parallelism of these problems can be found at various levels, including function or gradient evaluations, linear
algebra calculations and the optimization algorithms themselves. Global optimization algorithms that can take advantage of
parallel and distributed architectures are particularly suitable for solving problems with high computational requirements.
The emerging multi-core architectures provide a cost-effective solution for high-performance optimization.

Although many parallel local and global optimization algorithms were proposed in the last decades [1–6], only a handful
of actual systems exist. One of the most widely used scientific software programs, MATLAB, presented its first parallel opti-
mization solution in 2009 [7]. In the pioneer work of [8] an interval global optimization method is implemented using dy-
namic load balancing. In [9] the authors present ParaGlobSol, a parallel global optimization package written in Fortran 90/95
with MPI to perform inter process communication and a dynamic load balancing scheme. PGO [10] is a general parallel com-
puting based on the Genetic Algorithm. In PGO, the parallel (and heterogeneous) computing framework is organized as a
global master–slave system using a central database management system for storing all the data during optimization
cs.uoi.gr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2013.12.092&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.12.092
mailto:phadjido@mavt.ethz.gr
mailto:voglis@cs.uoi.gr
mailto:dimako@cs.uoi.gr
mailto:lagaris@cs.uoi.gr
mailto:dpapageo@cc.uoi.gr
http://dx.doi.org/10.1016/j.amc.2013.12.092
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 545
progress. Oriented in interoperability, the MHGrid platform [11] exploits meta-heuristics based search methods and Grid
computing to enable the transparent sharing of heterogeneous and dynamic resources offering a versatile Global optimiza-
tion framework. MANGO [12] is a middleware that involves the development of an extensible and flexible multiagent plat-
form, in which autonomous agents can solve global optimization problems in cooperation. PaGMO [13] is a recently released
open source multi-threaded software that offers a plethora of local and global optimization codes exploiting modern multi-
core architectures. Finally in [2,14] the authors present VTDIRECT95 a parallel implementation of the DIRECT algorithm,
using a three-level hierarchical parallel scheme.

In this work we study the parallelization of Multistart [15] method which is a standard and widely used scheme for deal-
ing with global optimization problems. According to this method, a local optimization procedure is applied to a number of
randomly selected points. The Multistart method forms the basis for many successful global optimization methods and any
parallelization study on it can be easily extended to more elaborate optimization schemes. For local optimization we have
chosen the Newton method which is a general and powerful method for multidimensional non-linear optimization that
makes use of first and second derivatives of the objective function. This choice, in turn, introduces further computational
complexity as derivative estimation via finite differentiation requires a number of function evaluations. In many practical
situations analytical calculation of second order derivatives may be prohibitive.

Task-based parallelism, as expressed by the master-worker programming model, can be an effective approach for a clus-
ter-aware implementation of global optimization methods such as Multistart. Function evaluations are mapped to tasks and
assigned to workers. The dynamic load balancing of the model further enhances its suitability. A naive implementation of the
model, however, cannot meet all the requirements that a parallel global optimization method (Multistart) imposes. First, the
large expected number of spawned tasks affect scalability as the single master becomes a bottleneck. Secondly, the exploi-
tation of nested parallelism requires advanced runtime techniques, able to facilitate programming and provide efficient
management of processing elements. Ideally, a parallel implementation must target both shared and distributed memory
machines, without the burden of explicit message passing for the programmer. Additionally, it is important, from a perfor-
mance point of view, to have a hardware-independent solution that transparently uses multi-threading to fully exploit the
physically shared memory of SMP/multi-core systems.

We first present our Tasking library for Clusters (TORC), a novel general-purpose runtime environment for programming
and executing irregular and adaptive task-parallel applications on multi-core SMPS and clusters of such machines. Building
on TORC, we design a standalone Parallel Numerical Differentiation Library (PNDL) that provides routines for first and second
order derivative approximation. For the latter we extract two levels of parallelism and study several task distribution
schemes.

We also present the parallelization of a Newton-based Multistart method using both TORC and PNDL to execute concur-
rently multiple local optimizations and gradient/Hessian calculations. In contrast to previous approaches, we manage to ex-
press and exploit parallelism at all possible levels in a straightforward and seamless manner using a single runtime
framework. In addition, the task distribution and stealing mechanisms of TORC provide efficient load balancing without the
need for explicit partitioning of processors.

In contrast to other infrastructure, and with the exception of VTDIRECT95, our proposal is the only one that supports hier-
archical and multi-level task parallelism. What differentiates our approach from VTDIRECT95 implementation, is that our
hierarchical execution graph is changing dynamically unlike the static three level scheme applied in [14]. In addition, our
system is platform-agnostic supporting transparently both shared and distributed memory architectures.

By integrating a molecular modeling software package [16] with our system, we are able to apply our framework to a real
application case that deals with the protein conformation problem, that is the problem of determining the three dimensional
structure of a protein. It is a fundamental problem in biophysical sciences with applications in drug design and in genetic
information decoding.

We present an experimental evaluation on a dedicated homogeneous multicore cluster, providing results at both intra-
node and cluster-wide levels using a single application executable. The performance results with synthetic benchmarks and
applications demonstrate the efficiency of our system.

Summarizing, the contributions of this paper are:

� a runtime library for task-based computations of multicore clusters, which allows for extraction and exploitation of
dynamic, hierarchical and multilevel parallelism in global optimization algorithms,
� a novel high-performance implementation of the Multistart method using the above infrastructure, over different archi-

tectures, which allows multiple numerical derivative computations to be deployed concurrently,
� a highly efficient application of the optimization algorithm involved in the protein folding problem.

The rest of this paper is organized as follows: Section 2 gives an overview of the non-linear global optimization problem.
Section 3 discusses the inherent parallelism structure of Multistart and introduces the organization of our software infra-
structure. Section 4 outlines the programming interface and some implementation details of TORC. Section 5 focuses on
PNDL and Multistart, while Section 6 presents the protein conformation problem. Experimental evaluation is reported in
Section 7. We conclude with a discussion in Section 8.

546 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
2. Numerical optimization

2.1. Optimization of a non-linear objective function

The case of non-linear optimization, deals with non-linear objective functions that depend on real variables, with bound
restrictions on the values of these variables. The mathematical formulation is
min
x2S # Rn

f ðxÞ; ð1Þ
where x 2 S # Rn is a real vector and f : Rn ! R a smooth function.
An optimization algorithm is a sequential procedure that, beginning from an starting point x0 2 S, generates a sequence of

iterates fxkg1k¼0 that terminates when the solution point is approximated with a prescribed accuracy. In deciding how to
move from one iterate xk to the next, the optimization algorithm uses information about the function at xk (function value,
first or second order derivatives). The goal is to find a next iterate xkþ1 with a lower function value than xk.

One of the most successful iterative algorithms for the problem in Eq. 1 is the Newton method. This method uses first and
second order derivative around a current iterate xk to define a positive definite quadratic model and attempts a step towards
the minimum of this model. In regions near a minimum the quadratic model is expected to match the objective function. The
quadratic model at k-th iteration is defined as
qkðpÞ � f ðxkÞ þ pT gk þ
1
2

pT Bkp;
where gk ¼ rf ðxkÞ the vector of first order derivatives and Bk ¼ r2f ðxkÞ the Hessian matrix of second order derivatives.
Assuming that Bk is positive definite, the minimum of the model is defined as:
pk ¼ �B�1
k gk: ð2Þ
Procedure. Newton (f ; x0; x�)

Input: Objective function, f : S � Rn ! R; starting point: x0

Output: Approximation of the local minimizer: x�

1 for k 1;2; . . . do

2 Calculate gk ¼ rf ðxkÞ and Bk ¼ r2f ðxkÞ
3 Factorize the matrix Gk, where Gk ¼ Bk if Bk is positive definite; otherwise, Gk ¼ Bk þ Ek

4 Solve Gkpk ¼ �gk to obtain pk

5 Set xkþ1 ¼ xk þ akpk, where ak satisfies the Wolfe conditions
f ðxk þ akpkÞ 6 f ðxkÞ þ c1akpT
k gk ð3Þ

pT
krf ðxk þ akpkÞP c2pT

k gk ð4Þ
6 Stop if the convergence criterion is met
7 end
8 Set x� ¼ xkþ1

The Newton algorithm first modifies the Hessian matrix to render it positive definite, and then calculates the direction pk

from Eq. 2 and attempts one-dimensional minimization of the objective function along line xk þ pk. The complete algorithm
is described in Procedure Newton.

In step 4 of Procedure Newton a direct linear algebra technique, such as Gaussian elimination or Cholesky factorization, is
used to solve the Newton equation (Eq. (2)). In step 3 the Hessian matrix is first replaced by a positive definite approximation
whenever this is necessary. The modification is performed by adding either a positive diagonal matrix or a full matrix to the
true Hessian Bk and this can done during factorization.

In step 5 an approximate line search strategy [17] is applied to calculate the next iteration along xk þ pk. This strategy
searches for a suitable scalar value ak so that two conditions of Eqs. 3 and 4 are satisfied.

The computational cost of one Newton iteration is divided in four parts: the derivative calculation, the matrix modifica-
tion, the solution of the linear system and the line search. Note that, line search makes use of first order derivative informa-
tion. In numerous real world optimization applications the computational cost of a single objective function evaluation,
usually exceeds the cost of factorization and solution of the linear system. First and second order derivatives are even more
expensive to evaluate. Hence, for most cases the computational cost of a single Newton iteration is determined by the

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 547
objective function and derivatives evaluation in steps 2 and 5 of Procedure Newton. Finally, due to its sequential nature, Pro-
cedure Newton is not an easy candidate for parallel execution.

2.2. Finite difference approximation of derivatives

It is obvious that, estimating derivatives is a common subtask in local optimization algorithms and in the solution of non-
linear systems, where the Jacobian matrix is required. In a growing number of applications in science and engineering, the
underlying functions are represented by large and complicated computer codes and the user may find it difficult or almost
impossible to follow the original program (if it is available in source form) and develop the corresponding code for the
derivative.

An alternative is offered by finite differencing, where the derivatives are approximated by function values at suitably cho-
sen points. Other choices are automatic differentiation where the computer code for evaluating the objective function is bro-
ken down to elementary arithmetic operations and symbolic differentiation where algebraic expressions are generated by
symbolic manipulation. Finite differencing is an approach for calculating the first and second order derivatives of an
n-dimensional objective function at a point x by examining the objective function behavior on small finite perturbations
around x. The number of function evaluations depends on the order of the derivative (first or second) and on the requested
accuracy (the larger accuracy the more function evaluations). For the gradient vector at least nþ 1 function evaluations are
required and for the Hessian at least nðnþ 1Þ=2. Two of the most popular formulas for approximating gradient and Hessian,
using central differences are summarized below:
rf ðxÞ ¼ @f ðxÞ
@xi

� f ðxþ �ieiÞ � f ðx� �ieiÞ
2�i

; ð5Þ

r2f ðxÞ ¼ @
2f ðxÞ
@xi@xj

� f ðxþ �iei þ �jejÞ � f ðx� �iei þ �jejÞ
4�i �j

� f ðxþ �iei � �jejÞ þ f ðx� �iei � �jejÞ
4�i �j

; ð6Þ
where ei is the i-th unit vector and �i; �j small positive scalars. The above formulas offer accuracy of order Oðn2Þ and cost 2n
and 2n2 function evaluations respectively.

Finite differencing is a powerful tool for approximating derivatives, which are essential in a non-linear optimization algo-
rithm. It is also a perfect candidate for parallel execution. All function evaluations in Eq. (5), f ðxþ �ieiÞ and f ðxþ �iei þ �jejÞ,
can be performed independently and in parallel. Later in this paper, we discuss specific issues and implementation details of
this parallelization.

2.3. Multistart global optimization

Procedure Newton locates a minimizer efficiently with quadratic convergence speed. However, there is no guarantee that
this minimizer will be the one with the lowest function value in all S, as the minimizer may stick at a local minimum. This
requirement introduces the problem of global optimization, one of the most difficult problems in applied mathematics.
Searching for the global minimum is a very challenging, yet extremely useful, task for a wide range of scientific applications.

It can be proven, in the multidimensional case, that it is impossible to guarantee that the globally optimal value will be
found in finite time. All that can be assured is that the probability of locating the global minimizer approximates one. One of
the oldest and most popular schemes for dealing with global optimization problems is the Multistart method. According to
this method, a local search procedure L is executed for each point in a sample generated from a uniform distribution over the
search space S. The strong theoretical properties of Multistart render it a widely used method. The most important exten-
sions, that share the same principles with Multistart, are clustering methods [18,19], multilevel methods [20,21] and random
linkage methods [22]. All the algorithms are stochastic in nature and attempt to select the best candidates for local search,
whereas the simple Multistart applies local search from every sampled point.

A brief sketch of the Multistart method is presented in Procedure Multistart. Notice that the local searches (step 4) are
independent and can be performed in parallel. All aforementioned variations of Multistart can benefit from a parallel
execution of concurrent local searches.

Procedure. Multistart (f ; S; x�)

Input: Objective function, f : S � Rn ! R; search region: S # Rn

Output: Approximation of the global minimizer: x�

// Initialize the set of local minimizers
9 Set Y ¼ ;
10 for i 1;2; . . . do
11 Sample a random point xðiÞ uniformly in S
12 Apply procedure Newton (f ; xðiÞ; yðiÞ)

(continued on next page)

548 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
(continued)

Procedure. Multistart (f ; S; x�)

//Check if the local minimum is already found
13 if yðiÞ R Y then
14 Set Y ¼ Y [yðiÞ

15 end
16 Decide whether to stop by checking an appropriate stopping rule
17 end
18 Set x� be the element of Y with the minimum function value
3. Multistart parallelism issues and software architecture

In the framework of global optimization based on numerical differentiation, there exist several levels of parallelism that
can be exploited in order to accelerate the method. Fig. 1 illustrates the execution task graph of the Multistart method. Each
circle corresponds to code that spawns parallelism, which can be expressed and instantiated with lower-level tasks. Tasks at
the innermost level are represented with squares and correspond to serial code and specifically to either single function eval-
uations or sequential direct linear algebra operations. Therefore, the paths of the graph represent operations that can be per-
formed in parallel while their meeting points represent the completion of all tasks in a team with the satisfaction of all data
and control dependencies.

Initially, the application runs the Multistart method and spawns first-level (L1) tasks. These perform the Newton local
search method to multiple independent initial points (xðiÞ) and execute iterations until some convergence criterion is met.
In each iteration, the tasks first proceed with the derivatives calculation, spawning two second-level (L2) tasks that compute
Fig. 1. Execution task graph for Multistart using finite difference derivatives.

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 549
the gradient and Hessian respectively. The gradient computation includes a number of function evaluation (L3) tasks. The
Hessian computation, however, exploits an additional level of parallelism by assigning the numerical calculation of each par-
tial derivative to a (L3) task that can spawn 2 to 9 function evaluation (L4) tasks, depending on the desired accuracy and the
bounds. Local search continues with a sequential task that performs the required matrix modification and the solution of the
linear system. The iterative line search method follows, exploiting each time a single level of parallelism for the gradient
computation. For a large number of initial points, a gradual execution of Multistart can be performed by applying the Newton
method to bunches of points. In such case, the execution task graph is repeated until the desired number of points has been
processed.

Multistart is a highly irregular parallel application: first, the local search method is applied concurrently to multiple
points, the number of which may not be exactly divided by the number of available processors. Secondly, the execution time
of local search exhibits significant variation as the number of iterations required for convergence depends on the randomly
selected initial point. Similarly, the line search method is performed for an unknown number of iterations. Irregularity is
found even at the innermost level of parallelism (Hessian calculation), as the number of function evaluations for the deriv-
ative computation at a specific point also depends on the imposed bounds on the variables. According to the above, the exe-
cution times for finding a minimum for each initial point are neither balanced nor known beforehand. Derivative estimation
via finite differencing is computationally expensive for several applications where the time for a single function call is sub-
stantial. Therefore, the highly irregular nested parallelism of Multistart must be exploited at all possible levels, without mak-
ing any assumption about the number of available processors.

To deal with the significant computational demands of Multistart, a parallel implementation of the method on distrib-
uted-memory systems using MPI provides an efficient and cost-effective solution. In addition, the master-worker program-
ming model (paradigm) can be used for handling the high irregularity of the application. According to this model, the master
assigns tasks to a set of workers, sending any required input data, and then waits for the results. The workers can share some
common data, which are sent by the master to them only once, but do not communicate with each other. The number of
tasks usually exceeds the number of workers, and the master may generate new tasks dynamically, depending on the re-
ceived results. The attractiveness of this model stems from its simplicity and inherent support for load balancing.

The master-worker model in its naive form, however, suffers from several limitations, the handling of which is not
straightforward. A major drawback of the model is its low scalability, because of the bottleneck at the master that appears
as the number of workers and correspondingly the number of requests that must be processed increases. Employing tech-
niques like distributed task queues requires additional programming effort, though. Furthermore, hierarchical/nested paral-
lelism can only be supported in a limited form, by partitioning the MPI processes into disjoint groups, one for each level of
parallelism. Although an MPI-based implementation of the model can run on both multiprocessors/multicores and clusters,
it always uses explicit messages and cannot easily adapt so as to take advantage of a node’s physically shared memory.

All these drawbacks of the model are strongly related to the optimization problem under study in this paper. Considering
the large expected number of spawned tasks (function evaluations), which can be in the order of 106 for a typical example,
advanced runtime techniques are necessary to avoid scalability issues. Furthermore, the high irregularity makes an effective
partitioning of processors impossible while the support of adaptive nested parallelism crucial. Finally, it is important to de-
velop a hardware-independent solution, able to exploit multi-threading in a transparent way and fully take advantage of the
hardware shared memory of SMP/multi-core systems.

Our system offers a parallel implementation of Multistart that deals with all the above limitations in a completely
transparent way, taking advantage of two software libraries (PNDL and TORC). The architecture of our parallel optimization
framework is depicted in Fig. 2 and includes the following components:
Fig. 2. Architecture of our runtime infrastructure.

550 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
� Global optimization application: It implements the parallel Multistart method taking advantage of TORC in order to spawn
tasks that execute the Newton method. In addition, it issues concurrent calls to PNDL, for parallel gradient and Hessian
computations.
� PNDL: It is a standalone software module that exports subroutines for calculating gradients, Hessians and Jacobians by

finite differencing, supports multivariate functions, respects variable bounds and offers several prescribed accuracy levels.
The parallel implementation of PNDL for multicore clusters has been based on the tasking model that TORC provides. In PNDL,
task parallelism is expressed with independent function evaluations assigned to the workers.
� TORC: It is the core of our runtime environment for programming and executing irregular and adaptive master-worker

applications on multi-core SMPS and clusters of such machines. TORC supports a task-style programming taking advantage
of and extending the MPI programming model. TORC’s is exclusively built on top of POSIX threads and MPI, offering portability,
performance and a seamless integration of hardware shared-memory and message passing.

4. TORC runtime library

TORC [23] implements a task-based programming and runtime environment that make the development of master-worker
applications quite straightforward. TORC assumes that a single application consists of multiple MPI processes with private mem-
ory when running on a cluster. Processes can have multiple worker threads, taking thus advantage of multiprocessor/multicore
cluster nodes. Therefore, unless otherwise specified, the terms node and process are used interchangeably in this paper.

A task represents a work unit that is independent of its execution vehicle, i.e., the MPI process and worker thread. A
spawned task can be submitted for execution to any MPI process; the programmer may specify the target worker in the task
creation routine. Therefore, the same application code can run on any combination of MPI processes and threads, exploiting at
runtime the presence of physically shared memory, if available.

Due to the decoupling of tasks and execution vehicles, multiple levels of task parallelism are inherently supported and
any child task can become a parent and spawn new tasks. Therefore, TORC enables the programmer to express hierarchical
and recursive task parallelism naturally, which would be otherwise quite cumbersome to implement.

4.1. Programming interface

TORC provides C and Fortran interfaces for programming task-based parallel programs to be executed unaltered on both
shared and distributed memory platforms. By default, TORC supports the fork-join execution model on both platforms.

Fig. 3(left) presents a complete application that uses a recursive function (fib) and TORC calls to compute the Nth (N = 50)
Fibonacci number. We observe the complete absence of explicit MPI calls and the usage of three primary TORC routines that
initialize the library, spawn and join tasks.

After library initialization, performed with the torc_init routine, TORC transparently allows only one of the MPI processes
to continue with the execution of the main routine, i.e., the primary application task, while the rest of them become workers.

TORC tasks have a parent–child relationship and can be arbitrarily nested, allowing the support of multiple levels of par-
allelism. In the task creation routine (torc_task), in addition to the target worker thread, the user must specify the task
function, the number of arguments this function receives and an argument list. For each argument, its size and data type
#include <torc.h>

void fib (int n, unsigned long *res) {
unsigned long res1, res2;

if (n <= 1) {
*res = n;

} else {
torc_task(-1, fib, 2,

1, MPI_INT, CALL_BY_VAL,
1, MPI_UNSIGNED_LONG, CALL_BY_RES,
n-1, &res1);

torc_task(-1, fib, 2,
1, MPI_INT, CALL_BY_VAL,
1, MPI_UNSIGNED_LONG, CALL_BY_RES,
n-2, &res2);

torc_waitall();
*res = res1+res2;

}
}

void main(int argc, char *argv[]) {
unsigned long res;
int N = 50;
torc_init(argc, argv, MODE_MW);
fib(N, &res);

}

#include <omp.h>

void fib (int n, unsigned long *res) {
unsigned long res1, res2;

if (n <= 1) {
*res = n;

} else {
#pragma omp task shared(res1)
{ fib(n-1, &res1); }

#pragma omp task shared(res2)
{ fib(n-2, &res2); }

#pragma omp taskwait
*res = res1+res2;

}
}

void main(int argc, char *argv[]) {
unsigned long res;
int N = 50;
#pragma omp parallel
#pragma omp single
fib(N, &res);

}

Fig. 3. Recursive Fibonacci implementation with TORC calls (left) and with OPENMP tasks (right).

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 551
is required. In addition, an intent attribute must be also supplied, similarly to the IN, OUT and INOUT intent attributes of
Fortran 90. Possible values of this attribute are the following:

� CALL_BY_VAL (IN): The argument is passed by value. If the task is submitted to a remote process, a copy of the argument
will be transferred to that process too.
� CALL_BY_REF (INOUT): The argument represents data that is sent along with the task and will be returned as a result in

the address space of the process the task belong to.
� CALL_BY_RES (OUT): No data has to be sent but a result will be returned.

Thefib function spawns two new tasks that are distributed across the available workers in a round-robin fashion. After task
creation, a parent task calls torc_waitall to suspend itself until all child tasks have finished and their results are available.

The code on the right side of Fig. 3 shows the corresponding Fibonacci implementation using the OPENMP tasking model.
We observe a strong similarity between the two codes. Although TORC requires some additional programming effort for the
description of the task arguments, this is compensated by its support of task parallelism on distributed memory platforms.

In several applications, each task computes a partial result which is collected by the parent to produce the final result.
Therefore, TORC supports reduction operations on the results (output arguments) of a task function. The accumulation occurs
at the process of the parent task for each returned partial result. Reduction operations are supported for both scalar variables
and arrays. Moreover, the reduction mechanism is multi-threaded and can be performed by multiple threads running con-
currently on the same process.

Several master-worker applications may have global data that is initialized by the master and then broadcast to the work-
ers. The torc_bcast routine allows any task to broadcast global data to all MPI processes. Data broadcasting avoids unnec-
essary data transfers and benefits applications that otherwise would need to send the data with every task.

4.2. Implementation details

TORC has been designed to support task-based parallelism on multicores and clusters of multicores, taking advantage of
and extending the MPI programming model. MPI was chosen because of its universal acceptance as the de facto messaging
layer. Except for the guaranteed portability, optimized implementations of MPI are readily available for specific interconnec-
tion networks, offering a high-speed communication base.

4.2.1. Design and architecture
A TORC application consists of multiple MPI processes that run on the cluster nodes. Each process consists of a number of

kernel threads that share the process memory. TORC implements a hybrid (two-level) thread architecture to support the task-
ing model. Each kernel thread is a worker (virtual processor) that continuously dispatches and executes ready-to-run tasks.
There are private and public worker-specific and node-specific ready queues where tasks can be submitted for execution.
Moreover, a server thread per process is responsible for the remote queue management and the transparent and asynchro-
nous data movement.

Fig. 4 illustrates the general architecture of the runtime environment on a single cluster node (process).
TORC provides efficient runtime support on pure shared-memory systems too. In particular, when running on a single

node, TORC uses kernel threads to exploit the multiple processors/cores and completely avoids explicit messaging. In this case,
TORC is equivalent to multicore programming frameworks such as Cilk [24], Intel TBB [25] and OpenMP tasks. Considering dis-
tributed memory platforms, TORC shares some similarities with the StarPU-MPI task programming library [26]. StarPU-MPI,
however, has an more complex programming interface that targets MPI clusters enhanced with GPU accelerators. TORC also
supports GPU clusters [23], an extension of our optimization framework on such platforms is, however, beyond the scope
of this paper.

4.2.2. Task management and data movement
A task in TORC corresponds to the remote execution of a function on a set of data that are passed as arguments to this func-

tion, in the spirit of RPC – remote procedure calls. Tasks are executed asynchronously and in any order, without any data
dependencies or point-to-point communication between them.
Fig. 4. Intra-node architecture of TORC.

552 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
Tasks are associated with the process (home node) they were created on and can be executed either locally or remotely. In
the latter case, explicit movement of data takes place using MPI calls. This, however, is performed completely transparently
to the user. Every data transfer relies on the communication layer of the underlying MPI implementation, which is expected
to take advantage of hardware shared memory for data transfers between processes running on the same physical node.

Worker threads access the local queues through hardware shared memory and the queues of any other process through
the corresponding server thread. This combination of shared memory with explicit messaging is also used for the coherence
of the execution model: a task that finishes on its home node directly updates its parent. Otherwise, it sends a message to the
server thread of its home node, which in turn notifies the parent task. Output results are sent back in a similar and trans-
parent to the programmer way.

A running task that spawns parallelism can suspend its execution, waiting for the termination of its child tasks. The exe-
cution state of the task is saved, releasing the underlying kernel thread, which runs the scheduling loop for selecting the
next-to-run task. When all child tasks have completed the suspended task becomes ready for execution and eventually
resumes.

When the torc_bcast routine is called from the primary application task, which means that there are no pending tasks
in the system, the blocking MPI_Bcast function is internally invoked. Otherwise, the worker thread that encounters an
torc_bcast call sends asynchronously the data to the server threads of the other processes, avoiding thus any interaction
with the rest of the worker threads.

4.2.3. Task distribution and scheduling
Spawning a large number of tasks can be an effective approach to distribute the work evenly among the available work-

ers. The user can query the execution environment (number of nodes/workers) and then specify the worker where each task
will be submitted for execution.

The scheduling loop of a worker thread is activated when its current task finishes or blocks. A worker extracts and exe-
cutes the task that is at the front of its local ready queue. If this is empty, the worker tries to steal a task from the rest of the
intra-node (local) ready queues, visiting them in a cyclic fashion. If no work is found and inter-node task stealing is enabled,
it issues requests for work to remote nodes, following a cyclic order as before. Moreover, these requests are sent synchro-
nously, which means that a worker always waits for a response for the server thread before issuing a stealing request to
the next node. A server thread that serves such a request visits the local queues in the same way as the workers.

Task stealing is always performed from the back of the ready queues. The stealing of a task from a remote queue includes
the corresponding data movement. The maximum number of transfers for a task and its input data cannot exceed 2; the first
transfer occurs when a task is submitted for execution at a remote node, while the second one when (and if) the task is stolen
by another node. As an optimization, if a task is stolen by its home node, data movement is not performed as the input task
data already reside on that node.

Inter-node task stealing is optional and must be explicitly enabled based on the load imbalance of the parallel application.
On the other hand, intra-node task stealing is always active in TORC.

5. Parallel implementation

In this section we discuss details regarding the parallelization of the numerical estimation of first and second order partial
derivatives and the Multistart optimization method.

5.1. Parallel gradient and Hessian

PNDL is implemented as a Fortran software library for numerically estimating first- and second-order partial derivatives of
a function by finite differencing. Various truncation schemes are offered resulting in corresponding formulas that are accu-
rate to order O(h), O(h2), and O(h4), h being the differencing step. The derivatives are calculated via forward, backward or
central differences.

The implementation of PNDL for multicore clusters has been based on the tasking model that TORC provides. Task parallel-
ism is expressed with independent function evaluations that are submitted for execution. For each function evaluation, a
task is created, with main input argument a vector x and result the computed function value f ðxÞ.

The core PNDL routines for gradient and Hessian computations are the following:

subroutine pndlg (f,x,n,iord,grad)

subroutine pndlhf (f,x,n,iord,hes)

subroutine pndlhg (g,x,n,iord,hes)

where f is the function to be differentiated, x is the vector containing the point of calculation, n is the dimensionality of the
function, iord the requested order of accuracy, grad and hes are the resulting gradient vector and Hessian matrix. The pndlhg
routine can be used if the analytical gradient g of the objective function is available. A preliminary report on the intended
PNDL API is available in [27]. In contrast to [27], however, the parallel routines that PNDL exports to MPI programs have been

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 553
redesigned for a master-worker, instead of SPMD execution mode. As such, the calling process initializes the input parameters
and receives the computed derivatives.

Fig. 5 illustrates the way PNDL uses TORC calls to calculate the gradient, exploiting a single level of parallelism, as depicted
in Fig. 1. In particular, when pndlg is invoked, the primary task initially broadcasts the input vector x through the use of a
common block. It then spawns and distributes cyclically function evaluation tasks to the workers. After task completion, the
primary task first gathers all the required function values and then computes the derivatives according to the given numer-
ical differentiation formula. An alternative is to have each task compute a part of the numerical formula and then combine its
result through a reduction operation. The advantage, however, of the adopted two-phase scheme (gathering of function val-
ues and then estimation of the derivative) is that it preserves the sequential order of calculations and, thus, avoids rounding
errors due to reordering.

The above scheme, however, may increase significantly the memory requirements of PNDL for the estimation of second
order derivatives of functions with a large number of variables, which can be of the order of thousands for specific problems.

To handle this issue, we exploit nested parallelism; each element of the Hessian is calculated by a first-level task, which
issues function calls through second-level tasks. The number of first-level tasks is equal to nðnþ 1Þ=2 and each of them
spawns 2 to 9 s-level tasks, according to user parameters (selected numerical differentiation formula, desired accuracy
and bounds).

Memory usage is drastically reduced because the number of active first-level tasks, which reserve stack space for the re-
sults, never exceeds the number of available workers. This is achieved because second-level tasks are inserted in the front of
the ready queues and thus have higher execution priority than first-level tasks, which are inserted at the end.

The runtime architecture of TORC allows for several task distribution schemes: Fig. 6 outlines the hierarchical parallel
implementation of the pndlhf routine using the STRIDE scheme, which divides equally the number of function evaluations
among the available workers. The first argument of the task creation routine denotes the identifier of the worker thread
where the task will be submitted to. The parent task distributes the first-level tasks using a variable stride (istride1) that
is determined by the (known beforehand) number of second-level tasks that correspond to each task. Next, each first-level
task distributes the inner tasks to consecutive workers (istride2 = 1), starting from the worker where that task runs on.
Fig. 7 illustrates an example of the STRIDE distribution scheme: each second-level task corresponds to a single function call.
The number inside each task denotes which of the 8 workers will be assigned that task.

Although the STRIDE scheme balances the number of function evaluations betweens processors, it is suitable only for
dedicated homogeneous clusters and may result in an excessive number of messages for high-dimensional functions. To
overcome these issues we have introduced a dynamic task distribution scheme, called GLTS, which distributes the first-level
tasks cyclically across the processors (istride1 = 1) and submits the second-level tasks locally (istride2 = 0) with task
stealing enabled. An example of the GLTS scheme is depicted in Fig. 8. GL is another task distribution scheme that differs from
GLTS in that task stealing is used only at the intra-node level, i.e., between workers that belong to the same process. Finally,
LLTS is a variant of the GLTS scheme that submits even the first-level tasks locally and specifically in the ready queue of the
worker that issued the PNDL routine (both strides are equal to zero). The configuration of each distribution scheme is sum-
marized in Table 1.

Despite the availability of several software packages for estimating derivatives numerically (e.g., [28–30]) their imple-
mentation is sequential. In [31], the authors present an MPI-based parallel numerical Hessian implementation. They use
the central difference formula and follow a sequential or block, though static, decomposition method for distributing
function evaluations to processors. In contrast, PNDL uses a dynamic two-level task distribution scheme which is further en-
hanced with task stealing. Our approach allows for multiple concurrent Hessian calculations and better load balancing.

5.2. Parallel Newton and Multistart methods

The parallelization of the Newton method relies on two PNDL routines that compute the required gradient and Hessian
matrices. These routines can be executed concurrently, as an additional level of parallelism, through the spawning of two
TORC tasks. This, however, requires appropriate modifications in PNDL, due to the usage of common blocks for broadcasting
the input vector. Therefore, we use an array of input vectors in the common block and each PNDL function call is dynamically
! first level
subroutine pndlg(f, x, n, iord, grad)
external f
integer n, iord
double precision x(n), grad(n), xx(n)
...
<set xx(I) = x(I)> ! create copy of input vector x
call torc_bcast(xx, n, MPI_DOUBLE_PRECISION) ! broadcast copy
<for each required function value>
call torc_task(-1, f, ..) ! cyclic distribution

call torc_waitall()
<compute vector grad>
end

Fig. 5. Outline of a PNDL gradient calculation with exploitation of a single level of parallelism.

! first level
subroutine pndlhf(f, x, n, iord, hes)
external f, driver
integer n, iord
double precision x(n), hes(n,n), xx(n)
...
<set xx(I) = x(I)> ! create copy of x
call torc_bcast(xx, n, MPI_DOUBLE_PRECISION)
iworker = torc_worker_id()
nworkers = torc_num_workers()
<for each derivative>

call torc_task(iworker, driver, ..)
istride1 = <# function values required>
iworker = mod(iworker+istride1,nworkers)

call torc_waitall()
end

! second level
subroutine driver(f, n, ...)
...
iworker = torc_worker_id()
nworkers = torc_num_workers()
istride2 = 1
<for each required function value>

call torc_task(iworker, f, ..)
iworker = mod(iworker+istride2,nworkers)

call torc_waitall()
<compute partial derivative h(i,j)>
end

Fig. 6. Outline of a PNDL Hessian calculation with exploitation of two levels of parallelism using the STRIDE distribution scheme.

Fig. 7. An example of the STRIDE task distribution scheme for the estimation of second order derivatives (is � istride).

Fig. 8. An example of the GLTS task distribution scheme.

Table 1
Configuration of the various task distribution schemes.

Distribution scheme istride1 istride2 Internode stealing

STRIDE variable 1 no
GL 1 0 no
GLTS 1 0 yes
LLTS 0 0 yes

554 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
assigned a unique identifier that specifies an available entry of this array. The size of the array denotes the maximum num-
ber of concurrent PNDL functions that can be simultaneously active.

Parallel Multistart takes advantage of the reentrancy of PNDL functions to issue multiple local searches concurrently start-
ing from randomly chosen initial points. As the number of points increases, the small serial fraction of the Newton method
becomes negligible and the effective utilization of parallel hardware is further improved. For Multistart, we have followed
MLTS, a modified LLTS distribution scheme with inter-node stealing enabled:

Ideally, each local search will be performed exclusively by a single worker. Idle workers will try to steal and execute tasks
that belong to the first-level of parallelism and will participate in the execution of remotely issued PNDL routines only when
the number of remaining optimizations is less than the number of workers. For a single Newton-based local search, two en-
tries in the global array are sufficient. Therefore, for N local searches the number of entries in the global array can be 2P in-
stead of 2N, where P is the maximum number of workers.

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 555
6. Protein conformation

The protein conformation problem is defined in [32] as the problem of determining the three dimensional structure of a
protein, called its tertiary structure, just from the sequence of amino acids that it is composed of (its primary structure). Under
the assumption that in the native state the potential energy of a protein is globally minimized, the protein conformation
problem can be regarded as equivalent to solving the problem
min
x2R3n

EðxÞ ð7Þ
where EðxÞ is the value of a potential energy function for an n atom protein described by a 3n dimensional coordinate vector.
This optimization problem has a large number of variables, depending on the size of the amino acid sequence, and many
local minimizers that grow exponentially with the number of atoms.

Protein folding is considered one of the most challenging global optimization problems due to the vast number of local
optimal conformations and the large objective function computation time. Until recently, only small protein structures were
examined thoroughly and their global minimum conformations were revealed.

To model the potential energy of Eq. 7 we used the Tinker [16] software, a flexible system of programs and routines for
molecular mechanics and dynamics. The modeled energy depends on the positions of the atoms in 3D-space and includes
distance and angle calculations. In our application we minimize a reduced scheme of dihedral angles between consecutive
triads of atoms.

7. Results and discussion

We have experimented with all the components of our software system extensively. In this section we present perfor-
mance results on a dedicated Sun Fire �4100 cluster of 16 nodes interconnected with Gigabit Ethernet. Each node has 2 dual
core AMD Opteron-275 processors running at 2.2 GHz for a total of 64 cores. The software was compiled under Linux 2.6
with the GNU gcc compiler and MPICH2 [33]. The multithreaded-safe MPI implementation allows for blocking receive calls
in the loop of the server thread that avoid polling and thus minimize any interference with the worker threads of the
application.

Thanks to the design of TORC, the same application binary can exploit the 4 processor cores of a single node with several
combinations in the number of processes and workers. For example, the application may have 4 processes of one worker
each or a single process with 4 worker threads.

Our system targets mostly medium to coarse-grained tasks for remote execution. As an indication, for the specific plat-
form used for our experimental evaluation, the task execution overhead for a zero-argument task is measured approximately
0.1 ms and depends on the latency of the interconnection network. In contrast, within a multi-core node we support very
fine-grained tasks efficiently.

7.1. PNDL-Parallel Hessian computation

We present two sets of synthetic experiments that calculate the Hessian with O (h4) precision without imposing bounds
on the variables. We used as benchmark the Rastrigin function
f ðxÞ ¼ 10nþ
Xn

i¼1

ðx2
i � 10cosð2pxiÞÞ;
with artificial delay. We consider only the Hessian, since the parallel Gradient calculation is a straightforward case of cyclic
task distribution.

The first set of experiments (E1 and E2) uses a test function with 20 variables and leads to a total of 820 objective function
calls. We have arranged for function evaluation time to be 100 ms and 1000 ms via appropriate artificial delays. The second
set (E3 and E4) uses a 100-dimensional test function with artificial delays of 10 ms and 100 ms. The number of function eval-
uations for this set is 20100. Both experiments are designed to cover a wide range of practical situations and correspond to
medium and large problem sizes. They are representative of applications with many dimensions and/or substantial function
execution time (the function value may be the result of a simulation).

Fig. 9(a)–(d) present the results from the two sets of experiments with the 4 task distribution schemes (STRIDE, GLTS, GL, and
LLTS). For the first set of experiments (Fig. 9(a) and (b)), we observe that the speedup increases with the computational cost of
the test function, due to the higher computation-to-communication ratio. The slight decrease in performance is attributed to
a small serial fraction of code in the PNDL routine and the load imbalance when the number of function evaluations is not
exactly divided by the number of workers. The overhead of broadcasting the 160 bytes of the input point is negligible
and does not affect the overall performance of the application. Although all distribution schemes exhibit comparable perfor-
mance up to 32 processors, GLTS achieves the highest speedup on 64 processors, with LLTS and GL following. The lowest speed-
up corresponds to the STRIDE scheme because of its large number of explicit messages.

(a) (b)

(c) (d)

Fig. 9. Speedup measurements. (a) E1 (variables = 20, delay = 100 ms). (b) E2 (variables = 20, delay = 1000 ms). (c) E3 (variables = 100, delay = 10 ms).
(d) E4 (variables = 100, delay = 100 ms).

556 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
For the 100-dimensional test function (Fig. 9(c) and (d)), the obtained speedup of GLTS almost coincides with the ideal for
both cases. In this set of experiments, the lowest speedup values are observed for LLTS, due to the bottleneck at the single
queue where the 5050 first-level tasks are submitted for execution.

7.2. Multistart-parallel global optimization

In order to evaluate parallel Multistart, we also used the Rastrigin test function with 10 variables and artificial delays that
range from 1 ms to 1000 ms. We provide results for 1;16;64 and 1024 initial points, using the modified LLTS (MLTS) task dis-
tribution scheme in all cases.

Fig. 10(a) depicts the speedup for a single starting point, which represents a worst-case but unlikely to occur scenario in
global optimization problems. We observe that the Newton method fails to scale as the number of workers increases, regard-
less of the function evaluation time. This is mostly attributed to a small serial fraction (’2%) of the Newton code and spe-
cifically to the direct linear algebra part that includes a Cholesky factorization that has not been parallelized. The speedup
can be further affected by the communication overheads, especially when the computational cost of the objective function is
low. For function evaluation time equal to 1s, however, we observe that the measured speedup is very close to the maximum
theoretical one. The latter, according to Amdahl’s law [34], is defined as
SðpÞ ¼ 1
bþ ð1� bÞ=p

;

where p is the number of processors and b the fraction of the code which is strictly serial (2% in our case).
Fig. 10(b)–(d) show the speedup of Multistart when 16, 64 and 1024 optimizations are issued. The attained speedup

increases with the number of optimizations, especially if this exceeds the number of available processing cores. For 1024
optimizations, the speedup almost coincides with the ideal for both 10 ms and 100 ms function evaluation time.

The next experiment studies the performance behavior of Multistart with respect to the number of variables. Fig. 11(a)
and (b) depict the speedup on 64 workers for 64 initial points and function evaluation time equal to 1 ms and 10 ms

(a) (b)

(c) (d)

Fig. 10. Speedup for varying number of local searches. (a) 1 local search. (b) 16 local search. (c) 64 local search. (d) 1024 local search.

(a) (b)

Fig. 11. Speedup on 64 workers for 64 local searches for 10, 20, 30 and 40 variables. (a) 1 ms function evaluation time. (b) 10 ms function evaluation time.

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 557
respectively. We observe that the obtained speedup increases with the number of objective function variables. For 10 ms
delay, the obtained speedup is significantly higher for 10 variables and approximates the ideal if more function variables
are used.

7.3. Multistart-protein conformation

The protein tested consists of 8 Alaline amino acids (Polyalaline-8) in the primary structure chain, blocked by the ACE and
NME groups. The resulting global optimization problem consists of 35 parameters in internal coordinate space. The goal is to
reproduce the already known global minimum conformation of Polyalaline-8 that was first explored in [35].

Fig. 12. Speedup for 1, 16 and 64 local searches for Polyalaline-8.

Fig. 13. Polyalaline-8 minimum energy conformation, EAMBER96 ¼ �44:45 kcal/mol.

558 P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559
Fig. 12 shows the speedup of Multistart for 1, 16 and 64 initial points. Every energy function performed by Tinker takes
approximately 4 ms for Polyalaline-8. We observe that the speedup increases with the number of independent optimizations
and that the results match those presented previously using the test function. As the number of initial points increases, the
speedup of Multistart approaches the ideal as better load balancing is achieved.

In all the experiments we compute the Hessian matrix numerically using function evaluations; an alternative approach is
to use the analytic gradient routine of the objective function, if this is available. This reduces the number of function eval-
uations of Multistart and equivalently the number of spawned tasks. For instance, the computational cost of the gradient
function for Polyalaline-8 is approximately 1 ms. When gradient calls are used, the performance scalability of Multistart re-
mains the same, the only difference being the considerably smaller execution time of each local optimization.

In Fig. 13 we present the final conformation of Polyalaline-8 as computed by the parallel Multistart. The result matches
the global best conformation presented in [35].

P.E. Hadjidoukas et al. / Applied Mathematics and Computation 231 (2014) 544–559 559
8. Conclusions

We presented the design and implementation details of an optimization framework which efficiently exploits nested and
irregular parallelism on clusters of multicores/SMPS. At the core of our framework is TORC, a runtime library that supports dy-
namic task-based parallelism on these platforms. Using TORC, we manage to extract and execute the multiple levels of par-
allelism inherent in the Multistart optimization method, performing thus Newton-based local searches, gradient and Hessian
calculations and function evaluations in parallel. The scalability of our system was demonstrated on a multicore cluster with
synthetic benchmarks and validated with a real application case that deals with the protein conformation problem. The
experiments results showed that our system achieves speedups that coincide with the ideal one, verifying that TORC man-
ages to handle efficiently the irregular task parallelism of Multistart. Going a step further we believe that the runtime envi-
ronment presented can support much more complicated global optimization schemes.

Our future plans include the integration of additional numerical optimization techniques into our infrastructure. Further-
more, we currently extend the applicability of our system to computational grids and heterogeneous environments.

References

[1] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka, A.D. George, Parallel global optimization with the particle swarm algorithm, Int. J. Numer. Methods
Eng. 61 (13) (2004) 2296–2315.

[2] J. He, L.T. Watson, M. Sosonkina, Algorithm 897: VTDIRECT95: serial and parallel codes for the global optimization algorithm DIRECT, ACM Trans. Math.
Soft. (TOMS) 36 (3) (2009) 17:1–17:24.

[3] R.H. Byrd, E. Eskow, A. van der Hoek, R.B. Schnabel, K.P.B. Oldenkamp, A parallel global optimization method for solving molecular cluster and polymer
conformation problems, 7th Siam Conf. on Parallel Processing for Scientific Comput., SIAM, Philadelphia, 1995, pp. 72–77.

[4] R.H. Byrd, E. Eskow, A. van Der Hoek, R.B. Schnabel, C.S. Shao, Z. Zou, Global optimization methods for protein folding problems, Global minimization of
nonconvex energy functions: molecular conformation and protein folding, Am. Math. Soc. (1996) 29–39.

[5] T.F. Coleman, Z. Wu, Parallel continuation-based global optimization for molecular conformation and protein folding, J. Global Optim. 8 (1) (1996) 49–
65.

[6] S. Crivelli, T. Head-Gordon, R. Byrd, E. Eskow, R. Schnabel, A hierarchical approach for parallelization of a global optimization method for protein
structure prediction, in: 5th Int’l Euro-Par Conf. on Parallel Processing, Toulouse, France, 1999, pp. 579–585.

[7] S. Kozola, Improving optimization performance with parallel computing, The MathWorks Inc., Tech. Rep. 91710v00 (2009). pp. 1–6. Available at http://
www.mathworks.ch/company/newsletters/articles/improving-optimization-performance-with-parallel-computing.html.

[8] J. Eriksson, P. Lindstrom, A parallel interval method implementation for global optimization using dynamic load balancing, Reliable Comput. 1 (2)
(1995) 77–91.

[9] C. Hu, B. Kearfott, S. Xu, X. Yang, A parallel software package for nonlinear global optimization, in: 5th Int’l Conf. on Optimization: Techniques and
Applications, Hong Kong, 2001.

[10] K. He, L. Zheng, S. Dong, L. Tang, J. Wu, C. Zheng, PGO: a parallel computing platform for global optimization based on genetic algorithm, Comput.
Geosci. 33 (3) (2006) 357–366.

[11] M. Wahib, M. Munetomo, A. Munawar, K. Akama, Mhgrid: towards an ideal optimization environment for global optimization problems using grid
computing, in: 8th Int’l Conf. on Parallel and Distr. Comput., Applic. and Technologies (PDCAT’ 07), Washington, DC, 2007, pp. 167–168.

[12] A. Günay, F. Öztoprak, S�. Birbil, P. Yolum, Solving global optimization problems using MANGO, in: 3rd KES Int’l Symp. on Agent and Multi-Agent
Systems: Technologies and Applic., Upsalla, Sweden, 2009, pp. 783–792.

[13] F. Biscani, D. Izzo, C. Yam, A global optimisation toolbox for massively parallel engineering optimisation, in: 4th Int’l Conf. on Astrodynamics Tools and
Techniques, Madrid, Spain, 2010.

[14] J. He, M. Sosonkina, C.A. Shaffer, J.J. Tyson, L.T. Watson, J.W. Zwolak, A hierarchical parallel scheme for a global search algorithm, High Performance
Computing Symposium, Advanced Simulation Technologies Conference, International Society for Modeling and Simulation, 2004, pp. 43–50.

[15] A.H.G. Rinnooy Kan, C.G.E. Boender, Bayesian stopping rules for multistart global optimization methods, Math. Program. 37 (1) (1987) 59–80.
[16] J.W. Ponder, TINKER-Software Tools for Molecular Design, Washington University, St. Louis, 1999. Version 3.7.
[17] J.J. Moré, D.J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Soft. (TOMS) 20 (3) (1994) 286–307.
[18] A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods Part I: clustering methods, Math. Program. 39 (1987) 27–56.
[19] C. Voglis, I.E. Lagaris, Towards ideal multistart, a stochastic approach for locating the minima of a continuous function inside a bounded domain, Appl.

Math. Comput. 213 (2009) 216–229.
[20] A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods Part I: clustering methods, Math. Program. 39 (1987) 57–78.
[21] M.M. Ali, C. Storey, Topographical multilevel single linkage, J. Global Optim. 5 (1994) 349–358.
[22] M. Locatelli, F. Schoen, Random Linkage: a family of acceptance/rejection algorithms for global optimisation, Math. Program. 85 (2) (1999) 379–396.
[23] P.E. Hadjidoukas, E. Lappas, V.V. Dimakopoulos, A tasking library for platform-independent task parallelism, in: 20th Euromicro Int’l Conf. on Parallel,

Distributed and Network-Based Processing, Munich, 2009, pp. 229–236.
[24] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, Y. Zhou, Cilk: an efficient multithreaded runtime system, J. Parallel Distrib. Comput.

37 (1) (1996) 55–69.
[25] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism, O’ Reilly Media Inc, 2007.
[26] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, S. Thibault, StarPU-MPI: task programming over clusters of machines enhanced with accelerators, in:

19th European MPI Users’ Group Meeting, Vienna, Austria, 2012.
[27] C. Voglis, P.E. Hadjidoukas, I.E. Lagaris, D.G. Papageorgiou, A numerical differentiation library exploiting parallel architectures, Comput. Phys. Commun.

180 (8) (2009) 1404–1415.
[28] GSL, Gnu scientific library. Available at <http://www.gnu.org/software/gsl/>, 2012.
[29] NAG Fortran Library, D04 numerical differentiation, subroutine D04AAF.
[30] P. Gilbert, R. Varadhan, numDeriv: accurate numerical derivatives. Available at <http://cran.r-project.org/web/packages/numDeriv/>, 2012.
[31] M.S. Staveley, R.A. Poirier, S.D. Bungay, An evaluation of parallel numerical Hessian calculations, in: High Perf. Comput. Symp. (HPCS 2009), LNCS, vol.

5976, 2009, pp. 196–214.
[32] C.B. Anfinsen, Principles that govern the folding of protein chains, Science 181 (1973) 223–230.
[33] W. Gropp, mpich2: a new start for mpiimplementations, in: 9th European PVM/MPI Users’ Group Meeting, Linz, Austria, 2002, pp. 37–42.
[34] G.M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: The Spring Joint Computer Conference, April

18–20, 1967, ACM, 1967, pp. 483–485.
[35] P.N. Mortenson, D.J. Wales, Energy landscapes, global optimization and dynamics of the polyalanine Ac (ala) NHMe, J. Chem. Phys. 114 (2001) 6443–

6454.

http://refhub.elsevier.com/S0096-3003(13)01382-9/h0065
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0065
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0070
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0070
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0075
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0075
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0075
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0080
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0080
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0085
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0085
http://www.mathworks.ch/company/newsletters/articles/improving-optimization-performance-with-parallel-computing.html
http://www.mathworks.ch/company/newsletters/articles/improving-optimization-performance-with-parallel-computing.html
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0095
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0095
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0100
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0100
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0105
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0105
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0105
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0110
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0115
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0115
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0120
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0125
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0130
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0130
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0135
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0140
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0145
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0150
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0150
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0155
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0155
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0160
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0160
http://www.gnu.org/software/gsl/
http://cran.r-project.org/web/packages/numDeriv/
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0165
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0170
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0170
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0170
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0175
http://refhub.elsevier.com/S0096-3003(13)01382-9/h0175

	Supporting adaptive and irregular parallelism for non-linear numerical optimization
	1 Introduction
	2 Numerical optimization
	2.1 Optimization of a non-linear objective function
	2.2 Finite difference approximation of derivatives
	2.3 Multistart global optimization

	3 Multistart parallelism issues and software architecture
	4 TORC runtime library
	4.1 Programming interface
	4.2 Implementation details
	4.2.1 Design and architecture
	4.2.2 Task management and data movement
	4.2.3 Task distribution and scheduling

	5 Parallel implementation
	5.1 Parallel gradient and Hessian
	5.2 Parallel Newton and Multistart methods

	6 Protein conformation
	7 Results and discussion
	7.1 PNDL-Parallel Hessian computation
	7.2 Multistart-parallel global optimization
	7.3 Multistart-protein conformation

	8 Conclusions
	References

