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Forbidden states and the three-body bound state collapse
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The appearance of bound states with large binding energies of several hundred MeV in the three-body
system, known as bound state collapse, is investigated. For this purpose three classes of two-body potentials
are employed; local potentials equivalent to nonlocal interactions possessing a continuum bound state, in
addition to the usual negative-energy bound state; local potentials with a strong attractive well sustaining a
forbidden state; and supersymmetric transformation potentials. It is first shown that local potentials equivalent
to the above nonlocal ones have a strong attractive well in the interior region which supports, in addition to the
physical deuteron state, a second bound stateally called a pseudobound spatéth a large binding energy,
which is responsible for the bound state collapse in the three-tadly in general to th&-body) system.

Second, it is shown that local potentials with a forbidden state also generate a three-body bound state collapse,
implying that the role played by the forbidden state is similar to the one played by the pseudobound state.
Finally, it is shown that the removal of the forbidden state via supersymmetric transformations also results in
the disappearance of the collapse. Thus one can safely argue that the presence of unphysical bound states with
large binding energies in the two-body system is responsible for the bound state collapse in the three-body
system.
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[. INTRODUCTION which moves outward with increasing, while the corre-
sponding three-body binding energies increase eventually
Three-body bound state collap$BSC) [1-5], i.e., the leading to a collapse of the three-body system. This was an
appearance of bound states with large binding energies in thadication that BSC is related to the range of the nonlocality,
three-body system, has been the subject of several studiesai least for this kind of potential.
the past. It was found, long ago, that the rank-1 nonlocal Almost a decade later, Delfinet al. [7,8] were able to
separable potential of Tabakj] generates a large binding show that for rank-1 separable potentials with a one-term
energy for the three-body systef#]. This came as a sur- form factor of Yamaguchi type, the BSC could essentially be
prise, as this potential predicts the two-body data, fairly wellinked to the Thomas effe¢®], i.e., to a drastic increase of
and, there was no apparent reason why such an unphysicdle three-particle binding energy as the range of the two-
bound state with large binding energy should appear in th@article potential tends to zero. Thus these authors were able
three-body system. to establish an equivalence between the Thomas effect and
Subsequent studies with rank-2 separable poteriGa48  the phenomenon of collapse by means of the range of the
showed that BSC could be related to two-body continuunpotential. In contrast, when the form factor is a sum of
bound state$CBS’9), i.e., to the existence of aBmatrix  Yamaguchi terms and the nonlocality parameter could not be
pole on the real positive-energy axis. This was the case fofaken as a measure of the range of the potential, Delfino
separable potentials, while for purely local potentials or suet al.[8] noted that, if this type of potentials supports a CBS,
perpositions of local and nonlocal potentials the collapse wai addition to a physical dueteron state, the CBS wave func-
not observed. Some aspects of BSC for the Tabakin potentigion is identical to the wave function of a negative-energy
were also studied by Rupgt al. [5]. In that work a rank-1  bound state, the so called pseudobound state, which is re-
potential, similar to the Tabakin potential, was constructedsponsible for the collapse. An important suggestion of that
and used to calculate the three-body binding energy as work was that one should expect similar results for all po-
function of the nonlocal parametg; i.e., the inverse of the tentials which support at least another bound state in addition
nonlocality range of the potential. Several rad@&lvave to the physical deuteron state. In the resonating group model,
functions for different values o8 were constructed, and this bound state is usually called a Pauli-forbidden state
compared with the deuteron wave function of the Graz-II(PF9S [10].
potential [6]. This comparison revealed that, in contrast to In the presence of a PFS the physical deuteron state be-
the deuteron wave function of the Graz-Il potential, thesecomes an excited bound state and its wave function has a
bound state wave functions have a node at short distancemde. The relation between that node and the three-body
binding energy was investigated by Nakaichi-Madd4]
who employed the Kukulin nucleon-nucle¢NN) potential
*Permanent address: Department of Computer Science, Univef12]. This interaction, in addition to the physical deuteron
sity of loannina, GR-451 10 loannina, Greece. state, also sustains a PFS which, for the triplet channel, is
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~58 MeV, for the singlet is~440 MeV, and for the couple TABLE I. The parameters for the nonlocal potentigis. (1)
channel system is even deeper525 MeV [13]. Thus, for  and(2)], together with the collapse momentusg and the three-
this potential, the physical deuteron state is an excited bounepdy binding energy; for a,=—1.0 andg,=1.4 (fm?).

state, and the corresponding wave function has a node. By

varying the magnitude of the inner amplitude of the wave Pot. a1 Bz (fm™%) A (fm™%)  p (fm™*)  B; (MeV)
function and the position of the node, Nakaichi-Maeda con- 0.05 8.47 2491 4 1.307 902.3

gremu;aedrct)rr]]a\fviveeI?Sritiisérc]onnected to the nodal behavior of the ; 01 573 1096.1 1213 644 8
The purpose of this paper is threefold. First, we take the 3 013 4.92 831.3 1.167 °78.5

s . 4 0.15 4.53 729.3 1.149 539.4

findings of Delfinoet al. [7,8] further, and show that they 5 02 3.82 573.9 1.097 486.5

can be generalized to any kind of two-particle potential ' ' ' ' '

which has a bound state with large binding energy, in addi-

tion to the physical deuteron state. By looking at the nodal 2

behavior of the wave functions we will also confirm, in a D(y)=1+\ > aidj 5)

more rigorous way, the results of Nakaichi-Ma¢da]. Sec- i=1 (y+B)(y+B)(Bi+ By

ond, by constructing a local potential sustaining at least one

forbidden state, we will show that it can cause a BSC in alhe corresponding bound state wave function is given by

three-body system. Finally, we will remove the forbidden

state via supersymmetri(SUSY) transformationg 14,15, a(p)

and show that this results in the disappearance of the BSC. Dp(p)=— Nm,
The paper is organized as follows: In Sec. Il, we present a vTP

short description of nonlocal potentials of rank 1 sustaining gyhereN is the normalization constant.

CBS, we construct their phase-equivalent local interactions, Tne potentials of Table | support a CBS at a positive

and use them to obtain the trinucleon binding energy. Th%nergyE —p? if

relevance of forbidden states of purely local interactions to ere

the BSC are discussed in Sec. lll. In Sec. IV, we briefly g(p’)=0 and D(p?)=0. 7

present the supersymmetric transformations used to remove

the forbidden states. Finally, in Sec. V, we discuss our refFrom Egs.(2) and (4) and conditiong7), for a CBS wave

(6)

sults and draw our conclusions. function one obtains
Il. NONLOCAL INTERACTIONS (D)= —N (a1t ay) g
C(p)_ - 2 2 2 PN ( )
A. Short review (p+ BD(P+B2)

For convenience, let us briefly recall the relevant formulasryg important aspects concerning this wave function were
describing a two-particle system in &wstate. In our inves- already noted in Ref[8], namely, that it does not depend
tigations we shall use the nonlocal potentials of Table | Ofdirecﬂy on the energy?, and that at large distances it de-
Ref. [8] which are rank-1 separable interactions, cays exponentially as exp(3r) and not as exp{py). It was

_ further noted that it reduces to a bound si{d&ig. (6)] if one
Vip.a)=rg(p)g(a), @ identifies the binding energy? with 8? and the form factor
with a form factor consisting of a sum of Yamaguchi terms:With (p?+ 87) "%, where;(83;) is the smallexlargen of 3,
and B,. In other words, the CBS wave function has the be-
ay @y havior of a normal negative-energy bound state wave func-
T st . (2 tion, and this pseudobound state is responsible for the ap-
k*+B1 K™+ B3 pearance of an extra bound state in the three-body system.
: . . . It is noted that for this type of nonlocal potential the pa-
The corresponding two particlematrix, at a given energy  rameterg; cannot be taken as a measure of the range of the
E=k" (A%/2n=1), is given by potential. However, the range of the nonlocality can be de-
duced by constructing equivalent local interactions in coor-

g(k)=

i hich hall di .
t(p,q:k?)=g(p) —g(q), 3 dinate space, which we shall discuss next
D (k)
B. Equivalent local interactions
with . .
There are many ways to construct local interactions
I\ (22 24 equivalent to nonlocal ones. A particular localization method
D(k¥)=1- — M (4) which is well suited for our investigation is the one based on
T Jo k?—p?+ie two linear independent solutions of the Safirmer equa-

tion. The method was outlined in Refd.6—18 and we refer
If the system has a bound stateEt= — y? then, from Eq.  to these works for more detail. This type of equivalent local
(4), we obtain potential(ELP) (sometimes called the quantal or Wronskian
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FIG. 1. Local potentials equivalent to the two-body nonlocal FIG. 2. Local potentials equivalent to potential 1 of Table | for
interactions of Table | fok=2.0 fm 1. The strong, short-ranged, k=2.0, 2.4, and 2.8 fm'.

attractive well of potential 1 generates BSC in the three-body sys-, ) .
tem. tial equivalent to that of Tabakin, are corroborated.

The wave functions of the excited states, i.e., the physical
ELP) depends on energy. Since we are interested in thV0-Pody states, are shown in Fig. 3. Itis seen that there is a
shape and range of these potentials as well as in thenode in the interior region which moves to shorter distances
: : . , s the energy of the ground state increases. This is not unex-
strength for interpretation purposes, it suffices to ConStruE;ected, as the attractive well of the potential is shifted in the

them at some fixed energy. Another way is, of course, tqQ, e o region and assumes the characteristics éffanc-
construct ELP’s via inverse scattering techniques in order t(ﬁon (hence the relation to the Thomas effect, see Fig. 2

glegr1e;atell_—|depende?r:_ but elgelrgyoilrsdependent 'nteraCt'oln§herefore, the position of the node of the excited state is also
[ - 1. owever, this would lead 1o unnécessary Compli-ghisiaq closer to zero. These results are in gualitative agree-
cations without gaining more insight into what we are trying ...+ \with those of Nakaichi-Maeda1]. In other words, the

to do. appearance of a bound state with a large binding energy in

The ELP’s of the nonlocal interactions of Table | are :
i ~ . the three-body systerftollapse is related to the nodal be-
shown in Fig. 1 fork=2.0 fm L. It is seen that they are havior of the physical two-body wave function.
similar in shape, and have an attractive strength at short dis-

tances which is quite large compared with the strength of a
typical NN interaction. Another aspect of these potentials ) i )
should be noted, namely, the existence of a hump, which There are many I_ocal potentlal models Whlc_h determln_e
suggests a repulsion in the interaction region, and thus resdPe deuteron properties fairly well. Since our main concern is
nances may also appef@l]. Such a hump is characteristic 1
of local potentials equivalent to nonlocal interactions, which

fit the two-nucleon scattering data at high energies
[11,17,23. The striking similarity of then-« local poten-

tials, equivalent to nonlocal potentials, and of the corre-« 0.5
sponding two-body bound state wave functions presented ir2
Ref.[21] with those of the present work is worth mentioning. 5
Looking now at the three-body binding energies generatecg
by the nonlocal potentials of Table I, we note that the shorters

Ill. LOCAL INTERACTIONS

the range of the potential the larger the three-body bindings /,/

energy. This is in agreement with the findings of Delfino 2 ,g'/” —— pot.1

et al. [7] obtained with rank-1 nonlocal potentials with a & _; R{ - pot.2 i
one-term Yamaguchi form factor. The results of Rfef] ' - Pgt'i

were shown to be related to the Thomas effect. The presen e ﬁot:g,

results suggest that this relation is also valid for potentials

with a form factor consisting of a sum of Yamaguchi terms, 5 : 2 s

and therefore it is a more general statement.

In Fig. 2 one of the ELP’s employed, potential 1, is shown
for different momenta. It is seen that the main characteristics FIG. 3. The short-range behavior of the physical deuteron wave
of the potential do not change significantly and thus the prefunction generated by the potentials of Table I. The position of the
vious results of Ruppet al. [5], obtained with a local poten- node depends on the range of the attractive well.

r (fm)
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TABLE 1. The set of parameters used in the two-body local 100 T T T T
potential of Eq.(9) together with the corresponding two- and three-
body binding energieB, and B3, respectively.

50 | -
Vo a V1 :8 m 82 83
Pot. (MeV) (fm~2) (MeV) (fm™1) (fm™%) (MeV) (MeV) ok -
e T LT T
1 178.24 0.2 5.0 1.0 0.7 2.225 4.60 g o
77513 16385 S -0 -
=

2 365 003 100 30 07 2225 7.6
17.486 38.35 w00/ T Pg{; ]
3 4588 05 300 14 07 2225 474 oy

---- pot.3
4 4.7  0.007 3.0 1.4 0.2 0.074 0.308 150 ——=- pot4 |
2.822 5.96
200 . . . .
0 2 4 6 8 10
three-body bound state collapse, it is sufficient to choose ou r (fm)

of this multitude a simple local model which reproduces the
binding energy of the deuteron. The aforementioh@tipo-
tential of Kukulinet al.[12] is best suited for our investiga-
tions. This potential has a deep attractive well at short dis-

tances which results from a six-quark model in the interior V(p,q) = ﬁ\/;a
region, and generates a PFS with a large binding energy. 4
This implies that the corresponding physical two-body bound

state wave function has an inner node which simulates the +ﬁ
repulsive core of the traditiondN potentials. The form of Au
this potential is

FIG. 4. The local potentials corresponding to E8). The pa-
rameters are those given in Table Il.

p(_(|0—q)2)_ p(_ (p+a)?
ex Vi%eY ex 4o
[u2+<p+q>2][(u+,8>2+(p—q)z]]

[?+(p+)?][(+B)*+(p+a)?]
(10

is then used to obtain the two-bodymatrix needed in the
Faddeev equation for the bound states. For three bosons in an
1 © S state, one haR23]

Vr)=Voexp(~ar)+ Vy{1-exp~ )] n A,

(29+q")/\V3

8 ©
o . w(p,q)=—f Q’dQ’f o P AP
By varying its parameters one can move the forbidden state wq\/§ 0 [2a—q'[/V3
above or below the physical deuteron state, which we keep

fixed atE,=2.225 MeV. Thus the state correspondingsip Xt[p:(p'2+Q'z—qz)”z?S—qz] P(p'.q")
can be an excited or a ground state of the two-body system, s—p'2—q'2 '
and thus it may or may not have a node.

Several sets of parameters were used which give rise to (1)

different shapes, ranges, and depths of the potential. Four

characteristic examples are presented in Table I togethé’}’here

with the resulting two- and three-body binding energies. ) , P

These potentials are plotted in Fig. 4. Potential 1 is much {p.k:2)=V(p k)_EJWV(p,k (k' k;2)k’'#dk

more attractive, and supports a forbidden state Egt Y ' 7)o k'2—7 '

=77.513 MeV. As compared to the other three potentials, (12

potential 2 has a different shape and a much longer range, the

forbidden state being &,=17.486 MeV. Potential 3 sus- Due to the variable limits op’, it is impractical to solve Eq.

tains only the physical deuteron state, while potential 4 sup¢11) by converting it to a matrix form and then applying the

ports, in addition to this an excited bound state Esf  usual eigenanalysis techniques. Furthermore, the form of our

=0.074 MeV. Itis noted that potentials 3 and 4 are similar topotentials(a deep attractive wellrequires special attention

soft-coreNN potentials, and fit the binding energy but not the and care. Thus the method of successive iterations has been

scattering phase shifts. Therefore, with these examples wemployed[24], and the results obtained were reasonably

can pinpoint which property of the potential is most impor- stable.

tant for the collapse. Here we point out that the two-body ground-state energies
In order to calculate the three-body binding energy, wefor potentials 1 and 2 are larger than the binding energy of

utilize the Faddeev formalism. For this we transform the pothe deuteron. In contrast, the two-body ground-state energy

tentials[Eq. (9)] in momentum space, and the potential ma-for potential 3 is fixed at 2.225 MeV, while that for potential

trix, 4 is fixed at 2.282 MeV for reasons which we shall explain
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1 T - functions in Fig. 6, we note that the collapse is more en-
hanced when the node is in the interior region. This is in line
with the results found in Sec. Il.

08 N — . In order to obtain an excited bound state that lies above
pot.1 . . .
’l W - pot.2 the physical deuteron state, we slightly increased, for poten-
| \ —— pot.3 tial 4, the two-body ground-state energylEg=2.822 MeV,
o6 ---- pot4 . and obtained.=0.074 MeV. The corresponding three-body

binding energies are 0.308 and 5.96 MeV, i.e., no collapse
was detected in this case. It seems that there is a contradic-
tion here with the results of the nonlocal potentials, which
also showed a collapse for potentials fulfilling conditi@.
As already noticed by Delfinet al.[7,8], however, for this
type of potential the two-body pseudobound state has the
same behavior as the physical bound state. Therefore, we can
conclude that only forbidden states with large binding ener-
gies cause the three-body bound state collapse. This argu-
ment will be also supported by removing the forbidden states
via supersymmetric transformations.

FIG. 5. Ground-state wave functions of the potentials of Table
Il. Their peak and spread are directly linked to the shape and
strength of the attractive well.

Ground State Wave Functions
o
=

o
o

IV. SUPERSYMMETRIC POTENTIALS

Quite often, in nuclear physics problems, the constructed
later. The corresponding wave functions for the two-bodytwo-body potential has an attractive well that sustains un-
ground states are shown in Fig. 5, and those for the excitepghysical bound states which must be removed or projected
states in Fig. 6. out from the spectrum before the potential is used in calcu-

We have searched for three-body binding energies in théations. One way to achieve this is via SUSY transforma-
region of (—1000, Q MeV. The results are presented in tions, in which one can add or remove a bound state from the
Table Il. For potentials 1, 2, and 4, we located two three-spectrum. The method was discussed extensively in Refs.
body bound states corresponding to the two two-body bounfi14,15, and therefore here we shall recall its main features
states. The three-body binding energy is at its maximunonly briefly.
value atE;=163.85 MeV for potential 1, and decreases to We consider the radial Schdimger equation
E;=38.35 MeV for potential 2. There is no collapse for po-
tential 3, which supports only the physical deuteron state.

2
Comparing these results with the range of potentials shown H —| _ d_+|(| +1) Iy -E
in Fig. 4, we see that the three-body ground-state energy is o¢ol(r) dr2 2 o(1) [#o(1) =Eo(r)
larger when the range of the potential is smaller—an indirect (13

manifestation of the relation between the BSC and the Tho-

mas effect. Looking now at the nodal behavior of the wave, ), HamiltonianH,, which has in its spectrum an un-

physical two-body bound state=E{”). This state can be

08 ' ' removed by factorizindH, and its supersymmetric partner
HamiltonianH 1,
06 | i
2 +a— _—
L2 HO:AOAO +Eo, H1:AOAO +Eo, (14)
S 04
Z
2 where
2 o2
)
©
& d d
w _
B0 A =(A§)T=—a+aln[¢o(r,60)]- (15
= o
02 ---- pot4 ] Here (1, €p) is the solution of the Schdinger equation at
the factorization energy,. The SUSY-1 potentiaV/,, that
- L L corresponds to the partner HamiltonidlR, is given b
04 s ” % p p n,1sg y
r (fm)
d2
FIG. 6. Excited-state wave functions of the potentials of Table V1=V0—2—In[z/10(E(()0))], (16)
Il. Short-range attractive wells shift the node in the interior region. r?
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where e,<E{”, E{”) being the ground state energy ldf. ~ These bound states at positive energies are called
WhereasV, andV, have the same specttaxcept thatv,  pseudobound states, because in all respects they behave simi-
does not sustain a two-body ground stat€Eg), they are larly to negative-energy states. Since the nonlocal potentials
not phase equivalent. To achieve phase equivalence a secof@not be used directly for interpretation purposes, we re-

supersymmetric transformation is needed to obtain thé&orted to the construction of ELP's which can provide infor-
SUSY-2 potentia[15]: mation about how the underlying nonlocality is manifested

in configuration space. In the present work, we constructed
quantal ELP’s to above-rank-1 nonlocal interactions, and
17 showed that they have a strong attractive well that tends to
have as-function behavior and sustain a deep bound state of
a nature similar to the PFS. This implies that bound states in
the continuum are mapped, via the localization procedure,
onto a positive imaginary energy axis. The three-body
ground-state energy then becomes extremely large. In other
words, when at a two-body level one has a strong, short-
range attractive potential that generates the Thomas effect,
then there is a BSC in the three-body system and, in general,
2(21+3) (2+1)(3+1) in N-body system—a finding which is in agreement with that
2~ a— (18 of Delfino et al. [7,8].
We have extended our investigations to include purely
) ) o ) local interactions having unphysical two-body bound states,
instead of an attractive well. It is interesting to note that the,_e_, PFS’s with large binding energies, and calculated the
differenced,(0) — 6(«) may be a multiple ofr despite the  corresponding three-body binding energies. We have demon-
fact that the ground state is removed, i.e., the Levinson theasiated that an increagdecreaseof the two-body binding
rem is not applicable to this type of singular potentials, @%nergy of the unphysical state results in an increase/
shown long ago by Swaf25]. . o decreasgof the three-body binding energy. Thus the BSC
One may argue here that, as the resulting potential is shagf the three-body system is directly connected to the pres-
low and singular, it should be expected that no deep boungdnce of an unphysical two-body state. We wish to mention
state is generated in the three-body system. However, as thgiher that variations of the binding energy of the unphysi-
three-body bound state collapse was found to be related tgy| two-body state also resulted in variations of the inner
the resonance behavior of the Jost function, we endeavoreé}np"tude and the position of the node of the physical deu-
to go through the three-body calculations once more, as th@yon state. This is an indirect proof of the results of
SUSY transformations might generate a new resonance SPeRakaichi-Maedd 11]. Of course, one must be careful about
trum [21] that could be of relevance. _ the role of the node. The existence of a node in the physical
We applied the above method to potentials 1 and 2 of Segyyg-pody state wave function, generated by a local or non-
IIl, and checked again for three-body binding energies in th§qca) interaction, is also a manifestation of a strong attraction
region (—1000, Q MeV. Only one three-body bound state i the interior region.
was found for each potential, namely, at 4.72 MeV for po-  The PFS is usually present in two-cluster systems, where
tential 1 and at 7.14 MeV for potential 2, i.e., no collapseantisymmetrization is used to construct the underlying inter-
was detected. Thus the removal of the forbidden state of thg|ster interaction which is, in general, nonlocal. However,
two-body system resulted in the disappearance of the secofgca| potentials can also be constructed to have one PFS or
three-body bound state as well. more, which in few-cluster systems generate the appearance
of a set of unphysical bound states. One such potential is the
a-a potential of Bucket al. [26] employed in Ref[27] to
study the spectrum of theaBand 4« systems. It was found
The role played by unphysical two-body bound states inin Ref.[27] that the appearance of a set of unphysical bound
the appearance of a collapsed state in the three-body systestates disappears once the PFS’s are removed from the spec-
has been investigated. For this purpose three classes of pwum via SUSY transformations. In the present work we
tentials were employed; local potentials equivalent to nonlofound a similar result, namely, that the removal of an un-
cal interactions which produce BSC; local interactionsphysical bound state from the two-body spectrum also results
which, in addition to the physical deuteron state, sustain @ the disappearance of BSC in the three-body system. In
second bound state with large binding energy; and SUSYonclusion, from the above discussion one can safely argue
transformation potentials. We shall discuss these in turn. that the presence of unphysical bound states with large bind-
Rank-1 nonlocal separable potentials with a Yamaguchiing energies in the two-body system is responsible for BSC
type form factor may possess bound states in the continuunm the three-body system and, in general, in fhbody sys-
i.e., theSmatrix has a pole on the real positive-energy axis.tem.

d2
Vy=Vo— Zﬁ In[ %o(E) ¢ (ES)].

The latter potential is fully phase equivalent g, except
that the ground state &f, has been removed from the spec-
trum. The fundamental difference betwedénandV, is that
the latter has a repulsive singular core at short distances,

V2""V0+

r r

V. DISCUSSION AND CONCLUSIONS
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