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Abstract-Near, but below Curie’s temperature T,, the magnetization increases with applied field 
above saturation. Therefore, when we approach T, in a ferromagnet it becomes no longer possible to 
neglect the change in magnitude of the local magnetization due to magnetic fields. For the purpose 
of our problem the Brown’s equations are extended by using a variational procedure. The equations 
derived are used to study the problem of the nucleation field of the infinite circular ferromagnetic 
cylinder. The regular part of the solution of the linearized equations is given in terms of Bessel 
factions and the resulting algebraic eigenvalue problem is solved numerically. The dependence of 
the nucleation field from the various parameters of the problem is discussed as well as the size of the 
single domain particle considered. 

1. INTRODUCTION 

rigourously investigated, exploring the whole eigenvalue spectrum of Brown’s equations, by Aha- 
roni and Shtrikman [I]. Aharoni and Shtrikman have shown that curling and buckling are the 
only modes of nucleation for any radius of the cylinder; the other modes giving higher nucleation 
fields. From the results obtained in [l] the conclusion of Frei et al. [2] is confirmed, that the 
hysteresis curve of an infinite cylinder with the field parallel to its axis, is symmetrical rectangu- 
lar loop so that the nucleation field is identical with the coercive force. The size dependence of 
the nucleation field for various particle geometries has been investigated in [3--S]. The analysis 
was based on the classical theory of micromagnetics [9]. The purpose of Brown’s theory is the 

description of ferromagnetic bodies by means of a vector field (local magnetization) with constant 
magnitude and with direction varying continuously with the position. This constraint can be eas- 
ily accepted at temperatures significantly lower than the Curie temperature since in this range 
the susceptibility N of the ferromagnetic material can be disregarded in a first approximation and 
consequently the magnitude of the magnetization is determined only by the temperature. Near, 
but below Curie’s temperature, the local magnetization increases its magnitude with applied field 
above saturation. That is, in addition to the spontaneous magnetization there is a significant 
susceptibility above saturation [lo] and therefore it becomes no longer possible to neglect the 
change in magnitude of the local magnetization due to magnetic fields. For the study of rigid fer- 
romagnets at temperatures close to the Curie temperature there are available phenomenological 
field equations due to Minnaja [ll] and Maugin [12]. 

In the present work an attempt is made to study the nucleation field for an infinite cylinder [l] 
at high temperature. For the purpose of our analysis the fundamental equations that govern, in a 
phenomenological manner, the behaviour of rigid ferromagnets near the Curie point are derived 
by means of a variational procedure. The general regular solution for the nucleation field problem 
has been obtained in terms of Bessel functions. The mathematical analysis followed is analogous 
to that of [l] and the determination of the roots of the transcendental equation resulting from the 
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boundary conditions, of the problem under discussion, was carried out by following [13,14]. From 
the analysis it becomes clear that a detailed knowledge of the magnetic equation of state of the 
material is needed for the determination of the true nucleation field. For the case of the infinite 
cylinder we also discussed the nucleation field problem in the framework of Landau’s theory of 
second order phase transitions [15]. From the results obtained it is obvious that “Curling” and 
“Buckling” modes are still the dominant ones. Departure from the above modes could appear in 
the case where the magnetocrystalline anisotropy constant, for cubic cry@als (Kr), is positive; 
this result is in agreement with that of Kondorsky [16]. Finally the dependence of the nucleation 
from the various parameters entering into the problem has been studied numerically as well as 
the ‘(Exact Buckling” mode. An estimation of the particle size is also presented. 

2. PROBLEM FORMULATION 

The fundamental equations that govern, in a phenomenological manner, the behaviour of fer- 
romagnetic rigid materials near the Currie point are derived by means of a variational procedure 
which minimizes the total energy [9]. This energy at temperature T < T, is assumed to consist 
Of: 

(i) The exchange energy 

J aik Mj,i Mj,k dV 
V 

(ii) The magnetostatic self-energy 

1 =-- 
um 2 J Mi H,f dV 

V 

(iii) The energy of interaction with the external field Ho 

UH = - J Mi H,’ dV 
V 

(iv) The anisotropy energy 

u, = J G(Mi) dV 
V 

and 
(v) The potential isotropic energy 

VI = / f(M) W M = (Mi Mi)“2. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
Jv 

Here Mi (i = 1, 2, 3) d enotes the ith Cartesian component of M; Q,i z $$ (where 4 is any 

function of the coordinates zi) and summation over repeated subscripts is understood. The vector 
function Hf = Hi - HP is the part of the magnetizing force due to magnetization Mi, a;k is a 
symmetrical tensor (exchange tensor). This tensor in a cubic crystal reduces to aik = a&k, a > 0 
and it will be, in a first approximation, dependent only upon the material. w(M;) and f(M) 
are the anisotropy energy and the potential energy which depends on Mi and the absolute value 
of M, respectively, per unit volume. The equilibrium condition is given as 

6u,,t = 6(u,~ + u,,, + UH + u.4 + u1) = 9 (2.6) 

without any supplementary condition on Mi. 
Assuming that there is no surface distribution of magnetic dipoles on the boundary 8V (with 

unit outward normal n) of a rigid ferromagnet that occupies the finite volume V, from the 
condition (2.6), f or cubic ferromagnetic crystal, we find that Mi satisfy the equations 

a2 
aV’Mi-m+H; 

df M = o 

--- , 

dM M 
in V (2.7) 
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and 
aMi 0 -= ) 
dn 

on r3V 

where V2 denotes the Laplace operator. 
A spatially uniform solution Mi = M,?, V M” = 0 throughout V, yields 

61 

(24 

!k!!i +D.M? 
dM M o ‘j ” 

where H,? is the externally applied field and Dij is the demagnetization tensor of V. This equation 
shows the existence of a finite magnetic susceptibility in micromagnetics at high temperature, 
but the material in general does not have a linear magnetic behaviour [12]. 

The equations (2.7) and (2.8) are the modified Brown’s equations at high temperature. We 

suppose now that the ferromagnetic body is under uniform magnetization (the demagnetization 
field is homogeneous-uniformly magnetized ellipsoid M” which defines an axis of easy magneti- 
zation). In this case eqs. (2.7) and (2.8) are satisfied by all uniform vector fields parallel to the 

axis MO/M. Since the vector M” defines an axis of easy magnetization we can suppose that 
G(M;) reaches its minimum when M is parallel to the uniform solution MO, that is 

W(Mi) = & = 0, for M x M” = 0. (2.9) 
t 

Assuming that MF = M”is from eqs. (2.7) and (2.9) we obtain 

4 
HS = H; + Hi = dM o . (2.10) 

To ensure the stability of the equilibrium M”, the second variation of the energy Ut,,t with respect 

to a small deviation m from M”, where mi are functions of position, has to be positive. 
Following the standard procedure it is found that the second variation in the energy, fi2 Utot, 

is given by the relation 

h2 i7tot = 
/[ 

v 

+ Jjmi& (m,-$-) -kmih:] dV (2.11) 

where hi is due to the poles of m; and the derivatives with respect to Mi and M have to be 
evaluated at the state 0”. 

For carrying out the variation, the reciprocity relation [9] 

J 
M’.h’dV= m.H”dV (2.12) 

V J V 

has been used as well as the relations (2.9) and (2.10). 
Since 

(2.13) 

and 

mi & (m, g) = (m(iy30)2 &+mg g = (mf+m:) ( H’GoH’) +mi -$$, (2.14) 

the relation (2.11) is written as 

d2f a2w a% -- + mzdM2+aM: m:+2aMlaM2m1m2+ a@ em:} - imih:] dV. (2 15) 
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Consider now a definite mi and begin with Hi large enough to insure stability. If Hi is 

decreased it must reach a value 2 at which for a given mi, 6’U*,t vanishes. This value of fi has 
to satisfy the relation 

+ -- 
/I 

m; d2f + a2w m2 + a32 
V dM2 aMf ’ aMl dM2 m1m2+ a# 

EM2z) -Jvmih:dV] (2.16) 

if at least one ml and m2 does not vanish everywhere; otherwise it must be true that the expression 
[. . .] in (2.16) is equal to zero. In that case the dependence on Hi is implicit in function f. 

The highest value reached by fi among all values corresponding to the different vector fields mi 
is the nucleation field. We therefore minimize P/Q with respect to the functions mi, i = 1, 2, 3. 
To find the necessary condition for such a minimum we set the first variation of P/Q equal to 
zero. This requires 

c~P+@+H;)~Q=O. (2.17) 

Following the standard procedure we obtain 

s( ( M0 
a2u 

-aV’ml+- 
a2G 

V aM,z m1 + aM, dM2 m2 
-hi)+(ii+Hj)ml}6mldV 

+ M” J{ ( a2L;r 

V 
-aV2m2+~mz+ 

dM1 bMzrnl 
-I$) + (l?+ Hi) rnz}sm2dV 

i- M” J-t ( -aV2 m3 + m3 - 
V 

iz2 -h~~~6m~dV+~v{~Mo~] 6midS=Oi2181 

From (2.18), setting the coefficients of 6mi, { } equal to zero we get in V 

M” aV2m 
( 

a26 
~-~m~-a~2~M2m~+h;)-(~+H~~m~=0 

aM1 

M” 
( 

aV2mz - g m2 - 
2 

a~2~M2ml+h:)-(X+Hj)m2=0 

M” 
d2.f 

aV2m3-msm$hj =0 
) 

and on aV 
h o 

-= , 

an 
i = 1, 2, 3, (&.v). 

Equations (2.19) and (2.20) may be written in compact form as [ll], 

M”x aV2m- 
{ 

& (m.-&)+h’J+mx (fi+H’) =O 

aV2m-m-$+h’ =O 

(2.19) 

(2.20) 

(2.21) 

and 
dm 
- = 0, 
an 

(2.22) 

respectively, where a( )/aM is a vector whose components are a( )/a Mi, i = 1,2,3 and the 
derivatives with respect to Mi and M are evaluated at the state ( )“. 
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Figure 1. 

The field h’, being the field that arises from the free poles of m, is calculated from 

(2.23) 

inside V, 

outside V and 

v2u = 0, (2.24) 

auin BUCl,t 
-=+47rm”=--, 

dn 
(2.25) 

on the surface W, where U is the scalar potential associated with the free poles of the magnetiza- 
tion m and m, is the component of m in the direction of the outward normal on 8V (m, = m.n). 

From equation (2.212) we have 

hffmi= $$ -’ Mf(aV2mi+h:}. ( > (2.26) 

In the limit as $$ goes to infinity, which corresponds to a susceptibility N that goes to zero, the 
equation (2.26) yields 

MFmi = 0, i.e., M = const. (2.27) 

which is the condition in the theory of micromagnetics at low temperature (Brown’s theory). 
Under the condition (2.27) the present formulation reduces to the standard one in the case of 
vanishing susceptibility. 

The determination of the nucleation field requires a complete discussion of the fundamental 
equations (2.21)-(2.25) and the knowledge of the equation of state for the material under discus- 
sion. The_eigenvalue problem of equations (2.21)-(2.25) h as nontrivial solution only for certain 

ranges of H. In particular, there is no solution if H is very large. The largest value of fi for which 
a nontrivial solution exists represents the field for which the distribution of the magnetization 
can first deviate from the uniform state. 

3. THE INFINITE CIRCULAR CYLINDER 

Consider an infinite circular cylinder of radius ro whose axis coincides with the homogeneous 
field H” and with zs-axis (Figure 1). Crystallographically the cylinder is assumed to be cubic 
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with anisotropy energy given by [17]: 

W= - R1(M,2M;+M;M;+M;M:)+RzMfM;M: (3.1) 

where 
K2 

RI=%, R2 M6 =- 

and ICI, Kz are the anisotropy coefficients. 
The xs-axis is supposed to be the easy magnetization axis, therefore we have 

M” = M“i3, H = H& = H,,ia 

and 

m& (mt_E) = { 2Rlyy92 

The determination of the nucleation field in the case under discussion is reduced to the solution 
of the following eingenvalue problem: 

a M” V2m; - (BRIE + H,)mi - MO U,i = 0, i=l,2 

d2.f 
aV2 m3 - m3 dM2 --M”“q3=0 (3.2) 

V2 U = 47rmk,k, 

for x; -t xz 5 p2 

for x: -t x; 2 p2 and 

for x: + x$ = p2. 

v2 u = 0, (3.3) 

ami =O 
an ) 

uin = Uout 

dUin XL,, 
-=+47rm”=-r (3.4) 

Introducing the cylindrical coordinate system (r, 6, x3) (Figure l), the dimensionless quantities, 

td, h= 
BRIE + H, U 

l-0 
rM” ’ 

u=-, PO=& ~, 
~M’P, 

&? 

i = r, Q5, x3 (3.5) 

the operator 

(3.6) 

and following Aharoni and Shtrikman [l] the equations (3.2)-(3.4) are transformed as 

1 2 
VI2 rig, - - rii, - - r?i.++ - nS2hr%, - ?TSU,~ = 0 

22 t2 

v2rii,-; 2 XS 
T?Z+ + F +ii,,+ - xS2hrizt, - t u,~ = 0 

V’2liI3 - X&3 - nSu,p = 0 (3.7) 

for t 5 1 
vi2u = 0, (3.3) 
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for t 2 1, and 

uin = uout 

8% au,,, 
-at+4sl?l’=--g- 

(3.9) 

for t = 1. 
The complete regular solution of equations (3.7) is a linear combination of functions of the 

type 

*r = A,(t) cos (kp -PO) cos (74 - do), 
64 = A+(t) ~0s (kp - P,) sin (4 - b), 
5s = Aa sin (kp - po) cos (nq5 - &), 

11 = u,(t) cos (kP - PO) cm (N - A), 

(3.10) 

where k, p,, qSo are real constants and n is an integer to insure periodicity in the tangential 
direction. 

Substituting the solution (3.10) into equations (3.7), adding and subtracting (3.71) and (3.7s), 
respectively, we obtain 

2 

-$++-& (3)Z-k2-A}A3+rSk”,=0 

g+g& ($)’ -k2}“1-2S{(n+l)Ar;A’@-(n-L)ArtAg 

+d(Ar + A+) + d(A, - A+) 
dt dt 

+2kA3 ~0. 
> 

(3.11) 

A solution of (3.11) is 

4-A, = crl J,_1(ip t) 

Ut = Q2 Jn(ip t) 

A, + A4 = a3 J,x+l(ipt) (3.12) 

A3 = cr4 Jn(i/.it) 

where J,, is Bessel’s function of the first kind of order n, if the following equations are satisfied 

ips(Y2 + (p2 -k2-rS2h)a3=0 

(p2-k2-?rS2h)a1-i/u&x2=0 (3.13) 

nSka2+(p2-k2-X)a4=0 

2ipss1+ (p2 - k2)a2 - 2ipSa3 -4Ska4 = 0. 

The existence of a nontrivial solution of (3.13) requires the determinant of the coefficients of 
oi, i = 1, 2, 3, 4 to be zero, that is 

(p2-k2-rS2h){4?rS2p2(p2-k2-A)- [4xS2k2+(p2-k2)(p2-k2_X)] 

x (p2 - k2 - ?r S2 h)} = 0. (3.14) 
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This equation implies for /1 either the value 

p1 = (k2 + 7r s2 hy 
or one of the three values 

Pi = yi+i(W+3cZ+X) i = 2,3,4, 

(3.15) 

(3.16) 

where 

w=nS2(h+4), p=;{3wX-(w+X)2}<0 

!I= -$(w3 + A”) + &wX(w2+X2)+2?rS2E2(X-w+4*S2) 

D = -p3 - q2, 

and yi are given as 

y2 = -2r cos i, , 

and 

B=Arc (cos(%)), 0~[0’,90”], forDLO 

Y2 = -2r cash $, 4 
Y3,4 =rcosh- 4 

f i&r sinh -, 

4 = Arc (cash (5)) , q3 E [0”, :O’], 3 D < 0. 

Since there are four values for /J, eqs. (3.12) represent the general regular solution of (3.11) while 
the other four solutions are the associated Neumann functions. For p = ~1 and ?rS2 h # il 
from (3.13), we obtain 

(Y(21)= cry’ = 0, or)= &), (3.17) 

while for ~1, I = 2,3,4 we have 

(Y;, = 4 i S I+: - IC2 - A) $) 

RI 
($1 = -$) 

(I) _ 4i7rS2W o(ll) 
a4 - 

Rl 
, for RI # 0, 

where I = 2,3,4 and Rl = 47rS2 k2 + (& - k2)($ - k2 - X). 
The general regular solution of (3.11) is 

A, -A+ = e c~l’)J,-~(ip,i) 
f=l 

4 

Ut = 
c 

-4is/J,(/+-P--x) (,) 

1=2 Rl 
01 Jn(iprt) 

A, + A4 = k a:’ &+I (i PI t) 
I=2 

A3 = 5 &I,,(i/&). 
I=1 

(3.18) 

(3.19) 
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In the case where ,UI are all different and nonzero the general solution (3.19) involves 4-arbitrary 

constants a(‘) - i , I - 1,2,3,4, while the other 4-independent solutions have coefficients crib) equal to 
zero since the Neumann functions are infinite at i = 0. The potential u for t 2 1 is the solution 
of (3.8), namely 

u = BH$‘)(i k t) c~(~P-Po)c~(ndJ-40), (3.20) 

where H!$) is the Hankel function of the first kind and nth-order. Applying the boundary condi- 
tion (3.92), we obtain the coefficient B as 

-4is 4 /1&+--z-~) (I) 

B = Hi’)(ik) ,=? c 4 
a1 Jn(i Pl t>. (3.21) 

From the boundary conditions (3.9s) and (3.91), we obtain 

(‘I { (47d2 - p: + k2 + A) (Jr,-l(ipr) - Jn+x(ipr)) 

+ F (,$ _ k’2 _ ,j) Jn(ip’) 

Hi’) (i k) 
(Hc!l (i k) - H;!, (i k))} = 0 

and 

iP1 (Jn-2(iPl) - Jn+z(ip1)) (Yl (l) + f: i/Q (YC) {L2(ipr) + Jn+2(ip,) - ZJ”(iP)} = 0 
k2 

iP1 (Jn-2(iPl) + J*+z(ip1) - 2J,(i#ui)) oil) + f: icIl o(ll) {Jr+z(ip,> - Jn+2(i/w)} = 0 

I=2 

4 c 2?rs2 kpf cp {Jn_l(ipl) - J ” +1(ip,)} = 0, 
1=2 

Rl 

(3.22) 

respectively. 

Supposing that 02) = 0 and cy(l’) = CV~), which means rS2 h # A, the system of equations 

(3.22) is an algebraic homogeneous system with unknown coefficients ol , (‘) 1 = 1,2,3,4. A non- 
trivial solution of (3.22) implies that 

where 

Ql(Pl> n3b2) Q3b3) fl3b4) 

n3h) fl2b2) 522(p3) fl2b4> 

0 6(p2>fi4(p2) Q3>fi4(P3) %4)fi4(P4) 

=o (3.23) 

2k2 
7(M) = RI’ 6(M) 

7Mp; 
= - 7(/Q), R, 

Q,(W) = (4 A S2 - p; + k2 + A)Q,(p,) + ;(p; - k2 - A) 
Jn(i PI> 

Hc) (ik) 
(Hff,(ik) - HAyI( 

fi2h> = ipr (Jn-a(iw) - Jn+z(ipI)), hh) = iw (Jn-2(iw) + Jn+2(im) - 2 J,,(ip~)) 
fi4(~1> = (Jn-l(ipt) - J,+l(iw)), k # 0. (3.24) 

The eigenvalue problem of equations (3.7-9) wits reduced to the determination of the largest root 
of the equation (3.23), for every value of S, which has the functional form 

F(h, k, A) = 0, for every S. (3.25) 
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The determination of the nucleation field requires also a knowledge of the dependence of f on 
M and T, where T is the absolute temperature. If f = f(M) is known, from (2.10) and (3.5) we 
obtain 

and 

h _ 2 &(M”)2 + I df 
?r nM”dM. 

d2f 

il=s2 dM2 0’ 

(3.26) 

(3.27) 

In the framework of Landau’s theory [15] the isotropic function f is given as 

f(M,T)=fo+AM2+BM4, (3.28) 

where f. is a function only of temperature and pressure. The coefficients A and B are given 

(3.29) 

where X, is an empirical constant, called by Weiss the molecular field-constant and conditioned 
by the exchange interaction [18] and s is the spin of an atom (for s = l/2 + B = X,/3). 
Introducing the expression (3.28), taking into account (3.29), into (3.26) and (3.27), we obtain 

h = 2 R1P”)2 + 2 x 

A x 
w l-$++!f”)Z 

{ 1 
(3.30) 

and 

respectively. Finally, the relationship between h and X is given as 

h M 2 Jww2 + Ax 
?r 3n u, ( ) 

l-% + &2x. (3.32) 

Up to now the solution of the problem has been described in the most general manner. To obtain 
the largest eigenvalue h, it is convenient to treat the cases R = 0, n > 1 and n = 1 separately [l]. 

For n = 0 the system of equations (3.11) gives 

$+ff-A-k2-aS2h A4=O 
> 

1 $+ff-;-p- nS2h A++=0 
> 

I -$+;-$k’-X As+nS12ut=0 
> 

-$+~-&k2}ut-,S{~+~+kA3}=0. 

(3.33) 

The general solution of equation (3.331) is 

A,+. = B Jl(i,ult). (3.34) 

Substituting (3.34) in the boundary condition $$]t=i = 0, we obtain the eigenvalue equation 

dJl(i m> 
d(fm) 

= 0. (3.35) 
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The smallest root of this equation is i,~r = 1.841, therefore, 

h(k, S) = -1.08S-2 - &. (3.36) 

The maximum value of h is 
h,,(S) = -1.08 S-‘. (3.37) 

This is the same result as obtained earlier [l] for the magnetization curling (A, = As = Ut = 0). 
An underconstrained eigenvalue of the equations (3.332-3.33 4 is taken by neglecting the self- ) 
magnetostatic energy (U, = 0) and discarding (3.334). The solution of (3.332) with Ut = 0 is 
identical to (3.331) while equation (3.33s) becomes 

Id $+tz-kz (3.38) 

The general regular 

From the boundary 

solution of equation (3.38) is 

A3 = C J,(ipgt), p3 = (k2 + A)? 

condition *It=i = 0 we get 

(3.39) 

dJo(i 113) 

4iP3) 
= d(ip3) = 0. (3.40) 

The smallest root of (3.40) is ips = 3.832, thus 

A= -14.684 - A’. (3.41) 

In the region of validity of (3.32), we have 

where 

h=c--s+&= -1.558 S-2 - 7- + E, 

&= 
2Ri(M”)2 

?r ’ 

(3.42) 

and k is taken equal to zero, since we are interesting in h, = max h. 
In order to have 

h, 2 -l.OSS-‘, 

the inequality 
& > r -+ 0.475 s-2, (Ki > 0) (3.43) 

must be satisfied, results which is in agreement with that reported in [16]. 
For n > 1 an underconstained solution of equations (3.11) is obtained by neglecting the self- 

magnetostatic energy (U, = 0) and discarding (3.114), namely 

A, - A+ = ~1 Jn-~(iplt) 
A, +A+ = a3 Jn(iPlQ (3.44) 

A3 = Q4 Jn(ip3Q. 

Introducing (3.44) into the boundary conditions (3.9), we obtain the following equations for the 
nucleation field 

k2+~S2h,=-z;_1, k2+~S2h,=-z;+1, k2+)(,=_& (3.45) 
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where x, is the smallest root of J,!,(z) = 0. Since x,(n > 1) is a monotonous increasing function 

of n, equations (3.451-2) cannot give more positive nucleation field than for curling. From the 

last of equations (3.45) and the constitutive equation (3.32), we obtain 

h= x: -3xS-2+&-TT. 

For h, > h?’ we must have 

Since -xE < --2:, the condition for h, 2 hFr’ is 

EZ 
x; - 3x7 + 7 

3lrsz ’ 

(3.46) 

(3.47) 

(3.48) 

For n = 1 the nucleation field will directly be calculated by solving numerically the equation 
(3.23). The general solution (3.19) h as b een obtained under the assumption that all roots pl of 

the equation (3.14) are different and nonzero. In what follows we will discuss the special cases 
for n = 1. 

(i) /.~i = 0 : In th is case, from (3.14), we obtain 

= 0, P3,4 = 
x 

P2 p~!T~(h+2) f ) ((;-2rS2)‘+47r2S4h (3.49) 

and the general regular solution is given as 

A, = f 
27&(X-+) _k2 

kZ+;\ > 

4 

c1t2 +c2 + c Cl (Jz(ijQt) - J,(iprf)) 

i=3 

1 
A+z-~ 

{ 

2 (5 k2 + 3) 
k2+2nS k2+x 

1 

4 
clt2 - + c2 + c Cl 

Jl(iW q 

I=3 iPlt 

Ut = 8 S c1 t + 2 cl s Jl(i p, t) 
1=3 

A J3rS2k 
4 

3- 82 + X 
qt - 

c 

il.lrk 
J1(ipr q. 

I=3 
” /$ _ k’2 - X 

(3.50) 

Using the boundary conditions (3.9 ) 1 and asking for a nontrivial solution in the case under 

discussion, we obtain 

Yl %(P3) Q(P4) 

F(‘)(k, X) = y2 4 JZ(i p3) 4 Jz(i p4) = 0, (3.51) 

Y3 G3) Q2 (P3) W4) Q2 (P4) 

where 

71 = 4 
2 ?r S2(A - k2) 

k2+X -k2}, ,2=4{k2+2rS2(5~~~;i)} 

16nSzk 
73= kZ+X ’ %I) = 

cl+ 
p; - k2 - X 

(3.52) 

%(Pl) = iP1{3Jl(iP,) - J3(ip,)}, Q,(p,) = J,(iP{) - J2(ip,). 
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We note that on physical grounds we obtain c2 = 0. 
One of ~1, 1 = 2,3,4 is equal to zero (*S2 h # X). From (3.14) it is seen that it will 

happen either for k = 0 or for 4 A S2 h + k2 = -A. In the case k = 0 the roots of (3.14) 
are 

p1 = (7rS2 h)“2, /I2 = 0, p3 = A1’2, p4 = (?fS2(h + 4))“2 (3.53) 

and the regular solution is given as 

A, - A4 = cl Jo(ip~ t) + c2 + c4 Jo(ip4t) 

Ut = -Shczt - 
4iS 
--4Jl(ip4q 

P3 
(3.54) 

A, +A4 = Cl J2(i& t) - C4 J2(ip4f), A3 = 0 

which is identical to that obtained in [l] in the framework of Brown’s equations for the 
nucleation field (Mi Mi = M,’ = const .). 

In the case where 4xS2 h -+ k2 = -A, the roots of equation (3.14) are 

~1 = (k2 + xS2 h)“2, p2 = 0, 

p3,4 = -$ { (2k2 + A S2 h) f [?r2S4(h + 8)2 + 16 rS2 k’] “‘}“’ 

and the regular solution is given as 

4 =~{--J.(ipll)+h(i~lt)}-~+~ ;{J,(iplt)-J2(ipll)) 

I=3 

u* = - 
4 (-i) 

k2;:;2hC2t+z G(p’a-k2-rS2h)c,J&.p,t), ts1 

A3 = k(k2+xS2h) 4 i(+k2-irS2h) 

3TS2 
Cat + c ,=3 /+; _ k’2 _ A) k ‘I Jl(ipr t, 

ut = - 
k2+nS2ht 1 4 -i 

2nS -t ,=3 *s/J/ c - (/of - k2 -aS2h)crJ~(ip,t), t 1 1. 

Using the boundary conditions and asking for nontrivial solution, we obtain 

4SJ*(i /Ill ka+?r Sa(h+2] 
ilrl *s Ql (ft3) %(P4) 

F(“)(h, k, A, S) = ;$;:i 0 n2b3) Qs(P4) 

R2(/‘3) R2(/14) 

0 -7(P3)n4(P3) -7(P4)Q4(P4) 

where 

fh(P1) = 
r S2(2 - h) + 62 - pf 

HS 
Q,(~,) _ (d - “z; xS2 h) Jl(ipl) 

iCcr 

n2(!4) = iPl {Jl(iPf) + J3(i/Q)}, S23(p,) = ip, {3Jl(iPl) _ J3(jP,)) 

n4(fQ) = Jo(iPr) - Jz(ipr), 7(pl) = 
k(p:-k2-rS2h) 

/II” - k2 -A ’ 

(3.55) 

(3.56) 

= 0, 

(3.57) 

Finally, the case ccl = p2 = cl3 = ~14 implies that k2 + T S2 h = 0 (~1 = 0), which is of no interest. 
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4. NUMERICAL RESULTS AND DISCUSSION 

It is obvious that the case n = 1 discussed in the previous paragraph is quite complicated. 

Although the general regular solution has been obtained in terms of Bessel functions, the secular 
equation resulting from the boundary conditions is a transcendental one and its roots have to 
be determined numerically. The method followed to solve equation (3.23), (F(h, L, X, S) = 
0) consists of minimizing its square. In particular, we used the optimization package [13,14] 
MERLIN-2.0, since it offers a convenient environment to work with. It allows the search area to 
be restricted to selected intervals, that in turn can be searched exhaustively. The minimisation 
algorithms used are the quasi-Newton ones known as BFGS and DFP, the conjugate gradient 
method of Polak and Ribiere, the non-linear Simplex method of Nelder and Mead, a Monte-Carlo 
search with occasional line searches and a modification of the alternating variables method, all of 
which are documented and referenced in [14,15] and the accompanying MERLIN user’s manual. 
The proposed numerical procedure was first applied to calculate the nucleation field (buckling 
solution) of the classical problem treated in [l]. The results obtained are presented in [19] and it 
was found to be in agreement with those of [l]. 

The solution of equation (3.23) for each S and X yields pairs (h, k) corresponding to nucleation. 

The results obtained by the proposed numerical method are cited in Table 1. 

Table 1. Exact values of h bases cm eq. (3.23). 

k(xlo-‘) -A -h(XlO--2) S k(xlO-') -A -qx10-2) s 

0.0005 

0.01 

0.1 0 0 
0.1 0.00261987 

0.4 0.0766624 

0.6 0.207781 

0.7 0.303799 

0.8 0.605982 

0.9 0.606168 

1.0 0.821141 

1.5 2.90554 

2.0 8.32138 

3.0 74.1730 

0.1 0 0 

0.1 0.00246045 

0.4 0.0733498 

0.6 0.202329 

0.7 0.303535 

0.8 0.435994 

0.9 0.605787 

1.0 0.819982 

1.5 2.90459 

2.0 8.31946 

3.0 74.1618 

0.05 

0.1 

0.1 

0.1 

0 0 

0.1 0.00236652 

0.4 0.0693453 

0.6 0.195681 

0.7 0.295346 

0.8 0.426090 

0.9 0.593968 

1.0 0.806014 

1.5 2.87500 

2.0 8.25967 

3.0 73.8612 

0 0 

0.1 0 

0.4 0.0584826 

0.6 0.177567 

0.7 0.272978 

0.8 0.398963 

0.9 0.561502 

1.0 0.767544 

1.5 2.79228 

2.0 8.08977 

3.0 72.9674 

In Figure 2 it is shown the variation of the nucleation field with the size parameter S of the 
particle and X oc l/N. 

In the range of S considered, S E [0.005, 0.121, the nucleation, -h, is increasing with decreasing 

particle size and with increasing (Xl. Th e corresponding exact buckling eigenfunctions are shown 

in figure 3. This result suggests that the buckling eigenfunctions should be approximated as 
(A, = -A+ = const., As(t)). W e note that all the calculations here were carried out by neglecting 
the magnetocrystalline anisotropy energy. Below T, the magnetic anisotropy begins to play an 
important role in the magnetic response. As T, is approached the anisotropy for iron scales with 
T as K1 = 1.6 x 104((Tc - T)/Tc)1.51 Joule/m3 [lo]. 
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Figure 2. Variation of h versus S and A. 

From the present analysis we are led to the conclusion that “Curling” and “Buckling” are the 
main mechanisms which “ignite” reversion of magnetization of an infinite cylinder even in the 
neighbourhood of the Curie point. An easier mechanism than those already mentioned exists 

only if Ii1 > 0 as was pointed out by Kondorsky [16] and in the present work as well. Assuming 
that a = ‘2A (MO)-‘, where A is the exchange constant, we have 

Below T, the spontaneous magnetization is given by [lo], 
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Figure 3. Reduced direction cosines A,, A+ and AZ HIS functions of the reduced radial 
distance t for: (h = -0.0279228, S = 0.1, X = -1.5, k = 10-s). 

Table 2. Particle radius based on Reference [lo]. 

70(nm) 

s (T, - T)/Tc = 10-s (T, - T)/Tc = IO-~ (T, - T)/Tc = lo-’ 

0.005 8.2 3.5 1.5 

0.01 16.5 7.1 3.0 

0.05 82.5 35.4 15.2 

0.1 165.0 70.7 30.3 
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where p is the critical exponent for the spontaneous magnetization. For iron p = 0.368, 
Ml = 0.0244 MS, MS = 2 Tesla (MS is the spontaneous magnetization at low temperature), 
T, = 770“ K, Tl = 1.45” Ii’, A = 2 x 10-l’Joule/m and p,, = 1.26 x lo6 Henry/m (pO is the 
vacuum permeability). In Table 2 are cited the radius of the single domain particle considered 
at temperatures near but below T,. 
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