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a b s t r a c t

A stochastic global optimization method based on Multistart is presented. In this, the local
search is conditionally applied with a probability that takes in account the topology of the
objective function at the detail offered by the current status of exploration. As a result, the
number of unnecessary local searches is drastically limited, yielding an efficient method.
Results of its application on a set of common test functions are reported, along with a per-
formance comparison against other established methods of similar nature.
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1. Introduction

Global optimization (GO) has received a lot of attention in recent years [1], due to the ever emerging scientific and indus-
trial demand. For instance the description of the stable conformations of a molecule [2–4], the management of mutual funds
[5–8], location and allocation issues [9,10], engineering design and the design of drugs [11,12], to mention a few topics, are in
need of efficient global optimization techniques.

There exist several categories of GO methods. We distinguish two main classes: the deterministic [13,14] and the stochas-
tic one. For a detailed account on classification of stochastic algorithms we refer to [15]. Deterministic methods provide a
theoretical guarantee of locating the global optimum. Stochastic methods offer only a probabilistic (asymptotic) guarantee:
their convergence proofs usually declare that the global optimum will be identified in infinite time with probability one.
Moreover, stochastic methods adapt better to black-box formulations and extremely ill-behaved functions, whereas deter-
ministic methods are usually based on at least some theoretical assumptions such as Lipschitz continuity and heavily de-
pends on the problem at hand. A direct comparison between these two approaches may be found in [16], where the
authors conclude that the stochastic approach is to be preferred. In addition deterministic methods suffer from the problem
of dimensionality. For example, the complexity of interval global optimization [17] rises exponentially with the problem’s
dimension.

The problem we are interested in, may be expressed as:
Find all x�i 2 S � Rn that satisfy :

x�i ¼ arg min
x2Si

f ðxÞ; Si ¼ S \ fx; kx� x�i k < �g; ð1Þ
S is considered to be a bounded domain of finite measure and � a positive infinitesimally small number. We are adopting the
stochastic class of methods. One of the most widely used stochastic algorithms is the so called Multistart [18]. Its popularity
stems from its simplicity and inherent parallelization [19–22]. Many stochastic methods have been developed around it
. All rights reserved.
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starting from the classic papers of [18,23–25] were the popular Single Linkage Clustering, Density Clustering and Multi-Level
Single Linkage procedures were introduced. Törn and Viitanen in [26] presented a Topographical Clustering algorithm which
was extended by Ali and Storey in [27] to the well known Topographical Multi-Level Single Linkage algorithm. More recently
Hart in his PhD dissertation [28] proposes an adaptive method based on clustering and local searches, Locatelli [29] introduces
the family of Random Linkage algorithms and Schoen [30] and Locatelli [31] give an analysis Two-phase methods. More re-
cently, Liang et. al. [32] introduce a function’s landscape approximation, Bolton et. al. [33] provide a parallel framework
based on clustering, while Tsoulos and Lagaris [34] proposed the so called typical distance clustering. Also related software
may be found in [35].

In Multistart a point is sampled uniformly from the feasible region, and subsequently a local search is started from it. The
weakness of this algorithm is that the same local minima may be found over and over again, wasting so computational re-
sources. For this reason clustering methods have been developed that attempt to avoid repetitive discovery of the same min-
ima [23–25,34,20].

The Multistart algorithm is presented below:
Multistart Algorithm
Initialize: Set k=1

Sample x 2 S
yk ¼LðxÞ

Termination Control: If a stopping rule applies, STOP.
Sample: Sample x 2 S
Main step: y ¼LðxÞ

If ðy R fyi; i ¼ 1;2; . . . ; kgÞ Then
k ¼ kþ 1
yk ¼ y
Endif

Iterate: Go back to the Termination Control step.
The ‘‘region of attraction” of a local minimum associated with a local search procedure L is defined as:
Ai � x 2 S;LðxÞ ¼ x�i
� �

; ð2Þ
where LðxÞ is the minimizer returned when the local search procedure L is started at point x. If S contains a total of w local
minima, from the definition above folows:
[w
i¼1Ai ¼ S: ð3Þ
Let mðAÞ indicate the Lebesgue measure of A # Rn. If we assume a deterministic search L, then the regions of attraction do
not overlap, i.e. Ai \ Aj ¼ ; for i – j, and from Eq. (3) one obtains:
mðSÞ ¼
Xw

i¼1

mðAiÞ: ð4Þ
If a point in S is sampled from a uniform distribution, the a priori probability pi that it is contained in Ai is given by pi ¼
mðAiÞ
mðSÞ . If

K points are sampled from S, the a priori probability that at least one point is contained in Ai is given by:
1� 1�mðAiÞ
mðSÞ

� �K

¼ 1� ð1� piÞ
K
: ð5Þ
From the above we infer that for large enough K, this probability tends to one, i.e. it becomes ‘‘asymptotically certain” that at
least one sampled point will be found to belong to Ai. This holds 8Ai; with mðAiÞ – 0.

In this article we first define the ‘‘Ideal Multistart”, a variation of Multistart in which every local minimum is found only
once. This ideal version assumes that the region of attraction of a minimizer is determined as soon as the minimizer is lo-
cated. Since this is a false hypothesis this version is of no practical value. It offers however a framework and a goal to work
towards.

In section (2), we lay-out the new ideas involved and we present the corresponding algorithm, while in section (3), we
give a description of the numerical experiments that were performed along with the results. Finally in section (5), our con-
clusions are summarized and we give a recommendation for future research.
2. Description of the method

”Ideal Multistart” starts by sampling a point from S and applying a local search leading to the first minimum y1, with re-
gion of attraction A1. Sampling points from S is continued until a point is found that does not belong to A1. Once such a point
is encountered, a local search is performed that leads to the second minimum y2, having a region of attraction A2. The next
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sample point from which a local search will start, is a point that belongs neither to A1 nor to A2, i.e. it does not belong to their
union (A1

S
A2). This procedure goes on, until a stopping rule instructs termination. The detailed algorithm is laid out in the

following paragraph.

2.1. Ideal Multistart
Ideal Multistart Algorithm
Initialize: Set k=1

Sample x 2 S
yk ¼LðxÞ

Termination Control: If a stopping rule applies, STOP.
Sample: Sample x 2 S
Main step: If ðx R [k

i¼1AiÞ Then
y ¼LðxÞ
k ¼ kþ 1
yk ¼ y

Endif
Iterate: Go back to the Termination Control step.
This algorithm invokes the local search procedure only w times, w being the number of existing minima of f ð:Þ in S. The
main step is deterministic and requires the regions of attraction Ai of the already located minima to be known, which is not
the case in practice. Hence we apply a stochastic modification to the main step, by allowing the local search to be performed
with a probability, namely:

Main step (Stochastic):
Calculate the probability p, that x R [k

i¼1Ai

Draw a random number n 2 ð0;1Þ from a uniform distribution
If ðn < pÞ Then

y ¼LðxÞ
If ðy R fyi; i ¼ 1;2; . . . ; kgÞ Then

k ¼ kþ 1
yk ¼ y

Endif
Endif
Fig. 1. A point x that would lead to a new minimum y, is inside the overlap region of the spheres around two recovered minima y1 and y2.



C. Voglis, I.E. Lagaris / Applied Mathematics and Computation 213 (2009) 216–229 219
This step requires the probability that a point does not belong to the region of attraction of any of the minima collected so
far. This requirement is easier to fulfill, since even with a low accuracy estimate for the probability, the algorithm will
succeed. Notice that an overestimated probability ðp! 1Þwill transform the algorithm into the usual Multistart. On the other
hand underestimation ðp! 0Þ is not of considerable cost, since no local search is performed. Performance however will be
optimized if reasonably accurate estimates for the probability can be calculated. Several ways may be designed to accom-
plish this goal. We suggest one in the following paragraph.

2.2. Estimating the local search probability

The required probability may depend on several factors, such as the distance from existing minimizers, the direction of
the gradient, the number of times each minimizer has been discovered, etc. We consider how each factor influences the
probability and combine them together to get the required estimate.

Let us define the maximum attractive radius (MAR) as:
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where xðiÞj are the sampled points which led the subsequent local search to the ith minimizer yi.
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Fig. 2. Illustration of the modified line search.
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Given a sampled point x, let y be anyone of the recovered minimizers, with MAR denoted by R. If ky� xk < R, then x is
likely to be inside the region of attraction of y. If however rf ðxÞTðy� xÞP 0, i.e. the direction from x to y is ascent, then
x is likely to be outside y’s region of attraction. Letting z � ky� xk=R, then an estimate of the probability that x R AðyÞ may
be given by:
pðx R AðyÞÞ ¼
1; if z > 1 or rf ðxÞTðy� xÞP 0;

/ðz; lÞ � 1þ ðy�xÞTrf ðxÞ
ky�xkrf ðxÞj

h i
; otherwise;

8<
: ð7Þ
l is the number of times y has been recovered so far, while /ðz; lÞ is a model with the following properties:
lim
z!0

/ðz; lÞ ! 0;

lim
z!1

/ðz; lÞ ! 1;ð8Þ

lim
l!1

/ðz; lÞ ! 0;

0 < /ðz; lÞ < 1:
Notice that the factor inside the square brackets in Eq. (7), varies from zero to one, as the gradient from anti-parallel becomes
perpendicular to y� x.

The probability that x R [k
i¼1Ai is given by the product

Qk
i¼1pðx R AiÞ and may now be approximated by the probability that

x R An;An being the region of attraction of the nearest to x discovered minimizer yn. The rationale for this approximation is
that if x R Bðyi;RiÞ 8i – n, where Bðy;RÞ is a sphere of radius R centered at y, then the above approximation is exact since all
other probabilities as following from Eq. (7) equal 1. If on the other hand x is inside the intersection of two or more over-
lapping spheres, the product of small terms may result to too small a probability for a point that could lead to a new min-
imum (see in Fig. 1, an example). The spheres are expected to overlap, due to the manner their radii are chosen by Eq. (6).
Hence the approximation is prudent, and essentially in most cases does not overestimate the local search probability. One
may employ alternative approximations, by considering for example the first two (or more) nearest minimizers. This is an
issue that needs further consideration and is outside the scope of the present article.

2.3. Local search properties

The probability model is based on distances from the discovered minima. It is implicitly assumed that the closer to a min-
imum a point is, the greater the probability that falls inside its region of attraction. This implies that the regions of attraction
are contiguous and surround the minima. This is not true for all local search procedures and hence this assumption influ-
ences the local search choice. For example widely used methods such as Newton or quasi Newton, employing either a line
Fig. 3. A suitable local search, with contiguous regions of attraction.
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search or a trust region strategy, create disjoint regions of attraction. Hence these methods have to be modified so that their
regions of attraction are contiguous, resembling those of a descent method with an infinitesimal step. In Fig. 3 we connect
start-points (marked by +) to the minimum they arrive via a local search. This is a desirable local search since its regions of
attraction are contiguous. Start points are attracted towards the close by minima.

In this work we apply the BFGS method with a modified line search. This modification creates contiguous regions of
attraction ensuring a strictly descent path [23].

We present the associated algorithm below:
Modified Local Search Algorithm
Input:

k ¼ 0;Bk ¼ I; � > 0
Step 1 (Calculate descent direction):

�1
pk ¼ �Bk rf ðxkÞ
If krf ðxÞk > � Then
pk ¼ � 1

krf ðxkÞk
B�1

k rf ðxkÞ
End if
Step 2 (Line search):

minaðf ðxk þ apkÞÞ, yielding ak
Step 3 (Next iterate):

xkþ1 ¼ xk þ akpk
Step 4 (Update approximation):

ck ¼ rf ðxkþ1Þ � rf ðxkÞ
dk ¼ xkþ1 � xk

Bkþ1 ¼ bfgs updateðBk; ck; dkÞ

Step 5 (Termination Control):
If termination conditions are met stop, Else set
k kþ 1 and repeat from Step 1.
To illustrate the behavior of this normalization at Step 1 of the line search we provide Fig. 2a–d. The single minimum
appearing in Fig. 2d is the first minimum in Fig. 2b. Note that in Fig. 2c the line search ends up to the nearest minimum while
that of Fig. 2a in a different minimum further apart.

In Fig. 4 we connect start-points (marked by +) to the minimum the arrive via a different local search. This illustrates an
undesirable local search since its regions of attraction are disjoint. Start points are attracted towards distant minima.
Fig. 4. An improper local search, with disjoint regions of attraction.
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2.4. Asymptotic guaranty

The probability that minimizer y is found with one trial is given by:
pðiÞy ¼
Z

x2AðyÞ
pðiÞLS ðxÞ

dx
jSj ; ð9Þ
where 1=jSj is the pdf of the uniform distribution and pðiÞLSðxÞ is the local search probability at x. The superscript i denotes the
state of the process, i.e. the number of minima discovered so far, the number of times each minimizer is found, the MAR’s, etc.
The probability that after k trials y is not found is then given by:
pðkÞy ¼
Yk

i¼1

ð1� pðiÞy Þ 6 1�min
i
fpðiÞy g

� �k

: ð10Þ
From the definition of pðiÞy in Eq. (9), we have:
pðiÞy ¼
Z

x2A1ðyÞ
pðiÞLSðxÞ

dx
jSj þ

Z
x2A2ðyÞ

pðiÞLSðxÞ
dx
jSj ; ð11Þ
where
A1ðyÞ ¼ fx 2 AðyÞ; ðyc � xÞTrf ðxÞ 6 0g;
A2ðyÞ ¼ fx 2 AðyÞ; ðyc � xÞTrf ðxÞ > 0g
and yc ¼ ycðxÞ, is the closest to x discovered minimizer.
If y is not found yet (and hence yc – y), then A2ðyÞ – ; and hence jA2ðyÞj – 0. Note that
8x 2 A2ðyÞ; pðiÞLS ðxÞ ¼ 1
and hence from Eq. (11)
pðiÞy P
jA2ðyÞj
jSj > 0; 8i ¼ 1;2; . . . ; k:
At the limit as k!1 we deduce from above and Eq. (10) that pðkÞy ! 0, i.e. asymptotically all minimizers will be found.

2.5. A model for /ðz; lÞ

Many models may be constructed with the desired properties described in (8). We propose one that is simple to visualize
and easy to implement.
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/ðz; lÞ ¼ ze�l2 z�1ð Þ2 ; 8z 2 ð0;1Þ: ð12Þ
A graphical representation is depicted in (Fig. 5).

2.6. The ADAPT Algorithm

The proposed algorithm, in summary, is presented below:
ADAPT Algorithm
Input:
The input function f : Rn ! R
The search domain S # Rn

A local search procedure LðxÞ having the properties described in Section 2.3.
Initialize: Set k=1

Sample x 2 S

yk ¼LðxÞ
rk ¼ kx� ykk;nk ¼ 1
Termination Control: If a stopping rule applies, STOP.
Sample: Sample x 2 S

Main step: i ¼ argmin
j¼1;...;k

kx� yjk
d ¼ kx� yik
If ðd < riÞ Then

If ðrf ðxÞTðyi � xÞ < 0Þ Then
z ¼ kyi�xk

ri

p ¼ /ðz;niÞ 1þ ðyi�xÞTrf ðxÞ
kðyi�xÞTrf ðxÞk

h i
Else

p ¼ 1:0
Endif

Else
p ¼ 1:0

Endif
Let n be a uniform random in [0, 1]
If ðn < pÞ Then
y ¼LðxÞ
If (y is new minimum) Then

k ¼ kþ 1; rk ¼ kx� ykk;nk ¼ 1
Else {We discovered the l-th local minimum}
rl ¼maxðrl; kx� ylkÞ;nl ¼ nl þ 1
Endif
Else {Assuming that x belongs in the region of attraction of the i-th minimum}
ri ¼maxðri; kx� yikÞ;ni ¼ ni þ 1

Endif

Iterate: Go back to the Termination Control step.

3. Experiments and comparison

The method has been tested on a number of test problems that are listed in Appendix A. These test functions have been used
in the past by many authors and hence they constitute a convenient platform for comparison. We count for every problem the
number of local searches, the number of function and gradient evaluations and we report averages on thirty experiments
performed with different random number sequences. We also count the number of minima found. All experiments used
the ‘‘Double-Box” stopping rule [36], with the suggested compromise factor (0.5). The local search used by ADAPT is a modi-
fication of BFGS so that the resulting regions of attraction have the properties described in Section 2.3. A comparison is made
with the standard ‘‘Multistart” with the ‘‘Topological Multilevel Single Linkage” (TML) method [35] and with MinFinder [34].

All of the above methods use as a local minimizer subroutine TOLMIN due to Powell [54]. We coded Multistart, while the
codes for TML and MinFinder were obtained from the corresponding authors and were run with the default parameters.
Observing the results listed in Table 1 we note that the performance of the new method (ADAPT) is overall superior. MinFind-
er has similar performance on functions M0, Borne, Shubert(N = 5, 10) while it has an edge with functions having a period-
icity in their contour plots like Holder, Levy No3, Rastrigin(N = 2), and Shubert(N = 2).



Table 1
Method comparison using the Double-Box rule [36].

Function TML Multistart MinFinder Adapt

Min. FC GC LS Min. FC GC LS Min. FC GC LS Min. FC GC LS

Ackley 121 10,259 14,457 1207 121 23,281 36,543 2054 121 7510 11,926 208 121 7340 4600 539
Bird 158.5 84,798 103,889 2507 141.5 212,196 150,529 3737 172.8 122,639 145,460 1832 171.7 56,008 55,296 1468
Bohachefsky 25 139,190 125,684 2369 25 241,501 187,175 2547 18.7 25,907 32,243 538 24.3 18,332 23,112 215
Giunta 196 104,812 16,606 719 196 45,688 67,311 1212 196 18,753 20,972 791 196 10,211 17,821 771
Grienwank 527.2 1,883,423 1,461,617 39,090 526.4 1,912,452 1,892,111 38,727 529 1,133,908 1,284,982 30,577 528.5 231,123 27,811 15,733
Guillin Hills 25 81,153 69,847 2451 24.9 87,411 76,563 2617 24.8 22,901 23,570 820 24.7 17,751 31,811 691
Holder 85 28,749 23,346 622 85 69,038 34,468 988 85 8289 8977 261 85 16,788 16,461 352
Langermann 257 129,521 124,360 3566 260 185,669 111,478 4169 270 503,470 500,675 19,123 270 80,578 80,386 2479
Levy No3 527 170,541 171,643 6999 527 494,578 277,868 8909 527 59,830 91,479 2320 527 146,574 179,502 5481
Levy No5 508 173,026 183,092 5011 508 365,258 175,718 6783 508 81,037 160,683 2733 508 84,152 83,462 2644
Liang 224.6 90,506 51,538 2464 233.1 180,419 79,899 3161 236 637,784 676,941 22,607 235.8 73,215 50,569 2340
Piccionni 43 58,042 42,536 1475 42.9 74,125 72,918 2090 43 33,333 36,238 1222 43 48,123 45,647 987
Rastrigin 49 11,340 14,812 741 49 22,233 17,063 1705 49 1730 2833 85 49 17,810 7481 136
Voglis 60.8 16,938 1888 944 60.5 35,408 2505 2304 61 21,684 23,126 694 61 16,932 1267 437
Schaffer 93.7 48,401 23,295 865 94.8 56,722 73,922 1811 94.5 22,370 24,682 876 94.7 18,922 16,779 702
Shubert 399.6 890,899 2594 2297 398.2 1,062,260 10,732 10,475 400 16,551 36,065 665 400 193,211 10,780 1439
M0 65.1 53,817 35,311 1654 64.5 85,266 87,221 2741 64 14,667 16,005 799 65.7 16,659 17,033 1023
M3 25.8 30,601 20,295 1507 25.8 47,188 33,872 2184 23.7 8914 11,285 790 25.6 8752 17,168 711
Borne 595.6 1,090,974 322,968 11,324 593.4 3,821,280 3,343,620 15,922 598.2 1,916,295 2,138,766 68,865 598.2 1,880,314 2,626,185 70,161
Rast(N = 5)a 243 131,646 36,084 662 243 399,909 111,467 2011 243 59,298 64,349 1022 243 30,350 37,634 1214
Griew(N = 5)b 160.1 1,859,878 1,619,266 27,717 159.6 2,154,055 2,023,821 32,101 170 2,074,573 2,193,769 32,710 169.8 1,833,628 2,052,681 34,911
Griew(N = 10)c 11.1 86,815 78,843 1277 11.4 145,552 125,187 2141 10.4 85,454 85,209 1270 12.7 76,221 121,176 1782
Shub(N = 5)d 32 12,221 15,622 508 32 17,881 19,822 811 32 6136 6520 158 32 7022 8112 205
Shub(N = 10)e 1021.2 1,779,357 220,435 3977 1002.1 1,866,619 1,973,621 33,230 1024 563,927 565,624 10,302 1024 406,503 526,229 12,853

a 243 minima in ½�0:5; 0:5�5.
b 171 minima in ½�5;5�5.
c 13 minima in ½�3;3�5.
d 32 minima in ½�1;1�5.
e 1024 minima in ½�1;1�10.
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Table 2
Adapt results using different stopping rules.

Function Boender and Kan Observables Expected Minimizers

Min. FC GC LS Min. FC GC LS Min. FC GC LS

Ackley 121 11,245 6539 759 121 4167 3630 367 121 4265 2891 326
Bird 169 84,260 84,659 2021 170 35,551 36,867 985 171 33,165 31,874 866
Bohachefsky 22 26,213 34,576 318 24 12,815 16,532 150 24 11,615 14,865 137
Giunta 193 14,077 27,661 1077 194 7156 11,693 521 195 7829 10,953 462
Grienwank 527 273,304 36,644 21,407 528 121,838 15,231 10,498 529 136,513 22,405 9179
Guillin Hills 25 23,790 45,749 969 24 12,235 19,661 469 23 10,713 18,995 415
Holder 85 22,165 23,301 504 85 11,022 11,525 240 81 10,014 10,368 216
Langermann 263 120,996 109,319 3397 268 54,378 52,878 1660 269 45,700 47,968 1456
Levy No3 521 215,190 204,894 7478 524 97,859 121,728 3661 524 90,826 108,808 3206
Levy No5 508 115,365 118,926 3622 508 56,203 53,068 1770 508 46,168 49,922 1552
Liang 234 99,512 60,608 3206 235 53,217 35,288 1568 236 45,557 29,356 1375
Piccioni 43 65,782 61,847 1367 42 31,060 32,534 666 42 29,770 27,678 587
Rastrigin 49 28,537 12,238 214 49 12,873 5345 97 49 11,901 4920 91
Voglis 59 26,614 1136 621 60 12,833 850 298 61 10,620 510 265
Schaffer 95 23,812 24,878 982 95 13,096 9704 476 95 12,128 9537 420
Shubert 400 270,985 17,194 1982 400 132,697 9041 966 400 115,116 5153 851
M0 66 26,782 23,763 1417 66 10,261 11,503 689 66 10,160 10,899 608
M5 19 9573 24,757 992 23 7286 10,728 480 24 4660 9226 425
Borne 598 2,685,857 3,312,841 95,370 597 1,152,416 1,678,605 46,790 598 1,033,720 1,576,821 40,893
Rast(N = 5) 238 44,294 49,774 1676 240 19,100 27,478 816 240 14,214 24,037 720
Griew(N = 5) 166 2,654,250 2,776,645 47,468 169 1,182,435 1,329,089 23,286 170 1,026,242 1,170,489 20,355
Griew(N = 10) 11 101,772 164,941 2449 13 52,465 82,684 1194 13 42,192 73,400 1050
Shub(N = 5) 29 9288 12,639 304 31 5379 5627 143 29 4573 5526 131
Shub(N = 10) 1021 557,748 754,471 17,493 1023 279,352 372,875 8577 1024 254,876 310,294 7501
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Lagaris and Tsoulos [36] report a comparison among five stopping rules. From their results it can be seen that Multistart
favors the Expected minimizers [36] rule with the Observables [36] and Double-box criteria following closely. We conducted
experiments using the criteria of Boender and Kan [37], the Observables and the Expected minimizers. Similar behavior is ob-
served as it can be deduced by inspecting the results displayed in Table 2. Although the Double-Box is not the best performer,
it is fairly easy to implement and has negligible computational overhead.

4. A parallel scheme

A sample Master–Slave parallel implementation is displayed below. The Master CPU creates candidate start points. The
Slave CPUs perform local searches. Note, that since our method uses one point per iteration, each search is independent, en-
abling so maximum utilization of the Slave CPUs. On the other hand, most clustering methods use a collection of points, as
for example in [23,24,34], that in turn create dependencies in the application of the local searches, a fact that makes the par-
allelization less profitable.

Definitions.

� M-list: A list that holds the minimizers (managed by the Master CPU);
� S-list: A list of possible starting points (managed by the Master CPU);
� L-list: There is one such list for every Slave CPU. Each contains the minimizers discovered by the corresponding CPU.
Master CPU:
1. Check if a stopping rule applies. If so terminate.
2. Take in account the updated minimizers list (M-list).
3. Create candidate start points and add them to the starting list (S-list) and assign to each one a zero flag.

Slave CPUs:
1. If no zero flag start-points exist in the S-list, wait.
2. Pick from the S-list a start–point with zero flag, change its flag to one, and apply a local search.
3. Add the minimizer to a temporary local minimizer list (L-list).

Updater CPU:
1. Pick a minimizer from the L-list and check if it is a new minimizer and remove it from the list.
2. If so, add it to the M-list.



5. Conclusions and further work
The adaptive character of the method enables a reasonably accurate estimate of the probability that a point belongs to a
region of attraction. This in turn, on one hand saves a large fraction of local search applications, and on the other hand pre-
vents the systematic overlook of regions of attraction, reducing therefore the risk of loosing minima. The method is robust
and efficient as has been deduced from the results of the computational experiments. Most of the stochastic global optimi-
zation approaches use a population of points to proceed and thus the population size is an additional parameter that affects
the performance of the method. The present work in contrast, uses a single point per iteration without any adjustable param-
eters. This feature adds another (obvious) advantage in the case where the parallel implementation is of interest.

A parallel algorithm that would benefit from a cluster of tightly coupled processors or from a parallel shared memory
system would be significant development. Such systems are nowadays widely available and offer the possibility of solving
harder problems. Work in this direction is underway.

Other models for the probability, such as adaptively grown Gaussian mixtures may be considered and some early preli-
minary results are promising.

Appendix A. Test functions

A.1. Ackley’s test function [40]

The number of existing minima in ½�5;5�2 is 121
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f ðxÞ ¼ �ae�b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1
x2

i

p
� e

1
n

Pn

i¼1
cosðcxiÞ � ae1:
A.2. Bird’s test function [41]

This function has 173 minima in ½�50;50�2
f ðx1; x2Þ ¼ sinðx1Þ eð1�cosðx2ÞÞ2 þ cosðx2Þ eð1�sinðx1ÞÞ2 þ ðxð1Þ � xð2ÞÞ2:
A.3. Bohachevsky’s test function [42]

This function has 25 minima in ½�10;10�2
f ðx1; x2Þ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7:
A.4. Giunta’s test function [44]

This test function has 196 minima inside ½�20;20�2
f ðx1; x2Þ ¼ 0:6þ sin y1 þ sin2 y1 þ
1

50
sin 4y1 þ sin y2 þ sin2 y2 þ

1
50

sin 4y2;
where y1 ¼ 16
15 x1 � 1 and y2 ¼ 16

15 x2 � 1. where y1 ¼ 16
15 x1 � 1 and y2 ¼ 16

15 x2 � 1.

A.5. Griewank’s test function [45]

This function has 529 minima inside ½�100;100�2
f ðxÞ ¼ 1
200

Xn

i¼0

x2
i �

Yn

i¼1

cos
xiffiffi

i
p þ 1:
A.6. Guillin Hills’s test function [34]

This test function possesses 25 minima inside ½0;1�2
f ðxÞ ¼ 3þ
Xn

i¼1

ciðxi þ 9Þ
xi þ 10

sin
p

1� xi þ 1
2k

 !
;

where ci ¼ 2; i ¼ 1; . . . ;n and k ¼ 5.

A.7. Holder test function [41]

This function has 85 minima inside ½�20;20�2
f ðx1; x2Þ ¼ � cos x1 cos x2e1�

ffiffiffiffiffiffiffiffi
x2
1
þx2

2

p
p :
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A.8. Langermanns’s test function [46]

This test function has 270 minima inside ½0;7�2
f ðxiÞ ¼
X5

k¼0

ckerk cos kk:
In current implementation a ¼ ð3;5;2;1;7ÞT ; c ¼ ð1;2;5;2;3ÞT where rk ¼
Pn

i¼1 �
ðxi�akÞ2

p and kk ¼
Pn

i¼1pðxi � akÞ2.

A.9. Levy’s 3rd test function [48]

This test function has 527 minima inside ½�10;10�2
f ðx1; x2Þ ¼
X5

k¼1

k cos ðk� 1Þx1 þ kð Þ
X5

k¼1

k cos ðkþ 1Þx2 þ kð Þ:
A.10. Levy’s 5th test function [48]

This test function has 508 minima inside ½�10;10�2
f ðx1; x2Þ ¼ fLevy3ðx1; x2Þ þ ðx1 þ 1:42513Þ2 þ ðx2 þ 0:80032Þ2:
A.11. Liang’s test function [49]

This test function has 236 local minima inside ½1;4�2
f ðx1; x2Þ ¼ � x1 sinð20x2Þ þ x2 sinð20x1Þð Þ2 cosh sinð10x1Þx1ð Þ � x1 cosð20x2Þ � x2 sinð10x1Þð Þ2 cosh cosð10x2Þx2ð Þ:
A.12. Piccioni’s test function [50]

This test function has 28 minima inside ½�5;5�2
f ðxÞ ¼ �10 sinðpx1Þ2 �
Xn�1

i¼1

ðxi � 1Þ2ð1þ 10 sinðpxiþ1ÞÞ � ðxn � 1Þ2:
A.13. Rastrigin’s test function [51]

This test function has 49 minima inside ½�1;1�2
f ðxÞ ¼ 10nþ
Xn

i¼1

x2
i � 10 cosð2pxiÞ

� 	
:

A.14. Voglis’s test function

This test function has 61 minima inside ½�25;25�2
f ðxÞ ¼ a0
1
2

xT Q 0xþ xT d0

� �
þ
X80

i¼1

ake�
1
2xT QkxþxT dk :
Function dimension n ¼ 2;Q j specific positive definite 2� 2 matrices, dj 2-dimensional vectors and aj appropriate scaling
constants.

A.15. Schaffer’s test function [41]

This test function has 95 minima inside ½�3;3�2
f ðx1; x2Þ ¼ 0:5þ sinðx2
1 þ x2

2Þ
2 � 0:5

1þ 0:001ðx2
1 þ x2

2Þ
� 	2 þ 0:1 sinð10x1Þ þ 0:1 sinð10x2Þ:
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A.16. Shubert’s test function [52]

This test function has 400 minima inside ½�10;10�2
f ðxÞ ¼ �
Xn

i¼1

X5

j¼1

j sinððjþ 1Þxi þ jÞ:
A.17. M0 test function [52]

This test function has 66 minima inside ½�5;1�2
f ðxÞ ¼ sin 2:2px1 þ
p
2


 �2� x2

2
3� x1

2
þ sin

p
2

x2
2 þ

p
2


 �2� x2

2
3� x1

2
:

A.18. M3 test function [52]

This test function has 26 minima inside ½�2;2�2
f ðxÞ ¼ �ðx2
2 � 4:5x2

2Þx1x2 � 4:7 cosð3x1 � x2
2ð2þ x1ÞÞ sinð2:5p � x1Þ þ ð0:3 � x1Þ2:
A.19. Siam Problem 4 Function [53]

This test function has 600 minima inside ½�1;1�2
f ðxÞ ¼ expðsinðx1ÞÞ þ sinð60 expðx2ÞÞ þ sinð70 sinðx1ÞÞ þ sinðsinð80x2ÞÞ � sinð10ðx1 þ x2ÞÞ þ
x2

1 þ x2
2

4
:
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