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Abstract

We study effective approaches for training artificial nénstworks (ANN). We argue that
local optimization methods by themselves are not suitedHat task. In fact we show
that global optimization methods are absolutely neces$ag training is required to be
robust. This is so because the objective function underideration possesses a multitude
of minima while only a few may correspond to acceptable smhstthat generalize well.
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1. INTRODUCTION

The minimization of multimodal functions with numerous &and global minima is a
problem that frequently arises in many scientific applaadi In general the nature of some
applications is such that it is necessary to detect all tbleajlminimizers (e.gcomputation

of Nash equilibria[9] in game theory) or a set of minima with objective functionuain

a specific range énergy values in the molecular conformation problem [6]). Another
interesting application that requires the computation ofarthan one global minimizer is
the computation operiodic orbits of nonlinear mappings[8]. Neural network training is a
problem of similar nature; i.e. the relevant objective fiime possesses a multitude of local

(and possibly global) minima.



Consider the classical data fitting proble@iven M points and associated values
(z5,9:), i« = 1,2,...,M, with z; € R% y; € R, draw a smooth hypersurface that is
optimal in the least square sense.

The traditional way of solving such problems is to assumeramatric model (e.g.

an Atrtificial Neural Network)N (z; p) and adjust the parametessso as to minimize the

deviations, i.e. minimize the “Error”:
M
E(p) =Y _[N(zi;p) — vl 1)
=1
Thus the problem of training an ANN is transformed into arirapation one

min E(p) @)

st.pe SCR"

Unfortunately the terrain modelled by the error function ba extremely rugged and often
has a multitude of local minima. Obviously, a method that nah escape from local
minima has hardly any chance to find a solution to the probMiamust add that smaller
neural networks generalize better, since they avoid ottargfiand this is the reason they are
preferred for both classification and regression tasks. H@rother hand, training smaller
networks is more difficult since the error surface is heamilgged and there exist only a

few good solutions.

2. MULTISTART BASED ALGORITHM IN GLOBAL OPTIMIZATION

It is important to describe in brief the basic framework of altistart based global opti-
mization method. In Multistart, a point is sampled unifoyrfriom the feasible region, and
subsequently a local search is started from it. The weakofettgs algorithm is that the
same local minima may be found over and over again, wastiggsputational resources.
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The“region of attraction” of a local minimum associated with a deterministic local

search procedurg is defined as:

Ai={z €S L(zx) =1} 3)

whereL(z) is the minimizer returned when the local search proceduisestarted at point

x.

Algorithm MA 1 Multistart framework
Initialize: Set k=1

Sampler € S

yr = L(z)

Termination Control: If a stopping rule applies STOP.

Sample: Sampler € S

Main step: If (z ¢ UL A;) Then

y = L(x)

k=k—+1

Ye =Y
Endif

Iterate: Go back to the Termination Control step.

The algorithm described above, returns a¥et {y;} of the recovered local minima. A
lot of research is carried out on reducing the number of tjieslocal search procedure is

applied in a way that minimizes the risk of missing a local immieim.

3. LOCATING MINIMA IN NEURAL NETWORK TRAINING

The main purpose of this work is to demonstrate the need of listaut based global
optimization method for training NNs. In the literature s fve can distinguish three

major classes of methods:

e Local optimization procedures: All methods that attemptfind a local minimum



of the error function E(p). (Gradient descent, conjugate gradient, quasi-Newton

methods, Levenberg-Marquardt)

e Global optimization procedures (single global minimumhe$e methods employ
probabilistic or deterministic strategies, to overcommalaninima and locate a sin-
gle global optimum. (Trajectory methods [1], covering noetb[11], evolutionary

algorithms [10,11], simulated annealing [4,11])

e Global optimization procedures (all global minima): Thesethods use global s-
trategies to locate all the existing global minima. (Ing#rmnethods [12], Particle

swarm [2, 3])

In this section we are going to present real cases in neutafonle training that the

above mentioned procedures will not perform optimally. é\thiat:

e Local minima are often poor solutions to the training proild hus, local optimiza-

tion methods are out of question.

e The various global minima present different interpolatimhavior, i.e they do not

generalize in a similar way.

e There are cases where some local minima generalize bedteatglobal minimum.

We list the two regression problems used to illustrate oumtgo

Problem A: We used{0 evenly distributed points if0), 20] and their corresponding func-
tion values, to construct the training data et = (x;, f(z;)), ¢« = 1,...,40 and

500 points for the test sy, with f(z) = z sin(x)



Problem B: We used40 evenly distributed points if0, 10] and their corresponding func-
tion values, to construct the training data 8 = (z;, f(z;)), i = 1,...,40 and

500 points for the test sefz, with f(z) = z sin(z?).

3.1 Quality of local minima

Consider a feedforward artificial neural network, with s@cdhactivation functions in the
hidden layer. This model can be written as:

Th

N(z;p) = 2103@'—20(103;'—1&6 + psi) 4)

i=1

with o(z) = !

1+e=

where the weight parametesysare numbered as shown in Figure 1.

Figure 1. Neural network: Labelling of parameters

One easily realizes that problem (2) may be solved with aelamgmber of different
values for the parameters.

In order to evaluate the quality of local minima for problemwle optimized the error
function using a multistart-based global optimization ineet [7]. Our goal was to find as
many local minima as possible. Using six nodes in the hiddgarl 2, = 6), we found

more thanl 0,000 minima. In Table 1 we present only a small subset®minima.



Min. pl p2 p3 p4 p5 p6 p7 p8 p9 pl10 pll p12
1 11.93 -626.79 | 0.49 -4.05 400. -0.85 | 6.11 439.16 -0.97 | 15.27 526.32 | 0.26 -3.36
2 13.13 -595.56 | -0.26 3.53 400. 1.00 -15.79 | 504.03 0.82 -5.98 276.26 | -0.56 4.46
3 59.37 -730.46 -0.54 6.04 400. 0.87 -8.98 568.78 0.96 -18.08 501.58 -0.28 4.46
4 60.26 -229.63 0.89 -13.88 99.48 0.37 -1.81 0.00 1.03 -10.39 756.47 0.24 -3.36
5 62.42 -429.90 -0.42 8.15 400. -1.77 12.18 193.51 1.07 -13.74 298.31 -0.41 6.14
6 64.22 -613.04 0.28 -4.57 400. -1.02 19.17 433.43 -0.99 10.17 296.87 0.55 -6.20
7 70.87 -373.12 -0.43 8.59 400. 1.94 -13.30 125.49 1.11 -14.25 222.39 -0.42 6.22
8 80.20 -577.92 | -057 6.44 400. -0.94 | 17.86 406.32 -1.01 | 10.42 303.61 | -0.34 4.89
9 80.31 -286.48 | -0.28 4.87 400. -1.25 | 20.00 0.00 1.29 -9.11 58.09 -0.78 6.04
10 84.20 -628.36 -0.29 4.69 400. 0.90 -14.27 305.83 -1.30 13.07 513.88 -0.09 2.53
11 84.23 -630.99 -0.29 4.72 400. 0.90 -14.21 153.35 1.30 -13.06 750.10 -0.09 2.65
12 85.34 -585.91 | 0.06 -1.95 400. 0.98 -15.53 | 255.16 -1.37 | 1372 478.08 | 0.27 -4.38
13 86.38 -188.04 | 0.98 -15.44 | 0.00 0.08 -0.50 257.18 -1.37 | 1374 386.63 | 0.29 -4.60
14 291.60 -240.72 0.10 -4.30 0.00 0.65 -7.33 0.00 1.08 -16.88 800.00 0.43 -6.11
15 334.71 | -272.36 | -0.25 5.96 400. 1.38 -18.17 | 142.09 -0.60 | 859 0.00 0.25 -5.96
16 353.93 | -270.56 | 0.63 -9.05 400. 1.36 -18.06 | 202.06 0.32 -6.61 324.18 | -19.58 | -20.00
17 353.93 | -270.56 | 0.63 -9.05 400. 1.36 -18.06 | 200.80 -9.01 | -20.00 | 1.26 0.32 -6.61
18 354.72 -253.81 -4.02 -6.56 2.04 0.63 -7.44 0.00 1.10 -17.15 800.00 0.49 -7.00
19 354.85 | -251.78 [ 0.63 -7.45 0.00 -4.27 | -1958 | 0.00 1.10 -17.15 | 800.00 | 0.49 -7.01
20 828.76 -580.81 -18.01 -20 101.91 1.19 -20 -332.60 1.24 -20 800 1.02 -17.15

Table 1: A set o0 selected local minima (Problem A)

We have sorted these solutions in ascending order df{p¢ value. Intuitively we can
assume that the quality of the approximation is inversebpprtional to the Error Function
value achieved for each minimum. This is shown in the Figyret#re we plotd found
solutions. Notice that only the first set of parameters (Smhuil) managed to approximate
the target function accurately.

Consequently the probability that a local search methodwers such a solution, is

rather small considering the large number of existing locaima.

(a) Solution 1 (b) Solution 8

(c) Solution 17 (d) Solution 20

Figure 2: Quality of local minima found.



j | Train Error | Test Error| ||pi — pjll2
1 0.0013 4.38 0.0

2 0.0012 0.28 6246.69
3 0.0014 4.0 7017.74
4 0.0016 0.1 6162.54

Table 2: An example of 4 global minima
3.2 Quality of the global minima

In the past, many researchers used global optimizatiorritiges to search for a single
global minimum. Such strategies perform better than loeahniques, however they do
not take in account the existence of magigbal minima. If this is the case (which is
guite common), multistart based global optimization alpons, that recover all the global
minima of the problem can be used to identify (by means of as&t3 the best parameter
values.

To illustrate this we solved Problem B, using a neural nekwath 15 nodes in the hid-
den layer. Four global minima were recovered, presentealel2. Equivalent solutions
generated by node-permutation were excluded. As can begddly inspecting Table 2,
the four solutions perform quite differently in the test, s@tlding a clear winner (Solution
#4, with test errof.1). In Figure 3 we plot for each point in the test set, the acgucd the

approximation, i.e. the quantity (z;) — N(x;; p)|.

3.3 Finding Multiple Minima vs. Overtraining

Overtraining is a frequently encountered problem in NNnirag. This happens when the
model parameters are extremely well tuned to the training alad interpolate inaccurately
in nearby points.

Such kind of solutions may correspond to global minima ad.v&a it is important to

maintain as candidate solutions global and local minimaels w
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(c) Solution 3 - Accuracy (d) Solution 4 - Accuracy

Figure 3: Quality of local minima found.

Train Error | Test Error| ||p1 — pjl|2
1 1.10E-4 1.7E+5 0.0
2 3.02E-2 0.78 3914.18
3 7.9E-2 0.89 3937.74
4 0.22 2.13 1167.21

Table 3: An example of overtraining.

To illustrate the above, we solved Problem A, using TML anéwaral network consist-
ing of 10 hidden nodes. In Table 3 we present the four best solutiamgfalt is remarkable
that the solution with the lowest error in the training sespitays the worst error in the test
set. The first two solutions are shown in Figure 4. Notice #ngd oscillation near zero, a

characteristic sign of overtraining.

4. CONCLUSIONS

The plethora of local minima inherent in the objective fuoictthat results in the case of
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(a) Solution 1. Overtrained solution-Er-  (b) Solution 2. Quality solution - Error
ror in test set = 169953. Note the behav- intestset=0.78
ior aroundrz =0

Figure 4: An example of overtraining.

neural network training, renders necessary the use of bagtemization methods. Since
generalization is a very important property that can befieeronly a-posteriori (i.e. by us-
ing a test data set), multistart-based methods that reativiiye local (and global minima)

should be preferred.

In this article we presented a framework that can be useddueang robust neural
network training. Almost any multistart-based method maybed since most variations
aim in collecting all the local minima inside the feasiblgin.

The test problems presented here are constructed fordtist purposes, however they

are typical and represent the difficulties of real world peats.
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