MinFinder: Locating all the local minima of a
function

loannis G. Tsoulos, Isaac E. Lagaris*

Department of Computer Science, University of loannina,
P.O. Box 1186, Ioannina 45110 - GREECE

Abstract

A new stochastic clustering algorithm is introduced that aims to locate
all the local minima of a multidimensional continuous and differentiable
function inside a bounded domain. The accompanying software (Min-
Finder) is written in ANSI C++. However, the user may code his objec-
tive function either in C4++, C or Fortran77. We compare the performance
of this new method to the performance of Multistart and Topographical
Multilevel Single Linkage Clustering on a set of benchmark problems.

PACS:02.60.-x ; 02.60.Pn ; 07.05.Kf; 02.70.Lq

Keywords: Global optimization, stochastic methods, Monte Carlo, clustering,
region of attraction.

PROGRAM SUMMARY

Title of program: MinFinder
Catalogue identifier:

Program available from: CPC Program Library, Queen’s University of Belfast,
N. Ireland.

Computer for which the program is designed and others on which it has been
tested: The tool is designed to be portable in all systems running the GNU
C++ compiler.

Installation: University of Ioannina, Greece.
Programming language used: GNU-C++, GNU-C, GNU Fortran - 77.

Memory required to execute with typical data: 200KB.

*Corresponding author e-mail: lagaris@cs.uoi.gr

No. of bits in a word: 32

No. of processors used: 1

Has the code been vectorised or parallelized?: No.

No. of bytes in distributed program,including test data etc.: 300 Kbytes.
Distribution format: gzipped tar file.

Keywords: Global optimization, stochastic methods, Monte Carlo, clustering,
region of attraction.

Nature of physical problem: A multitude of problems in science and
engineering are often reduced to minimizing a function of many variables.
There are instances that a local optimum does not correspond to the desired
physical solution and hence the search for a better solution is required. Local
optimization techniques can be trapped in any local minimum. Global
optimization is then the appropriate tool. For example, solving a non - linear
system of equations via optimization, employing a “least squares” type of
objective, one may encounter many local minima that do not correspond to
solutions, i.e. they are far from zero.

Typical running time: Depending on the objective function.

LONG WRITE UP

1 Introduction

The task of locating all the local minima of a multidimensional continuous
differentiable function f(z):S C R™ — R may be defined as:

Find all 27 € S C R" that satisfy:
x = argmiélf(x),si =Sn{x, |z —z]| <€}
TES;

Here S is a hyper box defined as:
S = [al,b1] &® [a2;b2] &K ... [an;bn]

This problem appears frequently as a subproblem in a variety of scientific appli-
cations. Among the several methods employed to treat this problem, stochastic
methods seem to be the most popular, most probably due to both their effec-
tiveness and implementation simplicity. An important subclass of stochastic
methods are the so called clustering techniques, pioneered by Becker and Lago
[1], Torn [2], Boender et al. [3], Rinnooy Kan and Timmer [4, 5]. Clustering
techniques are based on the “multistart” algorithm and their goal is to limit
the number of local search applications. A cluster is defined as a set of points

that are believed to belong to the region of attraction of the same minimum,
and hence only one local search is (optimally) required to locate it. The region
of attraction of a local minimum z* is defined as:

A@*)={z:2€ SCR", L(z)=2"}

where L(z) is the point where the local search procedure L terminates when
started at point x. Here L is supposed to be a deterministic local optimization
method such as BFGS [8], Steepest Descent, Modified Newton etc. The present
work is a clustering technique based on the “Topographical Multilevel Single
Linkage” (TMLSL) of Ali and Storey [6]. The modifications we present are
important and render the technique significantly more efficient.

In section 2 we present the proposed algorithm and in section 3 we present
the results of numerical experiments, along with our conclusions. In section 4 we
present the documentation of the related software, describing its distribution,
installation and use. In the appendix we list the test functions employed in our
experiments for evaluating the performance of the proposed scheme.

2 Description of the algorithm

2.1 Steps of the algorithm

In the following by X* we denote the set of the local minima collected so far.
Initially X* = (). The steps of the proposed algorithm are as:

Checking Step:
e Set V =0.
e Set T as the set of N points sampled from the Double Box procedure.

e Forall x € T do

— Check if x is a valid starting point (validated by a procedure described
later) , and if so add it to V.

e Endforall
Enrichment Step:
o If % < % Then

— N = min (N + 1—]\8, NMAX)7 where NMAX is a predefined upper limit
for the number of samples in each generation. This step prevents the
algorithm from performing an insufficient exploration of the search
space. The typical value for this parameter is NMAX=100.

e Endif

Main Step:
e Forall x €V do

— If z is considered as start point (the validation procedure is once
more performed, because a point that was considered as a start point
earlier may no longer be due to the presence of new local minima)
Then

% Start a local search y = L(x).
x Compute the typical distance r; using equation (1).
x If y ¢ X* Then
- Set X*=X* U y.
* Endif
— Endif

e Endforall

A point z is to be considered as start point if none of the following conditions
holds:

e There is an already located minimum 2z that satisfies the conditions
1. (z—2)T(Vf(z) = Vf(2)) >0.
2. |z — 2| <min, j iz |2 — 25|, 2z € X*, zj € X*.
e 1z is near to another point y € V that satisfies the conditions
1. |z —y| <.
2. (z—y)"(Vf(z) - V() >0.

The proposed algorithm is based on three key elements: the typical distance,
the gradient criterion and the Double Box stopping rule. Their description is
layed out in the following subsections.

2.2 Typical distance

A clustering procedure forms clusters of points by measuring the distance of
a candidate point from the estimated center of the cluster. This distance is
checked against a threshold and a decision is made accordingly. The algorithm
uses a typical distance defined by:

1 M
r=ap o lei— L) 1)

where z; are starting - points for the local search procedure L, and M is the
number of the performed local searches. The main idea behind equation (1) is

that after a number of iterations and a number of local searches the quantity
ry will be a reasonable approximation for the mean radius of the regions of
attraction. To see this note that if we denote by M; the number of times that
the local search procedure discovered the minimizer x7, then a basin radius may
be defined as:

M;

1
RZ:M;

where { (]), ji=1,. Ml} ={z;, i=1,..., M} N A(z}),ie L (xl(j)) = xj.
Since by definition M = >7,”, M;, where w is the number of local minima
discovered so far, a mean basin radius may be defined as:

@) _ =

(2)

w M

<R>= Z_Rl ZZ

ll]l

©) l'*

(3)

Comparing egs. (1), (2) and (3), it follows that r; =< R >.

2.3 Gradient criterion

The value of the objective function f(z) at a point in the neighborhood of a
local minimum z*, can be estimated as:

f@) = @) + 5 (o a*)" B (2~) 0

where B* is the Hessian matrix at the minimum z*. By applying the gradient
operator in each part of the equation (4) we obtain:

Vi(z) =B (z —2%) (5)

In the same way for any other point y, in the neighborhood of a local minimum
¥, we have:

Vf(y) ~B*(y—z") (6)

By subtracting (6) from (5) and by multiplying from the left with (z —y)” we
obtain:

(@ —y)" (Vf(2) = VI@) = (@—y) B (z—y)>0 (7)

(since B* is positive definite).

2.4 Double Box stopping rule

The most widely used stopping rule is that developed by Rinnooy Kan and
Timmer [5], where the algorithm stops iterating if
w(M —1) 1

M7w72<w+§ (8)

M being the number of total sample points (we consider uniform sampling) and
w the number of the located so far. The relation (8) may be rewritten as:

M > 2w® + 3w + 2 9)

which means that in order to stop iterating the number of sample points must
be greater than the square of the located local minima. This is undesirable for
functions with many local minima and a more effective stopping rule must be
employed. In the proposed method we use a termination rule that estimates
the uncovered portion of the search space. A relative measure for this may be
given by:

~
Il
|
Ms
3
>

(10)

i=1
where w is the number of the discovered so far local minima and m(S) is the
Lebesgue measure of S. The quantity Tn((’zi)) may be approximated by the frac-
tion % where T; is the sum of local searches that have ended up at the local
minimum «, plus the sample points that have been allocated to the cluster cen-
tered at =}, and T is the total number of sample points. Hence an approximation

for U may be given by:

. Y T
U:U:1—Z% (11)
i=1

Unfortunately, equation (11) always yields U = 0 and hence the uncovered space
can not be estimated with the above relation. However, a larger box S5, that
contains S, is constructed in a way such that m (S2) = 2 x m(S). A unique
(fake) local minimum is considered to be contained in Ay = S3 — S with measure
m (Ao) = m(S). The uncovered portion of the search space is now given by:

U—=1— Picom (Ai) —q_ m (Ao) - Sieam(A) 1 3T m(A) (12)

m(Sg) m(Sg) m(Sg) - 2 m(Sg)

The quantity ZE?;; is approximated again by the fraction %, T being the total

number of sample points in S5 and hence:

S

At every iteration we sample points from S5 until we have collected N points
belonging to S. After k iterations the total number of sample points M} and
the quantity

U~U=

N =

(Sk = — (14)

has an expectation value (assuming that dy is i.i.d.)

k
1
0 >p= — 0; 1
<>y k:; (15)

that asymptotically tends to nT((és;)) = % The variance is given by

02(8) =< 0% > — <6 >3 (16)

and tends to zero as k — oo. This is a smoother quantity than the expectation
value and better suited for the following termination procedure:

1. Initially set a = 0 and k£ = 0.

2. Sample from S5 uniformly, until N points fall in S.
Calculate the quantity d, = X—Z

Calculate the expectation value of dy.

Calculate the deviation o(9).

Perform a step of the MinFinder algorithm (described in subsection 2.1).

A T o

If one or more new minima are found, set a = po?(§) and repeat from step

2.

8. If 02(8) < a, TERMINATE, otherwise repeat from step 2.

The parameter p is in the range (0,1). For small values of p (p — 0) the algo-
rithm searches the area exhaustively, while for p — 1 the algorithm terminates
earlier, but perhaps prematurely. As a compromise between exhaustive and
speed search, we suggest the value of p = 0.5.

3 Experimental results

We compared the new method against Multistart (a description may be found
in [11, 12]) and Topographical Multilevel Single Linkage [6]. Other methods
that one may consider, can be traced in [14, 15] for Simulated Annealing and
in [16, 17] for Tabu Search. Simulated Annealing aims in discovering one global
minimum only. The hybrid method [17] that combines Simulated Annealing,
Tabu Search and a descent method is designed to discover all the global min-
ima and some “important” local minima as well. We have used the Double
Box stopping rule in all methods. All experiments have been repeated 50 times
with different random number generator seed. The initial sample size was set to
20. In the following tables the columns “PROBLEM”, “MINIMA”, “FOUND”,
“FEVALS”, “GEVALS” and “TIME” denote the name of the objective func-
tion, the known number of local minima, the average number of the discovered
local minima, the average number of function evaluations performed, the av-
erage number of the gradient evaluations and the average CPU time. All the
experiments were run on an AMD ATHLON 2400+ with 256 MB RAM running
Slackware Linux v9.1. The local search procedure used in all methods was a
BFGS implementation due to Powell [7].

Table 1: Multistart results

| PROBLEM | MINIMA | FOUND | FEVALS | GEVALS || TIME |
CAMEL 6 6 11138 10741 0.04
RASTRIGIN 49 49 17714 16989 0.06
SHUBERT 400 400 557668 535368 6.44
GRIEWANK2 529 529 1697081 1646952 20.78
HANSEN 527 527 586090 563131 8.71
GKLS(3,60) 60 59 781378 691787 22.98
GUILIN(5,50) 50 50 195392 190566 1.76
GUILIN(10,50) 50 50 324645 318989 6.71
BRANIN 3 3 7488 7107 0.04
GOLDSTEIN 4 4 15951 15570 0.08
SHEKEL5 5 5 25930 25431 0.75
SHEKEL7 7 7 28946 28382 1.11
SHEKEL10 10 10 30808 30175 1.09
HARTMAN3 3 3 11467 11086 0.14
HARTMANG 2 2 16145 15764 0.52
Table 2: TMLSL results
| PROBLEM | MINIMA | FOUND | FEVALS | GEVALS || TIME |
CAMEL 6 6 3486 2643 0.03
RASTRIGIN 49 49 23809 12195 0.78
SHUBERT 400 400 337476 56597 127.47
GRIEWANK?2 529 528 2233048 1840673 || 251.57
HANSEN 527 527 838554 130642 451.38
GKLS(3,60) 60 56 880641 357247 53.31
GUILIN(5,50) 50 50 220678 201519 3.21
GUILIN(10,50) 50 50 426882 401254 10.57
BRANIN 3 3 1036 631 0.01
GOLDSTEIN 4 4 4647 3871 0.04
SHEKEL5 5 5 7554 6366 0.23
SHEKEL7 7 6 11546 9936 0.43
SHEKEL10 10 9 18649 15786 0.65
HARTMAN3 3 3 1837 1559 0.03
HARTMANG 2 2 860 621 0.03

Table 3: Minfinder results

[PROBLEM | MINIMA [FOUND | FEVALS | GEVALS [TIME |
CAMEL 6 6 1598 2187 0.02
RASTRIGIN 49 49 1723 2975 0.08
SHUBERT 400 400 17404 | 41849 || 7.07
GRIEWANK?2 529 520 | 1035094 | 1190595 | 80.16
HANSEN 527 527 60916 | 94382 || 15.79
GKLS(3,60) 60 56 169280 | 297160 | 13.89
GUILIN(5,50) 50 50 84675 | 88lll 1.21
GUILIN(10,50) 50 50 173186 | 179397 | 4.40
BRANIN 3 3 493 604 0.01
GOLDSTEIN 4 4 2197 2364 0.02
SHEKELS5 5 5 7144 7365 0.25
SHEKEL? 7 7 17125 17377 || 0.75
SHEKEILL(10 10 21551 21661 || 0.90
HARTMAN3 3 3 1581 1737 0.03
HARTMANG 2 2 1090 1194 0.05

In tables 1, 2 and 3 we list the experimental results from the methods Mul-
tistart, TMLSL and Minfinder correspondingly. The results indicate that the
proposed method is capable of finding almost all the minima of an objective
function with less effort than other stochastic methods such as Multistart and
TMLSL. The provided software has a very simple installation procedure and it

can be easily installed in any UNIX operating system equipped with any ANSI
C++ compiler.

4 Software documentation

4.1 Distribution
The package is distributed in a tar.gz file named MinFinder.tar.gz and un-

der UNIX systems the user must issue the following commands to extract the
associated files:

1. gunzip MinFinder.tar.gz

2. tar xfv MinFinder.tar
These steps create a directory named MinFinder with the following contents:

1. bin: A directory which is initially empty. After compilation of the pack-
age, it will contain the executable make_program.

4.2

doc: This directory contains the documentation of the package (this file)
in different formats: A IyX file, A ITEX file and a PostScript file.

examples: A directory that contains the test functions used in this article,
written in ANSI C++ and the Fortran77 version of the Six Hump Camel
function.

include: A directory which contains the header files for all the classes of
the package.

src: A directory containing the source files of the package.

Makefile: The input file to the make utility in order to build the tool.
Usually, the user does not need to change this file.

Makefile.inc: The file that contains some configuration parameters, such
as the name of the C++4 compiler etc. The user must edit and change this
file before installation.

Installation

The following steps are required in order to build the tool:

1.
2.
3.

4.

Uncompress the tool as described in the previous section.
cd MinFinder

Edit the file Makefile.inc and change (if needed) the five configuration
parameters.

Type make.

The five parameters in Makefile.inc are the following:

1.

CXX: It is the most important parameter. It specifies the name of the
C++ compiler. In most systems running the GNU C++ compiler this
parameter must be set to g++.

. CC: If the user written programs are in C, set this parameter to the name

of the C compiler. Usually, for the GNU compiler suite, this parameter is
set to gcc.

F77: If the user written programs are in Fortran 77, set this parameter
to the name of the Fortran 77 compiler. For the GNU compiler suite a
usual value for this parameter is g77.

F77FLAGS: The compiler GNU FORTRAN 77 (g77) appends an under-
score to the name of all subroutines and functions after the compilation
of a Fortran source file. In order to prevent this from happening we can
pass some flags to the compiler. Normally, this parameter must be set to
-fno-underscoring.

10

5. ROOTDIR: Is the location of the MinFinder directory. It is critical for
the system that this parameter is set correctly. In most systems, it is the
only parameter which must be changed.

4.3 User written subprograms

In example 1 we see the template of the objective function in the C programming
language. The same scheme is used also in C++4, but the code has the line

extern ‘‘C’’ {

before the functions and the line

}

after them, in order to prevent the compiler from generating symbols that will
not cause problem to the linking process. The template for Fortran 77 is given
in example 2. The symbol d denotes the dimension of the objective function.
The meaning of the functions are the following:

1. getdimension(): It returns the dimension of the objective function.

2. getleftmargin(left): It fills the double precision array left with the left
margins of the objective function.

3. getrightmargin(right): It fills the double precision array right with the
right margins of the objective function.

4. funmin(x): It returns the value of the objective function evaluated at
point x.

5. granal(x,g): It returns in a double precision array g the gradient of the
objective function at point x.

4.4 The utility make_program

After the compilation of the package, the executable make program will be
placed in the subdirectory bin in the distribution directory. This program
creates the final executable and it takes as its only argument the name of the
file containing the objective function. The utility checks the suffix of the file
and it uses the appropriate compiler. If this suffix is .cc or .c++ or .CC or .cpp,
then it invokes the C++ compiler. If the suffix is .f or .F or .for then it invokes
the Fortran 77 compiler. Finally, if the suffix is .c it invokes the C compiler.

11

4.5 The utility MinFinder

After the compilation of the objective function with the tool make_program
the executable MinFinder is created. This executable can take the following
arguments in the command line:

1. -h: The program prints a help screen to the user and stops.

2. -s size: The integer parameter size is used as the size of the sample.
(i.e. N =size) The default value for this parameter is 20.

3. -0 filename: The string parameter filename specifies a file where all
the discovered local minima will be disposed after the termination of the
program.

4. -p level: The integer parameter level can take only two values: 0 or 1.
If the value is 0, then no output will be sent to the standard output. If the
value is 1, then after each iteration, the algorithm prints a line displaying
the number of iterations, the number of located minima, the total number
of function calls, the total number of gradient calls, the value of o%(§) and
the value of a used in the Double Box stopping rule. The default value
for this parameter is 0.

5. -r seed: The integer parameter seed specifies the seed for the random
number generator. It can assume any integer value.

4.6 A working example
Consider the Six Hump Camel function given by
1
fz) =422 — 2127 + gx? + xyw9 — 43 + 4oy, x € [-5,5)?

with 6 local minima. The implementation of this function in C+4 and in
Fortran77 is shown in examples 3 and 4. Let the file with the C++ code be
named camel.cc and that with the Fortran code camel.f. Let these files be
located in the examples subdirectory. Change to the examples subdirectory
and create the MinFinder executable with the make program command:

../bin/make_program camel.cc
or for the Fortran 77 version
../bin/make program camel.f
The make_program responds:
RUN ./MinFinder IN ORDER TO RUN THE PROBLEM

Run MinFinder by issuing the command:

12

./MinFinder -o camel.out -p 1 -r 7

The resulting output appears as:

iters= 1 minimum= 1 fevals= 24 gevals= 33 delta= 0

iters= 2 minimum= 2 fevals= 89 gevals= 106 delta= 0 stopat=
iters= 3 minimum= 3 fevals= 151 gevals= 178 delta=6.7063e-05 stopat=3.
iters= 4 minimum= 4 fevals= 236 gevals= 272 delta=5.4213e-05 stopat=2.
iters= 5 minimum= 6 fevals= 282 gevals= 331 delta=4.1245e-05 stopat=2.
iters= 6 minimum= 6 fevals= 386 gevals= 446 delta=3.5875e-05 stopat=1.
iters= 7 minimum= 6 fevals= 520 gevals= 591 delta=3.0131e-05 stopat=1.
iters= 8 minimum= 6 fevals= 604 gevals= 688 delta=2.5983e-05 stopat=1.
iters= 9 minimum= 6 fevals= 680 gevals= 778 delta=2.2972e-05 stopat=1.
iters= 10 minimum= 6 fevals= 804 gevals= 916 delta=2.0464e-05 stopat=1.
iters= 11 minimum= 6 fevals= 888 gevals= 1015 delta=1.8794e-05 stopat=1.

All minima are discovered by iteration 5, however the program continued until
iteration 11, because delta, which corresponds to the quantity o(d), at the s5th
iteration was not lower than stopat (the quantity a in our algorithm). The
discovered minima are written to the file camel.out, the contents of which are

listed below:

2

6

-1.703606715 0.7960835687 -0.2154638244
0.0898420131 -0.712656403 -1.031628453

-0.0898420131 0.712656403 -1.031628453

-1.607104753 -0.5686514549 2.10425031
1.703606715 -0.7960835687 -0.2154638244
1.607104753 0.5686514549 2.10425031

In the first line the single entry (number 2) denotes the dimensionality of the
problem. In the second line the single entry (number 6) denotes the number
of the discovered local minima. In each of the following lines there are three
entries. The first two correspond to the parameter values of the minimizer,
while the third to the corresponding value of the objective function.

A. Test functions
We list the test functions used in our experiments, the associated search domains
and the number of the known local minima. These functions are standard test

functions in the area of global optimization and further information about them
can be found in [13] and at the URL:

http://www.imm.dtu.dk/ “km/GlobOpt/testex/testproblems.html.

13

stopat=1.9763e-323

0
3531e-05
7106e-05
0622e-05
7938e-05
7938e-05
7938e-05
7938e-05
7938e-05
7938e-05

Camel

flx) =42t — 2.1at + 2§ + 2129 — 423 + 423, x € [-5,5]? with 6 local minima.

Rastrigin
f(z) = 2% + 2% — cos(18z1) — cos(18z2), = € [—1, 1]? with 49 local minima.

Shubert

flo) = =30 30 j {sin((j + D)a;) + 1} @ € [~10,10]? with 400 local min-
ima.

Griewank?2

F@) =14 5 37 22 — [, <=2 4 ¢ [~100,100]% with 529 loca minima.

Hansen

flo) = S0 yicos[(i— Day +14] 320_y jeos[(j +)z + 4], ¢ € [-10,10]* with
527 local minima.

Gkls

f(z) = Gkls(z,n,w), is a function with w local minima, described in [10],
€ [-1,1]", n € [2,100]. In our experiments we use n = 3 and w = 60.

Guilin Hills

flx) =3+, iy sin (ﬁ), x €[0,1]", ¢; > 0 and k; are positive
ita3;

integers. This function has []}_, k; local minima. In our experiments we use
n = 5,10 and we have arranged the values of k; so that the number of minima
was 50. These cases are entitled as GUILIN(5,50) and GUILIN(10,50) in the
following tables.

Branin

(2 —mzﬁ 520 -6)" +10 (1= g;) cos(z1) + 10 with =5 < a1 <
i)

10 O < x9 < 15. The functlon has 3 minima in the specified range.

GoldStein & Price

1+ (21 +$2+1)2

(19 — 142y + 327 — 14x9 + 62125 + 323)] X
30 + (221 — 312)?

(18 — 32x1 + 1227 4 48wy — 362129 + 2723)]

flx) =

14

The function has 4 local minima in the range [—2, 2]2.

Shekel 5

5

1
@)=~ Z (x—a;)(x—a)T +¢

=1

with z € [0,10]* and

4 4 4 4
1 1 11
a= 8 8 8 8
6 6 6 6
3 7 3 7
and
0.1
0.2
c= 0.2
0.4
0.4

The function has 5 local minima in the specified range.

Shekel 7

7

1
fla) = _Z (x —a;)(z —a)T + ¢

i=1

with z € [0,10]* and

4 4 4 4
1 1 11
8 8 8 8
a= 6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3
and
0.1
0.2
0.2
c= 0.4
0.4
0.6
0.3

The function has 7 local minima in the specified range.

15

Shekel 10

with z € [0,10]* and

N = OO 3O 00 — i~
N — WO -0 00— &

N O 0o UTN WO 0
N OO0 WN WO 0

w
>
w
o>

and
0.1

0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6

Hartman 3

i=1

3
flo)==> ciexp | = > aij (x; — pij)*
j=1

with 2 € [0,1] and

3 10 30
o 0.1 10 35
3 10 30
0.1 10 35
and
1
|12
=l 3
3.2

16

and
0.3689 0.117 0.2673

0.4699 0.4387 0.747
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

The function has 3 minima in the specified range.
Hartman 6

6

flo)==> ciexp | = > aij (x; — pij)°
1

i=1 =
with x € [0,1] and

10 3 17 35 1.7 8
0.06 10 17 01 8 14
3 35 17 10 17 8
17 8 005 10 0.1 14

and

and
0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

| 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
P=1 02348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The function has 2 local minima in the specified range.

17

B. Examples

Example 1: Formulation in C
int getdimension()

{
}

void getleftmargin(double *left)

{
}

void getrightmargin(double *right)
{
¥

double funmin(double *x)

{
}

void granal(double *x,double *g)

{
}

18

Example 2: Formulation in Fortran 77
integer function getdimension()
getdimension = d
end

subroutine getleftmargin(left)
double precision left(d)
end

subroutine getrightmargin(right)
double precision right(d)
end

double precision function funmin(x)
double precision x(d)
end

subroutine granal(x,g)
double precision x(d)
double precision g(d)
end

19

Example 3: Implementation of Camel function in C++.
extern “C”{
int getdimension()

{

return 2;

}

void getleftmargin(double *left)

left[0]=-5.0;
left[1]=-5.0;

}
void getrightmargin(double *right)
right[0]=5.0;
right[1]=5.0;
double funmin(double *x)
double x1=x[0],x2=x[1];
return 4*x1*x1-2.1*x1*x1*x1*x1+
x1*x1*x1*x1%x1%*x1/3.04x1*x2-4*x2*x24+-4*x2*x2*x2*x2;
}
void granal(double *x,double *g)
double x1=x[0],x2=x[1];

g[0]=8*x1-8.4*x1*x1*x1+2*x1*x1*x1*x1*x14x2;
g[1]=x1-8*x2+16*x2*x2*x2;

20

Example 4: Implementation of Camel function in Fortran 77.
integer function getdimension()
getdimension = 2
end

subroutine getleftmargin(left)
double precision left(2)

left(1)=-5.0
left(2)=-5.0
end

subroutine getrightmargin(right)
double precision right(2)
right(1)= 5.0

right(2)= 5.0

end

double precision function funmin(x)

double precision x(2)

double precision x1,x2

x1=x(1)

x2=x(2)

funmin=4*x1*%2-2.1*x1*¥*44+x1**6 /3.0+x1*x2-4*x2¥*24-4*x2**4
end

subroutine granal(x,g)

double precision x(2)

double precision g(2)

double precision x1,x2

x1=x(1)

x2=x(2)
g(1)=8.0*x1-8.4*x1**342*x 1 ***54+x2;
g(2)=x1-8.0%x2+16.0%x2%*3;

end

References

[1] Becker R. W. and Lago G.V, “A global optimization algorithm”, in Pro-
ceedings of the 8" Allerton Conference on Circuits and Systems Theory,

1970.

[2] Torn A. A., “A search clustering approach to global optimization”, in Dixon
L.C.W and Szegd (eds.), Towards Global Optimizations 2, North - Holland,

Amsterdam, 1978.

[3] Boender C.G.E., Rinnooy Kan A.H.G , Timmer G.T and Stougie L., “A
stochastic method for global optimization”, Mathematical Programming

22, pp. 125-140, 1982.

[4] Rinnooy Kan A.H.G. and Timmer G.T., “Stochastic global optimization
methods, Part I: Clustering methods”, Mathematical programming 39, pp.

27-56, 1987.

21

[5]

[11]

[12]

[13]

[16]

[17]

Rinnooy Kan A.H.G. and Timmer G.T., “Stochastic global optimization
methods, Part II: Multi level methods”, Mathematical Programming 39,
pp. 57-78, 1987.

Ali M.M. and Storey C. “Topographical Multilevel Single Linkage”, Journal
of Global Optimization 5, 349-358, 1994.

Powel M. J. D., “A Tolerant Algorithm for Linearly Constrained Optimiza-
tion Calculations”, Mathematical Programming 45 (1989), 547.

Fletcher R., “A new approach to variable metric algorithms”, Computer
Journal 13, 317-322, 1970.

Boender C. G. E., Kan Rinnooy A. H. G, “Bayesian stopping rules for
multistart global optimization methods”, Mathematical Programming 37
(1987), 59-80.

Gaviano M., Ksasov D. E.; Lera D. and Sergeyev, Y. D. Software for gen-
eration of classes of test functions with known local and global minima for
global optimization, ACM Trans. Math. Softw. 29, pp. 469-480, 2003.

Toérn A. and Zilinskas A., Global Optimization, volume 350 of Lecture
Notes in Computer Science, Springer, Heidelberg, 1987.

Dixon L.C.W. and Szegé6. The global optimization: An introduction, in:
Dixon and Szego, eds., Towards Global Optimization 2, North - Holland,
Amsterdam, 1978, pp. 1-15.

Floudas C. A. and Pardalos P.M., Adjiman C., Esposoto W., Giimiis Z.,
Harding S., Klepeis J., Meyer C, Schweiger C., Handbook of Test Problems
in Local and Global Optimization, Kluwer Academic Publishers, Dordrecht,
1999.

Kirkpatrick S., Gelatt C. D. and Vecchi M. P., Optimization by simulated
annealing, Science 220, 671-680 (4), 1983.

Corana A., Marchesi M., Martini C. and Ridella S., Minimizing Multimodal
Functions of Continuous Variables with the “Simulated Annealing” Algo-
rithm, ACM Transactions on Mathematical Software, Vol. 13, pp. 262-280,
1987.

Chelouah R. and Siarry P., Tabu search applied to global optimization,
European Journal of Operational Research 123, pp. 256-270, 2000.

Salhi S. and Queen N.M., A hybrid algorithm for identifying global and lo-
cal minima when optimizing functions with many minima, European Jour-
nal of Operational Research 155, pp. 51-67, 2004.

22

