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Abstract: First a quadratic programming problem with positive definite Hessian and bound
constraints is solved, using a Lagrange multiplier approach. Then a trust region method
for non-linear optimization with box constraints is developed, where the trust region is a
hyperbox, in contrast with the usual hypersphere or hyperellipsoid shapes. The resulting
subproblem is solved using our above mentioned QP technique.
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1 Introduction

Non-linear optimization plays an important role in many fields of science and engineering, in the
industry, as well as in a plethora of practical problems. Frequently the optimization parameters
are constrained inside a range imposed by the nature of the problem at hand. Developing methods
for bound constrained optimization is hence quite useful. The most efficient optimization methods
are based on Newton’s method where a quadratic model is adopted as a local approximation to
the objective function. Two general approaches have been followed. One uses a line—search along
a properly selected descent direction, while the other permits steps of restricted size in an effort
to maintain the reliability of the quadratic approximation. The approaches in this second class,
bear the generic name Trust-Region techniques. In this article we will deal with a method of that
type. We develop a method that adopts a hyperbox geometry for the trust region. This has the
obvious advantage of the linearity of the trust region subproblem constraints. In addition allows
effortless adaptation to bound constrained optimization problems. We analyze the approach for
the bound-constrained quadratic programming in section 3, and we present an algorithmic solution
in section 3.1. In section 4, we embed this QP technique in the general setting of the trust region
approach, for both unconstrained and bound—constrained problems.

2 Trust Region Methods

Trust region methods fall in the category of sequential quadratic programming. The algorithms in
this class are iterative procedures in which the objective function f(z) is represented by a quadratic
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model inside a suitable neighborhood (the trust region) of the current iterate, as implied by the
Taylor series expansion. This local model of f(z) at the k' iteration can be written as:

f(zF +s) mmF(s) = f(z*) + sTg® + %STB(’“)S (1)

where ¢g(*) = Vf(z®) and B%®) is a symmetric approximation to V2 f(z(*)).
The trust region may be defined by:

TH = {z e R" | [lo — 2™ < AW} (2)

It is obvious that different choices for the norm lead to different trust region shapes. The Euclidean
norm || - ||2, corresponds to a hypershpere, while the || - ||~ norm defines a hyperbox.

Given the model and the trust region, we seek a step s with ||s(*)|| < A®), such that the
model is sufficiently reduced in value. Using this step we compare the reduction in the model to
that in the objective function. If they agree to a certain extend, the step is accepted and the trust
region is either expanded or remains the same. Otherwise the step is rejected and the trust region
is contracted. The basic trust region algorithm is sketched in Alg. 1

Algorithm 1 Basic trust region

S0: Pick the initial point and trust region parameter zy and Ay, and set k = 0.

S1: Construct a quadratic model:
m®) (s) = f(z® + )

S2: Calculate s'*) with ||s(®)]] < A®) ] 50 as to sufficiently reduce m(*).

— f@E")—f@®+s™)

determine if the step will be accepted or not and the update for A,

S3: Compute the ratio of actual to expected reduction, r*) . This value will

S4: Increment k < k + 1 and repeat from S1.

3 Bound-constrained QP

Let z,d € RN and B a symmetric, positive definite N x N matrix and I = {1,2,---, N}. Consider
then the QP problem:

1
min §xTBa: + 21d, subject to: a; < x; <b;,Viel (3)
We follow the Lagrange multipliers line and we construct the Lagrangian:
1
Lz, \p) = §xTBac +2ld = \T(z —a) — pr'(b—2) (4)

The KKT necessary conditions at the minimum x*, \*, u* require that:
Bzr*+d—X+u*=0
A >0, pr>0,Viel
Az —a;)) =0, Viel (5)
wi(b;—x;)=0,Viel
z; € a;,b], Viel



A solution to the above system of equations (5), can be obtained through an active set strategy
described in detail in the following section 3.1.

3.1 The BOXCQP algorithm

Our QP algorithm is sketched in Alg 2:

Algorithm 2 BOXCQP

SO0: Initially set: £ =0, A0 = ,u(o) =0and z(¥ = —B 4.
If 2 is feasible, Stop, the solution is: z* = 2,
At iteration k, the quantities z(*), AX(*)| (%) are available.

S1: Define the sets:
L™ = iz
vk = iz
sk = {i:1a; < 20 < b;, or a:Ek) = a; and )\Ek) <0,

i

or xl(k) = b; and ,ugk) < 0}

(k) o a;, or xik) = a; and /\gk) >0}

Ek) > b;, or xik) =b; and ugk) >0}

Note that LW yUu® y sk =1

S2: Set:
mgkﬂ) = ay, ,ung) =0, Vie LW
2 = b, A =0, vieu®
AR — g B =0, vie 5
S3: Solve:

Bl'(k+1) + d = )\(k—‘,—l) _ N(k+1)
for the N unknowns:

2Py e s
uF i e U
MY e L)

S4: Check if the new point is a solution and decide to either stop or iterate.

1f (2™ € [a;,b;] Vi € S® and pF >0, vie UK
and \**") >0, vi € L¥)) Then
Stop, the solution is: z* = z(*+1).
Else
set k < k + 1 and iterate from S1
Endif




The solution of the linear system in step 3 above, needs further consideration. Let us rewrite
the system in a componentwise fashion.

3 Byl 4+ d =AY - WY vie 1 (6)
jerl

Since Vi € S® we have that A" = ,Uz('k“) = 0, we can calculate ar(k+1), Vi € S*) by spliting

i i
the sum in eq. (6) and taking into account step 2 of the algorithm, i.e.:

Z Bij$§k+1) = — Z Bijaj — Z Bijbj — di, Vi € S(k) (7)

jesk) jeEL®) jeEU®)

The submatrix B;;, with 4,5 € Sk g positive definite as can be readily verified, given that the

full matrix B is. The calculation of /\Z(k+1), Vi € L'® and of ugk"_l), Vi € U is straightforward
and is given by:

A = S™ Byl o a;, vie LW (8)
Jer
pd ) = =N Byl — 4y, vie U® (9)
Jer

3.2 Experiments with QP

We are currently under the process to present an elegant proof for the convergence rate of the
BOXCQP algorithm, although we have very strong experimental results of its efficiency. It is our
strong belief that if matrix B is sufficiently positive definite our algorithm will converge to the
solution.

We have contacted ... types of experiments in order to measure the speed of our BOXCQP
algorithm: Random quadratic problems, ....

4 Rectangular trust region approach

The basic motivation under the development of an robust solver for positive definite quadratic
problems with simple bounds, was to solve exactly the quadratic subproblem that arises in a trust
region framework using infinite norm || - ||o.. In this case the trust region in which we believe that
the quadratic model “fits” the objective function, is a hyperbox.

4.1 Model and norm definition
The problem that we try to solve is:
min f(z)
X
subject to: I; < z; < uy (10)

using an infinite norm trust region method. Let z(*) the estimation of the solution at the k-th
step of the algorithm. In each step we construct a quadratic model of f, and find a step s(*) that
solves:

1
min m(z® + 5) = f® 4 ¢g®Tp 4 §STB(k)S

subject to: ||s]]ec < A® and I; — a:l(k) <si <wui+ argk) (11)



which is equivalent to:

min m(s) = g(k) h + TB(k)
subject to: max(l; — xgk), —AR) S s; < min(u; — acgk),A(k)) (12)

where f*) = f(z®)), ¢g®) = Vf(2®), B* is a positive definite approximation of the hessian
matrix. We use the BFGS formula to update B*) whenever we move to a new point z**%). Thus
in S2 of the basic algorithm we have to solve a bound constrained quadratic problem with positive
definite hessian.

4.2 Trust region update

We have incorporated a simple trust radius update, the same that we use in the Merlin [5] imple-
mentation for the double dogleg method. The update algorithm (incorporated in S3 of the basic
algorithm) is described in ...:

Algorithm 3 Trust region parameter A update

S1: Calculate the ratio of the actual to the expected reduction r(¥) = (f( f(’“+1 )/m®) (k) —
P (™ + 5(F)) where f*) stands for f(z(*)) and f*+1 for f(ac( ) (k)

S2: Accept or reject the trial point according to

If r*) <0 then

gk = g(k) | p(kt1) — ¢(k+1)
Else

g+ — (k) 4 g(k)
Endif

S3: If r®) < 0.25 then
AU+ = ||5() || /4
Else if ) > 0.75 and ||s®®)|| = A®) then
AE+L) — 9 A (k)
Else
Ak+1) — A (k)
Endif
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