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Abstract

We study effective approaches for training artificial neural networks (ANN). We argue that

local optimization methods by themselves are not suited forthat task. In fact we show

that global optimization methods are absolutely necessaryif the training is required to be

robust. This is so because the objective function under consideration possesses a multitude

of minima while only a few may correspond to acceptable solutions that generalize well.
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1. INTRODUCTION

The minimization of multimodal functions with numerous local and global minima is a

problem that frequently arises in many scientific applications. In general the nature of some

applications is such that it is necessary to detect all the global minimizers (e.g.computation

of Nash equilibria [9] in game theory) or a set of minima with objective function value in

a specific range (energy values in the molecular conformation problem [6]). Another

interesting application that requires the computation of more than one global minimizer is

the computation ofperiodic orbits of nonlinear mappings [8]. Neural network training is a

problem of similar nature; i.e. the relevant objective function possesses a multitude of local

(and possibly global) minima.
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Consider the classical data fitting problem:Given � points and associated values

�� � � �� � � 	 
 �� � � 
 
 
 � � , with �� � � � � �� � � , draw a smooth hypersurface that is

optimal in the least square sense.

The traditional way of solving such problems is to assume a parametric model (e.g.

an Artificial Neural Network)� �� �� � and adjust the parameters� , so as to minimize the

deviations, i.e. minimize the “Error”:

� �� � 
 ���� � �� ��� � � � � ���� (1)

Thus the problem of training an ANN is transformed into an optimization one

��� � �� � (2)
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Unfortunately the terrain modelled by the error function can be extremely rugged and often

has a multitude of local minima. Obviously, a method that cannot escape from local

minima has hardly any chance to find a solution to the problem.We must add that smaller

neural networks generalize better, since they avoid over-fitting and this is the reason they are

preferred for both classification and regression tasks. On the other hand, training smaller

networks is more difficult since the error surface is heavilyrugged and there exist only a

few good solutions.

2. MULTISTART BASED ALGORITHM IN GLOBAL OPTIMIZATION

It is important to describe in brief the basic framework of a multistart based global opti-

mization method. In Multistart, a point is sampled uniformly from the feasible region, and

subsequently a local search is started from it. The weaknessof this algorithm is that the

same local minima may be found over and over again, wasting socomputational resources.
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The “region of attraction” of a local minimum associated with a deterministic local

search procedure& is defined as:

'� ( �� � # � & �� � 
 �)� � (3)

where& �� � is the minimizer returned when the local search procedure& is started at point

�.

Algorithm MA 1 Multistart framework
Initialize: Set k=1

Sample� � #�* 
 & �� �
Termination Control: If a stopping rule applies STOP.

Sample: Sample� � #
Main step: If (� +� ,*�� �' �) Then� 
 & �� �- 
 - . ��* 
 �

Endif

Iterate: Go back to the Termination Control step.

The algorithm described above, returns a set/ 
 ��* � of the recovered local minima. A

lot of research is carried out on reducing the number of times, the local search procedure is

applied in a way that minimizes the risk of missing a local minimum.

3. LOCATING MINIMA IN NEURAL NETWORK TRAINING

The main purpose of this work is to demonstrate the need of a multistart based global

optimization method for training NNs. In the literature so far we can distinguish three

major classes of methods:

0 Local optimization procedures: All methods that attempt tofind a local minimum
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of the error function
� �� �. (Gradient descent, conjugate gradient, quasi-Newton

methods, Levenberg-Marquardt)

0 Global optimization procedures (single global minimum): These methods employ

probabilistic or deterministic strategies, to overcome local minima and locate a sin-

gle global optimum. (Trajectory methods [1], covering methods[11], evolutionary

algorithms [10,11], simulated annealing [4,11])

0 Global optimization procedures (all global minima): Thesemethods use global s-

trategies to locate all the existing global minima. (Interval methods [12], Particle

swarm [2, 3])

In this section we are going to present real cases in neural network training that the

above mentioned procedures will not perform optimally. Note that:

0 Local minima are often poor solutions to the training problem. Thus, local optimiza-

tion methods are out of question.

0 The various global minima present different interpolationbehavior, i.e they do not

generalize in a similar way.

0 There are cases where some local minima generalize better than a global minimum.

We list the two regression problems used to illustrate our points.

Problem A: We used12 evenly distributed points in�2 � �2� and their corresponding func-

tion values, to construct the training data set34 
 ��� � 5 �� � �� � 	 
 �� 
 
 
 � 12 and

622 points for the test set74 , with 5 �� � 
 � 8�� �� �
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Problem B: We used12 evenly distributed points in�2 � �2� and their corresponding func-

tion values, to construct the training data set39 
 ��� � 5 �� � �� � 	 
 �� 
 
 
 � 12 and

622 points for the test set79 , with 5 �� � 
 � 8�� ��� �.

3.1 Quality of local minima

Consider a feedforward artificial neural network, with sigmoid activation functions in the

hidden layer. This model can be written as:

� �� �� � 
 %:��� � � ;�<�= �� ;�<�� . � ;� � (4)

with = �> � 
 �
� . ?<@

where the weight parameters� are numbered as shown in Figure 1.

=

= � = � 
 
 
 
 
 
 =A

� �

� � � B
� ;�<�

� � � C
� ;�<�� ; � D � ;�

Figure 1: Neural network: Labelling of parameters

One easily realizes that problem (2) may be solved with a large number of different

values for the parameters.

In order to evaluate the quality of local minima for problem A, we optimized the error

function using a multistart-based global optimization method [7]. Our goal was to find as

many local minima as possible. Using six nodes in the hidden layer (EA 
 F), we found

more than�2 � 222 minima. In Table 1 we present only a small subset of�2 minima.
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Min. p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
1 11.93 -626.79 0.49 -4.05 400. -0.85 6.11 439.16 -0.97 15.27 526.32 0.26 -3.36
2 13.13 -595.56 -0.26 3.53 400. 1.00 -15.79 504.03 0.82 -5.98 276.26 -0.56 4.46
3 59.37 -730.46 -0.54 6.04 400. 0.87 -8.98 568.78 0.96 -18.08 501.58 -0.28 4.46
4 60.26 -229.63 0.89 -13.88 99.48 0.37 -1.81 0.00 1.03 -10.39 756.47 0.24 -3.36
5 62.42 -429.90 -0.42 8.15 400. -1.77 12.18 193.51 1.07 -13.74 298.31 -0.41 6.14
6 64.22 -613.04 0.28 -4.57 400. -1.02 19.17 433.43 -0.99 10.17 296.87 0.55 -6.20
7 70.87 -373.12 -0.43 8.59 400. 1.94 -13.30 125.49 1.11 -14.25 222.39 -0.42 6.22
8 80.20 -577.92 -0.57 6.44 400. -0.94 17.86 406.32 -1.01 10.42 303.61 -0.34 4.89
9 80.31 -286.48 -0.28 4.87 400. -1.25 20.00 0.00 1.29 -9.11 58.09 -0.78 6.04
10 84.20 -628.36 -0.29 4.69 400. 0.90 -14.27 305.83 -1.30 13.07 513.88 -0.09 2.53
11 84.23 -630.99 -0.29 4.72 400. 0.90 -14.21 153.35 1.30 -13.06 750.10 -0.09 2.65
12 85.34 -585.91 0.06 -1.95 400. 0.98 -15.53 255.16 -1.37 13.72 478.08 0.27 -4.38
13 86.38 -188.04 0.98 -15.44 0.00 0.08 -0.50 257.18 -1.37 13.74 386.63 0.29 -4.60
14 291.60 -240.72 0.10 -4.30 0.00 0.65 -7.33 0.00 1.08 -16.88 800.00 0.43 -6.11
15 334.71 -272.36 -0.25 5.96 400. 1.38 -18.17 142.09 -0.60 8.59 0.00 0.25 -5.96
16 353.93 -270.56 0.63 -9.05 400. 1.36 -18.06 202.06 0.32 -6.61 324.18 -19.58 -20.00
17 353.93 -270.56 0.63 -9.05 400. 1.36 -18.06 200.80 -9.01 -20.00 1.26 0.32 -6.61
18 354.72 -253.81 -4.02 -6.56 2.04 0.63 -7.44 0.00 1.10 -17.15 800.00 0.49 -7.00
19 354.85 -251.78 0.63 -7.45 0.00 -4.27 -19.58 0.00 1.10 -17.15 800.00 0.49 -7.01
20 828.76 -580.81 -18.01 -20 101.91 1.19 -20 -332.60 1.24 -20 800 1.02 -17.15

Table 1: A set of�2 selected local minima (Problem A)

We have sorted these solutions in ascending order of the
� �� � value. Intuitively we can

assume that the quality of the approximation is inversely proportional to the Error Function

value achieved for each minimum. This is shown in the Figure 2, where we plot1 found

solutions. Notice that only the first set of parameters (Solution 1) managed to approximate

the target function accurately.

Consequently the probability that a local search method recovers such a solution, is

rather small considering the large number of existing localminima.
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Figure 2: Quality of local minima found.
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G
Train Error Test Error HH I� � � I�J HH�

1 0.0013 4.38 0.0
2 0.0012 0.28 6246.69
3 0.0014 4.0 7017.74
4 0.0016 0.1 6162.54

Table 2: An example of 4 global minima

3.2 Quality of the global minima

In the past, many researchers used global optimization algorithms to search for a single

global minimum. Such strategies perform better than local techniques, however they do

not take in account the existence of manyglobal minima. If this is the case (which is

quite common), multistart based global optimization algorithms, that recover all the global

minima of the problem can be used to identify (by means of a test set) the best parameter

values.

To illustrate this we solved Problem B, using a neural network with �6
nodes in the hid-

den layer. Four global minima were recovered, presented in Table 2. Equivalent solutions

generated by node-permutation were excluded. As can be realized by inspecting Table 2,

the four solutions perform quite differently in the test set, yielding a clear winner (Solution

#4, with test error2 
�). In Figure 3 we plot for each point in the test set, the accuracy of the

approximation, i.e. the quantityH5 �� � � � � ��� � � � H.

3.3 Finding Multiple Minima vs. Overtraining

Overtraining is a frequently encountered problem in NN training. This happens when the

model parameters are extremely well tuned to the training data and interpolate inaccurately

in nearby points.

Such kind of solutions may correspond to global minima as well. So it is important to

maintain as candidate solutions global and local minima as well.
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Figure 3: Quality of local minima found.

Train Error Test Error HH� � � �J HH�
1 1.10E-4 1.7E+5 0.0
2 3.02E-2 0.78 3914.18
3 7.9E-2 0.89 3937.74
4 0.22 2.13 1167.21

Table 3: An example of overtraining.

To illustrate the above, we solved Problem A, using TML and a neural network consist-

ing of �2 hidden nodes. In Table 3 we present the four best solutions found. It is remarkable

that the solution with the lowest error in the training set displays the worst error in the test

set. The first two solutions are shown in Figure 4. Notice the large oscillation near zero, a

characteristic sign of overtraining.

4. CONCLUSIONS

The plethora of local minima inherent in the objective function that results in the case of
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Figure 4: An example of overtraining.

neural network training, renders necessary the use of global optimization methods. Since

generalization is a very important property that can be verified only a-posteriori (i.e. by us-

ing a test data set), multistart-based methods that recoverall the local (and global minima)

should be preferred.

In this article we presented a framework that can be used for achieving robust neural

network training. Almost any multistart-based method may be used since most variations

aim in collecting all the local minima inside the feasible region.

The test problems presented here are constructed for illustration purposes, however they

are typical and represent the difficulties of real world problems.
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