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eAbstra
t: First a quadrati
 programming problem with positive de�nite Hessian and bound
onstraints is solved, using a Lagrange multiplier approa
h. Then a trust region methodfor non-linear optimization with box 
onstraints is developed, where the trust region is ahyperbox, in 
ontrast with the usual hypersphere or hyperellipsoid shapes. The resultingsubproblem is solved using our above mentioned QP te
hnique.Keywords: Quadrati
 programming,Mathemati
s Subje
t Classi�
ation: 90C20, 90C30, 90C531 Introdu
tionNon-linear optimization plays an important role in many �elds of s
ien
e and engineering, in theindustry, as well as in a plethora of pra
ti
al problems. Frequently the optimization parametersare 
onstrained inside a range imposed by the nature of the problem at hand. Developing methodsfor bound 
onstrained optimization is hen
e quite useful. The most eÆ
ient optimization methodsare based on Newton's method where a quadrati
 model is adopted as a lo
al approximation tothe obje
tive fun
tion. Two general approa
hes have been followed. One uses a line{sear
h alonga properly sele
ted des
ent dire
tion, while the other permits steps of restri
ted size in an e�ortto maintain the reliability of the quadrati
 approximation. The approa
hes in this se
ond 
lass,bear the generi
 name Trust-Region te
hniques. In this arti
le we will deal with a method of thattype. We develop a method that adopts a hyperbox geometry for the trust region. This has theobvious advantage of the linearity of the trust region subproblem 
onstraints. In addition allowse�ortless adaptation to bound 
onstrained optimization problems. We analyze the approa
h forthe bound-
onstrained quadrati
 programming in se
tion 3, and we present an algorithmi
 solutionin se
tion 3.1. In se
tion 4, we embed this QP te
hnique in the general setting of the trust regionapproa
h, for both un
onstrained and bound{
onstrained problems.2 Trust Region MethodsTrust region methods fall in the 
ategory of sequential quadrati
 programming. The algorithms inthis 
lass are iterative pro
edures in whi
h the obje
tive fun
tion f(x) is represented by a quadrati
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2model inside a suitable neighborhood (the trust region) of the 
urrent iterate, as implied by theTaylor series expansion. This lo
al model of f(x) at the kth iteration 
an be written as:f(xk + s) � mk(s) = f(xk) + sT g(k) + 12sTB(k)s (1)where g(k) = rf(x(k)) and B(k) is a symmetri
 approximation to r2f(x(k)).The trust region may be de�ned by:T(k) = fx 2 <n j jjx� x(k)jj � �(k)g (2)It is obvious that di�erent 
hoi
es for the norm lead to di�erent trust region shapes. The Eu
lideannorm jj � jj2, 
orresponds to a hypershpere, while the jj � jj1 norm de�nes a hyperbox.Given the model and the trust region, we seek a step s(k) with jjs(k)jj � �(k), su
h that themodel is suÆ
iently redu
ed in value. Using this step we 
ompare the redu
tion in the model tothat in the obje
tive fun
tion. If they agree to a 
ertain extend, the step is a

epted and the trustregion is either expanded or remains the same. Otherwise the step is reje
ted and the trust regionis 
ontra
ted. The basi
 trust region algorithm is sket
hed in Alg. 1Algorithm 1 Basi
 trust regionS0: Pi
k the initial point and trust region parameter x0 and �0, and set k = 0.S1: Constru
t a quadrati
 model:m(k)(s) � f(x(k) + s)S2: Cal
ulate s(k) with jjs(k)jj � �(k), so as to suÆ
iently redu
e m(k).S3: Compute the ratio of a
tual to expe
ted redu
tion, r(k) = f(x(k))�f(x(k)+s(k))m(k)(0)�m(k)(s(k)) . This value willdetermine if the step will be a

epted or not and the update for �(k).S4: In
rement k  k + 1 and repeat from S1.3 Bound-
onstrained QPLet x; d 2 RN and B a symmetri
, positive de�nite N �N matrix and I = f1; 2; � � � ; Ng. Considerthen the QP problem: minx 12xTBx+ xT d; subje
t to: ai � xi � bi;8i 2 I (3)We follow the Lagrange multipliers line and we 
onstru
t the Lagrangian:L(x; �; �) = 12xTBx+ xT d� �T (x� a)� �T (b� x) (4)The KKT ne
essary 
onditions at the minimum x�; ��; �� require that:Bx� + d� �� + �� = 0��i � 0; ��i � 0; 8i 2 I��i (x�i � ai) = 0; 8i 2 I (5)��i (bi � x�i ) = 0; 8i 2 Ix�i 2 [ai; bi℄; 8i 2 I



3A solution to the above system of equations (5), 
an be obtained through an a
tive set strategydes
ribed in detail in the following se
tion 3.1.3.1 The BOXCQP algorithmOur QP algorithm is sket
hed in Alg 2:Algorithm 2 BOXCQPS0: Initially set: k = 0, �(0) = �(0) = 0 and x(0) = �B�1d.If x(0) is feasible, Stop, the solution is: x� = x(0).At iteration k, the quantities x(k); �(k); �(k) are available.S1: De�ne the sets: L(k) = fi : x(k)i < ai; or x(k)i = ai and �(k)i � 0gU (k) = fi : x(k)i > bi; or x(k)i = bi and �(k)i � 0gS(k) = fi : ai < x(k)i < bi; or x(k)i = ai and �(k)i < 0;or x(k)i = bi and �(k)i < 0gNote that L(k) [ U (k) [ S(k) = IS2: Set: x(k+1)i = ai; �(k+1)i = 0; 8i 2 L(k)x(k+1)i = bi; �(k+1)i = 0; 8i 2 U (k)�(k+1)i = 0; �(k+1)i = 0; 8i 2 S(k)S3: Solve: Bx(k+1) + d = �(k+1) � �(k+1)for the N unknowns: x(k+1)i ; 8i 2 S(k)�(k+1)i ; 8i 2 U (k)�(k+1)i ; 8i 2 L(k)S4: Che
k if the new point is a solution and de
ide to either stop or iterate.If (x(k+1)i 2 [ai; bi℄ 8i 2 S(k) and �(k+1)i � 0; 8i 2 U (k)and �(k+1)i � 0; 8i 2 L(k)) ThenStop, the solution is: x� = x(k+1).Else set k  k + 1 and iterate from S1Endif



4 The solution of the linear system in step 3 above, needs further 
onsideration. Let us rewritethe system in a 
omponentwise fashion.Xj2I Bijx(k+1)j + di = �(k+1)i � �(k+1)i ; 8i 2 I (6)Sin
e 8i 2 S(k) we have that �(k+1)i = �(k+1)i = 0, we 
an 
al
ulate x(k+1)i ; 8i 2 S(k) by splitingthe sum in eq. (6) and taking into a

ount step 2 of the algorithm, i.e.:Xj2S(k) Bijx(k+1)j = � Xj2L(k) Bijaj � Xj2U(k) Bijbj � di; 8i 2 S(k) (7)The submatrix Bij ; with i; j 2 S(k) is positive de�nite as 
an be readily veri�ed, given that thefull matrix B is. The 
al
ulation of �(k+1)i ; 8i 2 L(k) and of �(k+1)i ; 8i 2 U (k) is straightforwardand is given by: �(k+1)i =Xj2I Bijx(k+1)j + di; 8i 2 L(k) (8)�(k+1)i = �Xj2I Bijx(k+1)j � di; 8i 2 U (k) (9)3.2 Experiments with QPWe are 
urrently under the pro
ess to present an elegant proof for the 
onvergen
e rate of theBOXCQP algorithm, although we have very strong experimental results of its eÆ
ien
y. It is ourstrong belief that if matrix B is suÆ
iently positive de�nite our algorithm will 
onverge to thesolution.We have 
onta
ted ... types of experiments in order to measure the speed of our BOXCQPalgorithm: Random quadrati
 problems, ....4 Re
tangular trust region approa
hThe basi
 motivation under the development of an robust solver for positive de�nite quadrati
problems with simple bounds, was to solve exa
tly the quadrati
 subproblem that arises in a trustregion framework using in�nite norm jj � jj1. In this 
ase the trust region in whi
h we believe thatthe quadrati
 model \�ts" the obje
tive fun
tion, is a hyperbox.4.1 Model and norm de�nitionThe problem that we try to solve is: minx f(x)subje
t to: li � xi � ui (10)using an in�nite norm trust region method. Let x(k) the estimation of the solution at the k-thstep of the algorithm. In ea
h step we 
onstru
t a quadrati
 model of f , and �nd a step s(k) thatsolves: mins m(x(k) + s) = f (k) + g(k)Th+ 12sTB(k)ssubje
t to: jjsjj1 � �(k) and li � x(k)i � si � ui + x(k)i (11)



5whi
h is equivalent to: mins m(s) = g(k)Th+ 12sTB(k)ssubje
t to: max(li � x(k)i ;��(k)) � si � min(ui � x(k)i ;�(k)) (12)where f (k) = f(x(k)); g(k) = rf(x(k)); B(k) is a positive de�nite approximation of the hessianmatrix. We use the BFGS formula to update B(k) whenever we move to a new point x(k+1). Thusin S2 of the basi
 algorithm we have to solve a bound 
onstrained quadrati
 problem with positivede�nite hessian. 4.2 Trust region updateWe have in
orporated a simple trust radius update, the same that we use in the Merlin [5℄ imple-mentation for the double dogleg method. The update algorithm (in
orporated in S3 of the basi
algorithm) is des
ribed in ...:Algorithm 3 Trust region parameter � updateS1: Cal
ulate the ratio of the a
tual to the expe
ted redu
tion r(k) = (f (k)�f (k+1))=m(k)(x(k))�q(k)(x(k) + s(k)) where f (k) stands for f(x(k)) and f (k+1) for f(x(k) + s(k))S2: A

ept or reje
t the trial point a

ording toIf r(k) � 0 thenx(k+1) = x(k); f (k+1) = f (k+1)Else x(k+1) = x(k) + s(k)EndifS3: If r(k) < 0:25 then�(k+1) = jjs(k)jj=4Else if r(k) > 0:75 and jjs(k)jj = �(k) then�(k+1) = 2�(k)Else �(k+1) = �(k)Endif Referen
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