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Abet-In the present work we deal with the resonance modes in small ferromagnetic spheres. The 
analysis is based on the theory of micromagnetism, proposed by W. F. Brown and an optimization 
technique. Numerical results are presented for the resonance field, as well as for the resonance modes 
and the magnetization configuration in the material. The resonance modes described in this work 
could be named generalized modes. 

1. INTRODUCTION 

Magnetic resonance phenomena in magnetitite (Fe,OJ have been investigated by Bickford [l] 
and others in the late 1950s and early 1960s. Rajagopalan and Furdyna [2] studied magnetic 
resonances in Fe304 spheres by microwave magnetotransmission experiments and they 
observed, in addition to ferromagnetic resonances, new size-dependent ones. In Ref. [2] these 
new resonances have been studied as a function of sphere diameter and microwave frequency. 
It is noted that the diameter of spheres considered in Ref. [2], was of the order of mm and the 
behaviour of the new resonances could not be described in terms of ordinary Walker modes 
[3]. Rajagopalan and Furdyna named these new resonances dimensional ones because of their 
dependence on the sphere diameter. Such spheres are obviously too large for the exchange 
forces to play any significant role in these resonances. Nowadays there are techniques for 
making very small ferromagnetic spheres [4,5] which should eventually lead to resonance 
measurements in a size range where the exchange contributions are important. Aharoni [6] 
studied the possible effect of the exchange forces on the resonance modes in sufficiently small 
ferromagnetic particles. He offered a mechanism for some sort of size -dependent resonances in 
small spheres, by neglecting the magnetostatic energy and named these resonance modes 
exchange resonance modes as an analogue to the magnetostatic ones. 

In the present work we deal with the solution of the mathematical problem describing the 
general theory of resonance in ferromagnetic spherical particle under the assumption of 
cylindrical symmetry, introduced by Aharoni [6]. The proposed analysis, in comparison to that 
used by Aharoni [7], has the advantage of computing the eigenvectors of the problem and it is 
therefore possible to plot the shape of the magnetization configuration in the material. We 
reduced our problem to minimizing a suitable objective function that guarantees the 
satisfaction of the boundary conditions. We used the optimization package MERLIN-2.1 [8,9]. 
Finally numerical results are presented for the resonance field and the associated shape of the 
magnetization configuration and the role of the particle size and frequency on the resonance 
field is discussed. The shape of the magnetization configuration, as it appears, could be named 
generalized curling mode. 
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2. PROBLEM FORMULATION 

The general theory of resonance in a ferromagnetic particle, in the absence of losses, is 
described by the following equation [lo, 111 

dv 
-= yovXH, 
dt 

where 

I do 
Hefi=;V+--e+H 

s Ms av 

(2.1) 

(2.2) 

is the effective field (a/&)i = aldvi (i = x, y, z), v is a unit vector parallel to the magnetization, 
C = 2A is the exchange constant, o, is the anisotropy energy density, MS is the saturation 
magnetization, t is the time, y. is the gyromagnetic ratio and H = & + H,,, is the magnetic field 
which is composed of the applied field I&,, and that, H,, created by the volume and surface 
charge of the magnetiziation distribution. The boundary conditions for the set of equations 

(2.1) are 

av 
-0 an- (2.3) 

where a/n = v - V and n denotes the unit outward normal to the particle surface. To the 
equations (2.1-3) we have to add the equations for the potential problem which in the present 
case are [12] 

V2&, = 4nMSV. v (2.4) 

inside the particle and 

v2v,,1 = 0 (2.5) 

outside it. The boundary conditions on particle surface are 

vi” = VW, (2.6) 

ah w,, --+4~rM~v,, = -- 
an an (2.7) 

where v, = n - v. In the experimental studies of resonances, a large dc field & is applied; its 
direction is identified here with the z-axis. The field I& keeps the magnetization almost parallel 
to the z-axis so that v, and vY are small. To a first order in these small quantities, the 
differential equations (2.1) for a steady-state solution, ( )eio’, become 

(2.8) 

(2.9) 

where V, is the potential due to the transverse magnetization m = M,(v,i + v,,j) and w is the 
resonance frequency. In order a confusion to be avoided, we note here that we keep the same 
symbols for the time independent components of v and for the potentials. The potential due to 
z-component is included in HZ. In the case under discussion (spherical particle) HZ includes the 
dc field Ho, the demagnetizing field 
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and the anisotropy field Z&, that is 

H*=Hn-FMs+$l 
s 

(2.10) 

where Kr is the anisotropy constant. It is noted that for the above linearized equations cubic or 
uniaxial anisotropies lead to the same expression provided that z is an easy axis. 

3. PROBLEMS SOLUTION 

Following Aharoni [6] we suppose that v does not depend on the coordinate $ (cylindrical 
symmetry) and use the components of v in a cylindrical coordinate system (e, $, z) but express 
the spatial dependence in spherical coordinates (r, 8, $). Under these considerations the 
equations (2.8) and (2.9) are transformed as 

az 2d 2a2 cos 8 d 1 MH --+-_+~2+----_I 
rar r de r2 sin 8 de r2 sin2 6 C 

a2 2d 2a2 cos 8 a 1 MS& 
$+;z+-&-g+------ 

iM,w 

r2 sin 8 de r2 sin2 8 e 
--v 

C YOC + 

M 
=s 

( 

a cos 8 a 

C 
sin f3d,+ 7% K,, (3.2) 

> 

respectively. The equations (2.4) and (2.5) of the potential problem are written as 

a2 2 a 2 a2 

ap+--++?--+ rdr r de2 

1 cos 8 a -+-- 
r sin 8 r de 

for r I R, where R is the radius of the spherical particle, and 

( 2 2a 2a2 cos 8 a 
$+;~+&jT+-- r2 cos e de > VO,, = 0 

for r 2 R. The boundary conditions (2.3), (2.6) and (2.7) on r = R become: 

av ave __“=() 
dr dr 

(3.4) 

(3.5) 

and 
Kn = vm 

s av,,, 
- - = 4nM,v, sin 8, 

dr dr 

(3.6) 

(3.7) 

respectively. Expanding the solution of the problem in a series of Legendre functions 

m 
v, = c A,(r)PA(cos 0) 

n=l 

ve = i 2 B,(r)PA(cos e) 
II=1 

K = SO WMcos e) 

v,,, = g K(R)($)n+lp,(cos e) 
n=o 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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the set of partial differential equations (3.1-7) is transformed to an infinite set of ordinary 
differential equations. We note that (3.11) is the solution of (3.4) that is regular at infinity and 
satisfies the boundary condition (3.4). 

Substituting the solution (3.8-11) into the equations (3.1-7) and using the appropriate 
relations between the Legendre functions and their recurrence relations [13] the variable 8 can 
be eliminated. 

Using the dimensionless quantities, 

t = rfR, h = Hz/2nMs, h, = d21tM,y,, u = V/2nMsRo 

Ro = fiIM,, A = C/2, S = R/R. 

and the notations 

d n+l 
L,=,+- 

d n 

z ’ 
Mm=---- 

dt t 

the infinite set of ordinary differential equations, in which the set of equations (3.1-3) is 
reduced, is given by: 

(L+&f, - xS2h)B,(t) + 3tS2h,A,(z) = 0, nrl (3.12) 

(L,+IM,, - nS2h)A,(r) + 3tS2h,B,(z) = a!i M,_l $ - 15,+~ -), 
2n + 1 

nZ1 (3.13) 

L+IMA(Q = 2s 
(n + l)(n + 2) 

(2n + 3) L+rAz+~(r) - (2n _ 1) n(n - ‘) M&,(r)], n r0 (3.14) 

with the following boundary conditions on t = 1, 

dA,_d%_O 
dt -x ’ 

n?l (3.15) 

LunW = 2s 
(n+1)(n+2)A 

(2n + 3) n+l I ’ n LO. (3.16) 

We seek a solution of the set of equations (3.12-14) in the following form: 

An(t) = 2 ~n,dw)~ nrl (3.17) 
k=l 

&I(~) = c. bn.k.in(~k$, nrl (3.18) 
k=l 

hh) = i Cn.kid~kt), n?O (3.19) 
k=l 

where j,,(x) are the n-th spherical Bessel functions and a,$k, bn,k, c,,,k and & are unknown 

coefficients. 

By substitution of the above trial solution into equations (3.12-14) we obtain 

2 [JGS2h-Jn,k - (Pi + ~~‘h)hz.kljn(W) = 0, nrl (3.20) 
k=l 

02 

C[ JcS2h,bnBk - (& + nS2h)an,k + +& 
k=l 

2 + s)]jn(pkr) = 0, n L 1 (3.21) 

$I [zsPk( 

(n + l)(n + 2) 
c2n + 3j %+l,k + yi: I:,’ 6H.i) + P&k]i.(pk@ = 0, n 2 0. (3.22) 
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In order (3.20-22) to be valid VT, the following relations have to be satisfied, 

zS2h,a,.k - (p; + zS2h)bnek = 0, n 2 1, krl 

mY2h,b,,k - (pi + d2h)an,k + z!& s + *) = 0, n 2 1, 

(n+1)(n+2)a.+,,,+n(n-1)a,_,,, 
(2n + 3) (2n - 1) 1 +pkc k=O n. f n 20, 

From (3.23) and (3.24) we obtain 

bn.k = 
d2h, 

,u; + zY2h anrk’ 
n 2 1, krl, ,u;+xS’h#O 
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(3.23) 

kz 1 (3.24) 

k 2 1. (3.25) 

(3.26) 

and 

c 2s (n + W + 2ja,+, k 
n.k = -- 

0 - 1) 
pk [ (2n + 3) s + (2n _ 1Jathk 1 f n 11, krl, (3.27) 

respectively, and (3.25) leads to the following recurrence relation 

an+2,k = h%k + ifnan-2,kv n 2 1, krl 

where &_,,,k =Oform=0,1,2,...and 

(3.28) 

B = (2n + Wn + 5) 
[ 

bS2hJ2 _ (p2 + Rs2h) _ 4Rs2 0 + 1) 
nk 2d2(n +2)(n + 3) &+ d2h k (2n - 1)(2n + 3) 1 

5 = _ (n - l)(n - 2)(2n + 3)(2n + 5) 
n 

(2n - 1)(2n - 3)(n + 2)(n + 3) * 

In view of the solution (3.17-19), the boundary conditions (3.15) and (3.16) become 

nZ1 (3.29) 

(n + l)(n + 2) 

2n + 3 h+l(~k)%+l.k - “:;: 1 :)inl(pk)an-l.*) 

- ~kjn-l(~kh,k = 0, 1 n 2 0. (3.30) 

Taking into account (3.26), (3.27) and the recurrence relation, 

n+l 
L(x) =.L-1(x) - - 

x in(x) 

where ( )’ = dldx, the conditions (3.29) and (3.30) are written as: 

kz, an.k[Ykh-L(~k) - (n + l)jn(flk)] = 0, 

hr 2 %.k 
pkh-1bk) - tn + l)~n(~k) = o 

/A: + zS2h 
, 

k=l 

and 

2s 2 cn + l>@ + 2)(2n + l)h(~k) (1 _ o 

k=l 2n + 3 n+l,k - > 

pk 

respectively. Equation (3.33) can equivalently be written as 

nrl (3.31) 

n 2 1, (3.32) 

n ‘0, (3.33) 

n Z 1. (3.34) 
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The satisfaction of the boundary conditions (3.31), (3.32) and (3.34) is guaranteed when the 
following quadratic form: 

2 [(Eq. (3.31))‘+ (Eq. (3.32))2 + (Eq. (3.34))2] (3.35) 

vanishes. This condition can be written as 

fbc, %,c> a2,k9 h, k, S) = 0 (3.36) 

since from the recurrence relation (3.28), every u,,~ can be expressed in terms of (I,,~ and CQ~. 
The equation (3.36) is solved numerically, by using an optimization technique proposed by 
Papageorgiou et al. [8, 91. 

4. NUMERICAL RESULTS AND DISCUSSION 

A numerical solution of equation (3.36) was carried out by the aid of the optimization 
package MERLIN-2.1 [8,9]. For given S and h,, equation (3.36) determines the eigenvalue h 
for finite II and k. The number of terms in the sums was increased until the difference between 
consecutive eigenvalues of (h) was negligible. For a matter of convenience we chose pk to be 
the positive zeros of j;(x) = 0. The numerical calculation of pk was carried out by the use of 
function FindRoot, of the package Mathematics [14]. 

The results of the computation are shown in Figs l-4. The variation of the resonance field 
(h) with the resonance frequency (h,) is plotted in Fig. 1 and with the size parameter (S) in Fig. 
2, for various values of h and h,, respectively. It is noted that h is always larger than the 
nucleation field of the static problem and h, is real, because only then the precession about the 
reference state is stable. Values of h smaller than the static nucleation field have no physical 
significance because the corresponding oscillations occur around an unstable reference state 
[12]. It is also seen that the zero frequency limit (h, = 0) of the resonance field coincides with 
the nucleation field of the static problem, which, in the case under discussion, corresponds to 
the curling mode [15-171. The resonance field is a decreasing function of S, a behaviour at least 
qualitatively the same with the experimental results [2], though far from the corresponding size 

range (R << 1 mm) [6]. 
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Fig. 1. Variation of h with h,. 
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Fig. 2. Variation of h with S. 
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Fig. 3. Reduced components vg, tag as a function of the reduced radial distance r/R for h = 0.324, h, = 0.8, 

S =40 for i = e. (p and u, = max(lu,l, Iv,). 

Fig. 4. Configuration of the transverse magnetization for 0 = 60”, h = 0.324, h, = 0.8, S = 40. 
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For the case of magnetite (Fe,O,) with A = lo-’ erg/cm, MS = 4.5 X lo5 A/m (R, = 1.98 nm), 
‘y[j = 1.105 x lo5 gxm/Asec and gE2.001 we obtain for lO~S~50@19.8nm~R~99nm 
that the resonance field HZ varies as 0.019 5 h s 0.352~676 Oe ‘HZ I 12.523 kOe for 
frequencies f(w = 2nf 3 h, =f/M,y,), 0.2 5 h, I 0.8@ 19.9 GHz of 5 79.6 GHz, or wave- 
lengths A, in the following range: 3.8 mm 5 A. I 1.5 cm. 

The proposed analysis, in comparison to that presented by Aharoni [7], has the advantage of 
computing the eigenvectors of the problem and it is therefore possible to plot the shape of the 
magnetization configuration in the material. The results for 8 = 60”, h, = 0.8, S = 40 and 
h = 0.324 are plotted in Fig. 3. The vertical axis corresponds to the normalized components vp 
and V# and the horizontal to the distance from the center of the sphere. It is also seen that the 
dominant contribution is of the circumferential component of the transverse magnetization 
vector. A more realistic picture of the vector field of the transverse magnetization is shown in 
Fig. 4. It is obvious that it looks like some kind of curling. That is why it could be named 

generalized curling. 
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