MEMPSODE: Comparing Particle Swarm Optimization and
Differential Evolution on a Hybrid Memetic Global
Optimization Framework

Draft version

C. Voglis f
Computer Science
Department
University of loannina
loannina, Greece
voglis@cs.uoi.gr

D. G. Papageorgiou

Department of Materials

Science and Engineering
University of loannina

dpapageo@cc.uoi.gr

ABSTRACT

In this paper we present an experimental comparison be-
tween two well known population-based schemes, namely
Particle Swarm Optimization (PSO) and Differential Evolu-
tion (DE), that are incorporated in a memetic global opti-
mization framework. We use the recently published MEMP-
SODE software [16], that implements the memetic global
optimization first described in [13] and incorporates Merlin
optimization environment [10]. Since the original descrip-
tion of the algorithm in [13] involved only a PSO variant for
the exploration phase, using MEMPSODE software we at-
tempt an empirical assessment of the DE. The results based
on the noiseless testbed, indicate that the usage of DE may
lead to superior performance.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, memetic algorithms, particle swarm optimization,
differential evolution, local search; G.4 [Mathematical Soft-
ware]

*Submission deadline: March 28th.
Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’12, July 7-11, 2012, Philadelphia, USA.

Copyright 2012 ACM 978-1-4503-0073-5/10/07 ...$10.00.

G.S. Piperagkas
Computer Science
Department
University of loannina

gpiperag@cs.uoi.gr

K. E. Parsopoulos
Computer Science
Department
University of loannina
kostasp@cs.uoi.gr

l. E. Lagaris
Computer Science
Department
University of loannina
lagaris@cs.uoi.gr

Keywords

Memetic global optimization, Particle swarm optimization,
Differential evolution, Benchmarking, Black-box optimiza-
tion, Merlin optimization environment

1. INTRODUCTION

Evolutionary Algorithms (EAs) and Swarm Intelligence
(SI) approaches have been established as powerful optimiza-
tion tools for solving optimization problems [2, 8, 12]. They
are based on models that draw their inspiration from physi-
cal systems. Based on natural selection and evolution schemes
these algorithms exhibit remarkable capability of locating
global solutions for optimization problems.

The rise of EA and SI algorithms has sparked the devel-
opment of a closely related category, namely the Memetic
Algorithms (MAs). MAs constitute a class of hybrid meta—
heuristics that combine population—based optimization al-
gorithms with local search procedures [9]. The rationale
behind their development was the necessity for powerful al-
gorithms where the global exploration capability of EAs and
SI approaches would be complemented with the efficiency
and accuracy of classical local optimization techniques.

In this work we examine the performance of a memetic
optimization software that incorporates Particle Swarm Op-
timization (PSO) or Differential Evolution (DE) schemes for
exploration in addition to powerful local optimization algo-
rithms for exploitation. Our primary target is to determine
the impact of the choice between UPSO and DE in the al-
gorithmic framework presented in [13]. By no means we are
attempting an extensive benchmark of all MEMPSODE user
defined parameters. Instead we use a default set of param-
eters both on PSO and on DE and the same local search
procedure.

2. ALGORITHM PRESENTATION

The tested software follows closely the PSO—based memetic
approaches reported in [13] and extends them also to the DE

framework. More specifically, the Unified PSO (UPSO) ap-
proach [11], which harnesses the strengths of standard local
and global PSO variants is implemented. In both cases, di-
rect calls to LS procedures are facilitated via the established
Merlin optimization environment [10], providing the ability
to develop a variety of MAs. In order to present the algo-
rithm implemented by MEMSPODE we provide summary
for all key algorithms incorporated. A pseudo-code sum-
marising the methodology is presented in Algorithm 1.

2.1 Unified Particle Swarm Optimization

PSO was introduced by Eberhart and Kennedy [1]. The
main concept of the method includes a population, also
called swarm, of search points, also called particles, search-
ing for optimal solutions within the search space, simultane-
ously. The particles move in the search space by assuming
an adaptable position shift, called velocity, at each iteration.

Moreover, each particle retains in a memory the best po-
sition it has ever visited, i.e., the position with the lowest
function value. To each particle is assigned a neighborhood,
which determines the indices of its mates that will share its
experience. Obviously, the neighborhood scheme affects the
flow of information among the particles. Two well known
neighborhood scheme have been used extensively. The local
lbest scheme were each particle is assumed to communicate
only with its mates with adjacent indices and the global
gbest scheme were any new information (best position) is
immediately communicated to every single particle in each
iteration.

Putting our description in a mathematical framework, let
us assume the n—dimensional continuous optimization prob-
lem:

min f(z), (1)

rz€EXCR"?

where the search space X is an orthogonal hyperbox in \":
X = [l17T1] X [lz,?"g} X - X [ln,Tn].

A swarm of N particles is a set of search points:

Sz{wl,mz,...,sz\]},
where the i—th particle is defined as:
@i = (T, Tiz, ., in) | € X, 1=1,2,...,N.

The velocity (position shift) of z; is denoted as:

vi:(v“,vig,...7vm)-l—, i=1,2,...,N,
and its best position as:
pi = (pi1,pizs - - pin) €X, i=1,2,...,N.

Let g; = arg mjl\r/l f(p;), and t denote the algorithm’s iter-
JEN;

ation counter.

The classical PSO model can be generalized in the UPSO
scheme [11]. Following this scheme and if we assume that
GEtH) and LEHI) denote the velocity update of z; in the
gbest and lbest PSO model, respectively:

GE;H) = ¥ [v%) + 1y (pl(? _ xij)) + Cars (p;tj) _ mg;))(}@

where g is the index of the overall best particle, i.e.:

g=arg min _f(p;),

then the particle is updated as follows [11]:

UGt = w1 - LY, (4)
t+1 t t+1
mij)= xgj) + Ui(j)7 (5)
i = 1,2,...,N, j=1,2,...,n.

The parameter u € [0, 1] is called the unification factor and
it balances the influence (trade—off) of the global and local
velocity update. Obviously, the Ibest PSO model is retrieved
for u = 0, while for u = 1 the gbest PSO model is obtained.
All intermediate values produce combinations with diverse
convergence properties.

2.2 Differential Evolution

The Differential Evolution (DE) algorithm was introduced
by Storn and Price [14] as a population—based stochastic op-
timization algorithm for numerical optimization problems.
DE is formulated similarly to PSO. A population:

P={z1,z2,...,aN},

of N individuals is utilized to probe the search space, X C
R™. The population is randomly initialized, usually follow-
ing a uniform distribution within the search space.

Each individual is an n—dimensional vector:

T .
'Ti:(x’ihxiQw'wxin) 6X7 7/:1,2,.4.7]\],

serving as a candidate solution of the problem at hand. The
population is iteratively evolved by applying two operators,
mutation and recombination, on each individual to produce
new candidate solutions. Then, the new and the old individ-
uals are merged and selection takes place to construct the
new population consisting of the N best individuals. The
procedure continues in the same manner until a termination
criterion is satisfied.

The mutation operator produces a new vector, v;, for each
individual, z;, ¢ = 1,2,... N, by combining some of the rest
individuals of the population. There most common (but not
the only) operator proposed to accomplish this task:

OP1: vl(t'H) :cgt) +F (:cg? - ac%)) , (6)
where ¢ denotes the iteration counter; F' € (0,1] is a fixed
user—defined parameter; g denotes the index of the best in-
dividual in the population, i.e., the one with the lowest func-
tion value; and r; € {1,2,...,N}, j =1,2,...,5, are mutu-
ally different randomly selected indices that differ also from
the index i. Thus, in order to be able to apply all mutation
operators, it must hold that N > 5.

After the mutation, a recombination operator is applied
producing a trial vector:

ui:(u’il’uiQa'-~auin), i:1,2,..,,N,

for each individual. This vector is defined as follows:
LD v, if By <CR or j =RI(i), :
Y @, if R; > CR and j # RI(d),
where j = 1,2,...,n; R; is a random variable uniformly
distributed in the range [0,1]; CR € [0,1] is a user—defined
crossover constant; and RI(7) € {1,2,...,n}, is a randomly
selected index.
Finally, each trial vector is compared against the corre-
sponding individual and the best between them comprise

the new individual in the next generation, i.e.:

e _ [l g (u) < g (27)
2 - :L.Et)7

(8)

otherwise.

2.3 Local search

A local solution to an optimization problem can be ob-
tained by applying local optimization methods. The hybrid
schemes implemented in MEMPSODE have a need for de-
terministic local search procedures that require a starting
point, o, and generate a sequence of points, {zx}72,, in
order to determine a minimizer within a prescribed accu-
racy. The generation of a new point, xx11, in the sequence
is based on information collected for the current iterate, xy.
Typically, this information includes the function value at x,
as well as the first— and probably second—order derivatives
of f(x) at zx. In all cases, the aim is to find a new iterate
with lower function value than the current one.

The Merlin optimization environment [10] is an efficient
and robust general purpose optimization package. It is de-
signed to solve multi-dimensional optimization problems.
Merlin offers a variety of well established gradient—based
and gradient—free optimization algorithms. Gradient—based
algorithms include three methods from the conjugate gradi-
ent family, the method of Levenberg-Marquardt, the DFP
and several variations of the BFGS algorithms (BFGS) [?].
The gradient—free algorithms include a pattern search and
the nonlinear Simplex method.

2.4 Memetic Algorithm

The design of MPSO in [13] was based on three funda-
mental schemes, henceforth called the memetic strategies:

Scheme 1: LS is applied only on the overall best position,
Dg, of the swarm.

Scheme 2: LS is applied on each locally best position,
pi, @ = 1,2,..., N, with a prescribed fixed
probability, p € (0,1].

Scheme 3: LS is applied both on the best position, pg,
as well as on some randomly selected localy
best positions, p;, i € {1,2,...,N}.

These schemes can be applied either at each iteration or
whenever a specific number of consecutive iterations has
been completed.

Of course, many other memetic strategies can be consid-
ered. For instance, a simple one would be the application of
LS on every particle. However, such an approach would be
costly in terms of function evaluations. In practice, only a
small number of particles are considered as start points for
LS, as pointed out in [6]. The memetic strategies proposed
in [13] were also adopted in MEMPSODE for both PSO-
and DE-based MAs.

3. EXPERIMENTAL PROCEDURE

We used the default restart mechanism provided by the
testbed for a maximum number of 100 000 xn function evalu-
ations. The third memetic scheme was used with probability
of local search set to p; = 0.05. Both UPSO and DE used a
swarm size N = 25 particles. In UPSO the unification factor
u was set to 1 and the initial velocity vector was restraint
by a factor of 0.01. For the DE experiments we applied OP1
with default values F' = 0.5 and CR = 0.7.

Each local seach has an upper limit of 4 000 function eval-
uations. Whenever derivatives were needed (eg. BFGS)
we applied an O(h) finite differences formula where h is an
adaptable step size(see [15]). For the local search we applied
the BFGS method implemented in Merlin.

The experiments have been conducted on an Intel 17-2600
processor on 3.4 GHz with 8GB RAM.

4. RESULTS

Results from experiments according to [4] on the bench-
mark functions given in [3, 5] are presented in Figures 1,
2 and 3 and in Tables 1. The expected running time
(ERT), used in the figures and table, depends on a given
target function value, fi = fopt + Af, and is computed over
all relevant trials as the number of function evaluations exe-
cuted during each trial while the best function value did not
reach f;, summed over all trials and divided by the number
of trials that actually reached f; [4].

A direct comparison between UPSO and DE variants of
MEMPSODE memetic algorithm can be deduced by observ-
ing the scatter plots in figure 2 and the starred records in
table 1. In the separable case DE variant outperforms UPSO
especially as dimensionality increases. For the moderate
category DE seems to outperform only on function 7 (step
ellipsoid) and scores marginally better in all other cases.
The same behaviour is repeated for the ill-conditioned cases
where DE variant is slightly better. Finally, DE variant out-
performs PSO variant in all multimodal functions but PSO
variant seems to behave better for the weak structured cases.

DE variant superiority is also obvious by inspecting fig-
ure 3. In almost all cases (except the weak structured func-
tions) the ECDF of DE variant lies higher than the corre-
sponding ECDF of PSO variant and this pattern is repeated
in all levels of accuracy.

It is also worth mentioning that the DE variant scored the
best recorded ETF for some accuracy levels in the case of ill
condition functions (10-14). From the corresponding lines of
table 1 we can see that for relatively low levels of accuracy
the achieved ERT scores are quite competitive.

As a general remark, MEMPSODE seems a very promis-
ing and competitive new algorithm that incorporates state
of the art schemes of swarm intelligence algorithms with the
robust and versatile Merlin optimization environment.

S. REFERENCES

[1] R. C. Eberhart and J. Kennedy. A new optimizer
using particle swarm theory. In Proceedings Sixth
Symposium on Micro Machine and Human Science,
pages 3943, Piscataway, NJ, 1995. IEEE Service
Center.

[2] A. P. Engelbrecht. Fundamentals of Computational
Swarm Intelligence. Wiley, 2006.

[3] S. Finck, N. Hansen, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions.
Technical Report 2009/20, Research Center PPE,
2009. Updated February 2010.

[4] N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2012: Experimental setup. Technical report, INRIA,
2012.

1 Sphere 2 Ellipsoid separable 3 Rastrigin separable ___ 4 Skew Rastrigin-Bueche separ

g0 ° g

ey AR TS

C

1 1 1
1
ot
ftarget=1e-08 Oftarget=1e-08 Offtarget=1e-08; Offtarget=1e-08
2 3 5 10 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
- 5 Linear slope 6 Attractive sector _ 7 Step-ellipsoid 8 Rosenbrock original
6 6

<7

2 L 2 5
wg’w/v 4 o) @

4l AV

3
2

J)

1 1

1

Oftarget=1e-08 Oftarget=1e-08 Offtarget=1e-08 Oftarget=1e-08
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 40 2 3 5 10 20 40

9 Rosenbrock rotated 10 Ellipsoid 11 Discus 12 Bent cigar

1 1 1 1
Oftarget=1e-08, Oftarget=1e-08, Offtarget=1e-08; Offtarget=1e-08;
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
13 Sharp ridge 14 Sum of different powers 15 Rastrigin _ 16 Weierstrass
6 6 7

Sy @ 2 2 5 A2 5 /@/@ Qo] 8 o
4 Cﬁﬂ 5 3

k

(Eo]
S
\<1\

5l 2
N
1 1 1 1
1
Oftargét=1e-08 Oftarget=1e-08 Oftargét=1e-08 Offtarget=1e-08,
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
. 17 Schaffer F7, condition 10 18 Schaffer F7, condition 1000 . 19 Griewank-Rosenbrock F8F2 . 20 Schwefel x*sin(x)
6 7 7
o £ [n)
1 4 ; 9 oo g ’
4V R 4 \/ 4 AVA
3
3 3 3
5l
5| 5| 5
1 1 1 1
Oftarget=1e-08 Oftarget=1e-08, Offtarget=1e-08 Offtarget=1e-08
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40
. 21 Gallagher 101 peaks 22 Gallagher 21 peaks 23 Katsuuras _ 24 Lunacek bi-Rastrigin
6 6 7

%] ()]
&
&

w
O
o

%‘r

W

5 5l
5 P
1 1 1 1
Oftarget=1e-08 Oftarget=1e-08, Offtarget=1e-08; Offtarget=1e-08
2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40 2 3 5 10 20 40

Figure 1: Expected running time (ERT in number of f-evaluations) divided by dimension for target function
value 107% as log,, values versus dimension. Different symbols correspond to different algorithms given in
the legend of fi and f24. Light symbols give the maximum number of function evaluations from the longest
trial divided by dimension. Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling.
Black stars indicate statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: o: pso-bfgs, V: de-bfgs.

O) 0
&8 & T © o GO B
o - R, - Ton© -] -
0 n = - Q%
©o ©o ©o S ©o
b] S Y
{] | ! ; 10, -
0 < n ,: N id N n
< 123 < < < ERNG <
m a LY
m Do m m | m m
f. ~ o~ - ~ o~ o~
~ F
— .f. — — N — —
0w ~ © 1 g M 0o - s [< ™ o e o v <« ™M o R~ 0RO T S m R TS O N o N« N0 SR [« ~ o 1 o« ™M™ o <
ayoang-uiduilsey mMaxG § |eulSLIO %20iquasoy § Je31D jusg 1 SSEJISIBIDAN OT (3})uIsyx [249MYy2S 0g uiuasey-iq ¥aoeun yg
O- B0 ~ G E-EHBO0 o ® %m!-llﬁn
~ o ~ - ~ ~ ~
S \.}n = © N o >
k Q) © k — © 7 k —— U © 53— ©
N8 ; O NN 2
! " 1] " ﬁu@ o n o o
% e
o < < o < | bz < < <
B
al o+ Ll + ™ o o
+ + ™ _.N+
N 4 N ~N ~ ~
— — o — — —
SRR Y TR AT S TS B S o Ry i < RN © T} < ™ w [- T S T~ T S o B o ey S e B T R e < B S ST- BT By o Sy N < o
s|qeJedss uiuisey ¢ piosdijje-deig 2 snasig TT uiduisey G 3204quISOY-uemalis) T seinnsiey ¢g
© QE— ® © HO-0 © é
—. ° © * [o * \.‘- L k ©o
R ﬂ s n 7U‘[n | n 3§ 0 o : n
- % ©
L < } @ ,k < < < <
7 L N # m W m m] %uf [l
i c ” ~ _\ ~ ~ v+ ~ LY] > ~
L] o ~ - - - .
9 ~ © " < ™ ~N ! R B NS P 6~ © v Mmoo e R ST R T S S TR < M o - oo ~ O 1 < ™ o N
3|qededas prosdi|3 ¢ 10309s SAIPEIIY 9 plosdi|3 01 siemod “Ip Jo wing yT Q00T PUO> ‘24 J3jjeydS 8T syjead Tg Joy3een ¢g
m N ©o T © e T
B o ~ O ~ ~
L o N
¥ l © | © i ©
o~ ; i
< 1 0 I n 0
| | s
- m < < O <
O
+ . ‘ ol L)) G o
o~ o~ o~ o~
+ o >
+ — — $ —
o & = = <) & 5) < ™ Y R L s = e T T L N - - S TR R s B o B < o
aJioydg 1 adojs Jesulq g pa31€304 %20IqUISOY 6 a8pu dieys €1 0T puod ‘24 J3yeyds LT syead 10T Jay3ejen 1g

luations) of pso-bfgs (z-axis) versus

0on eva

log,, of number of funct

in

time (ERT

ing
de-bfgs (y-axis) for 46 target values Af € [107%,10] in each d

Expected runni

Figure 2

functions fi—f24. Markers on the

immension on

=+,

2

imension:

ht edge indicate that the target value was never reached. Markers represent di

upper or rig

3

HoN

0, 40

Vv, 5%, 10:0, 20:

— +1:24)24 — +1: 19/24 ;7
— -1:24/24 -1: 15/19
w & — -4:24/24 2 -4:13/16 /
g 2 — -8:20/19 2 -8: 9/12
‘=% k3
T s g
= 8 S
- g
° o
— & =%
<
__._//
1-24 1-24
o 2 3 4 5 -4 3 -2 -1 1 2 3 4 1 2 3 4 54 3 =2 -1 0 1 2 3 4
log10 of FEvals / DIM log10 of FEvals ratio log10 of FEvals / DIM log10 of FEvals ratio
1. L.
[f?ﬁ{ﬁ — 4155 — JE— f1-5 — L35
— 1 — -1:5/5 / — -1:3/5
2]
C g — 4 — 4555 /; 2 — 435
= £ ||— 8 M 1 — 855 £ j’ff — 835 /
9 % kS 5
3 cos = s
= S0 S
5 5 5
T 2 a
e g A
o 5 ! 5
ocﬁ ' /4 f1-5 f1.5
. 1 2 4 5 -2 1 0 1 2 . 1 2 3 4 5 -2 1 0 1 2
log10 of FEvals / DIM log10 of FEvals ratio log10 of FEvals / DIM log10 of FEvals ratio
1. L.
N f -9 fﬁ — 414 ~ | —— 69 — 134 f:
) ﬁqﬂ’ T — 1w // 2 J_/VJ_#X — 133 /
n o« — 4 O J - & — -4:4/4 — © — 4 & — -4:3/3 7
= = gy b-| s N
RSN — 8 — -8:4/4 b — 8 J — 8:2/3
k3 #D k3
L o5 o S o5
=R ; S
©)f” [£ j //
0 2 8
= 9 o
3 & % 5 z
/ f6:9 / 16-9
0.0! ; - = 0.0!

2 3 1 0 1 2

-1 0 1 2 3 4 -1
log10 of FEvals ratio log10 of FEvals / DIM log10 of FEvals ratio

L L e
0 — 1 3 — +1:5/5 E— f10-14 — +1:5/5 7 —
- ¥ —
RS} — -1 J — -1:5/5 / — -1 ; — -1:5/5 /
0 — -4 & — -4:5/5 @ — -4 LA — -4:5/5
il V—"
T E = s @ bl — -84 £ |[— 8 Eﬁfp — 8:33
£ 5 5 7
9 505 A i 50.5 ol
E —© £ e
o 3 | g 5
<IN ° -
o [Q E
L ?‘ .V_g
1
— D
i 0.0! f10-14 0.0 % ﬁ(f10-14
o 5 -4 2 -1 0 1 2 3 4 o 1 2 3 4 54 3 2 -1 0 1 2 3 4
log10 of FEvals ratio log10 of FEvals / DIM log10 of FEvals ratio
L. — 1.
= fis. z’*’ — = s [E— f15-19 — 414/ /
® ! f P j;: — 155 —a — 113
S e — 4 Lt — -4:5/5 @ — 4 A — aon
— 5 — 8 7 Tf ff — 832 / £ — 8 — -8:0/0
5 [# 7 ;1 s /
i BEPEP g £ /
g % g
(=3 / =% fﬁﬁ:
o (o
E g e J g
i s £15-19 o o f15-19
0.0! 0.0
1 2 3 4 3 -1 1 2 3 1 2 3 4 5 -3 - -1 1 2 3
log10 of FEvals / DIM log10 of FEvals ratio log10 of FEvals / DIM log10 of FEvals ratio

— :%/jgsﬂ‘”
A =

— 155 / — 1 f20-24 —
— 155 — 2 /
— 455 [2

= S |
/)

P
| & =S) =
2/ — | | |z

proportion of trials

— -1:3/3 |
f20-24 v v
0.0 ;
0

weak structure fcts
proportion of trials
5
o <
L
4=

O.C0 T

-1 1
log10 of FEvals / DIM log10 of FEvals ratio

2 2 5-4 -3 -2 -1 0 1 2
log10 of FEvals / DIM log10 of FEvals ratio

Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-
D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D)
to reach a target value fo,. +Af with Af = 10*, where k € {1, —1, —4, —8} is given by the first value in the legend,
for pso-bfgs (o) and de-bfgs (V). Light beige lines show the ECDF of FEvals for target value Af = 107° of all
algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of pso-bfgs divided
by de-bfgs, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one
trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were
solved in at least one trial (pso-bfgs first).

5-D 20-D
Af lef1 le-1 le-3 le-5 le-7 #succ ?f 1‘1‘;’1 12;)1 1:;_3 1;5 1:;7 is/“f;
1 1 12 2 12 2 15/15 f1
1: pso| 3.1(3) 5.2(0.2) 5.2(0.2) 5.2(0.2) 5.2(0.2) [15/15 ;:SSO ;‘g(gg) ;; 32 ;; ;g }:/ig
2:de_| 3.3(2) 4.9(0.2) 4.9(0.2) 4.9(0.2) 49(0.2) [s/152ce ‘;85‘) 25 o A 2 15%5
>3 53 S8 90 92 o4 i5/15 , 2
1: pso| 1.7(0.7) 1.8(0.7) 1.9(0.7) 2.1(0.7) 2.3(0.8) [15/15 ;: N 2‘?@ Zg(i) g‘;(i) ;'?(g) }3(;2) }g/}g
2:de| 1.4(0.3) 1.5(0.3) 1.7(0.3) 1.9(0.3) 2.0(0.3) J15/15 25de '5[()6)6 '7é3; ‘7é4; '7é4()3 <73351 15%5
3
T3 716 1637 1646 1650 1654 1515, 8 s s o o A s
1: pso| 9.4(10) 121(155) 120(159) 120(158) 120(154) 13/15 .3 3 3 .3 -
2 de| 2.0(1)% 7.7(59%3 7.6(5)*3 7.6(59*3 76053 [15/15 2;fde, 56(5;12)2 181(7165;6) 181(7175000) 181(7175518) 191(11549)5 12ﬁ:
[809 1688 1817 1886 1903 15/15 , 4 -de
1: pso| 14(12) 410(479) 381(414) 367(399) 364(392) 7/15 L PS < . o s oo, o206 | 0/15
2 de| 8.8(2)*2 20(17)*3 19(15)*3 18(15)*3 18(15%3 |15/15 2;fdc, 143(82 3893(444141) 3876(349101) 3847(442159) 212(22) léﬁ:
T 10 10 10 10 10 15/15 , 5
1:pso| 6.8(0.3) 8.8(0.6) 8.9(0.6) 8.9(0.6) 8.9(0.6) [15/15 Lipsq 22(16) 31(32) 33(36) 33(36) 33(36) 15/15
2. de_| 6.5(2) 9.0(2) 9.0(2) 9.0(2) 9.0(2) 15/15 2:de| 14(8) 24(16) 24(16) 26(20) 26(20) L5/15
T, 1296 3413 5220 6728 5409 15/15
To 114 281 580 1038 1332 15/15 16
1: pso| 6.4(9) 3.1(4) 1.9(2) 1.5(2) 54(98) 11/15 1: ps 9.4(8) 40(36) 148(193) 198(267) 352(392) 0/15
2 ae] 51(2) 2.5(0.9) 1'5(0.6) 1.3(2) 2.8(3) 15715 2:de| 6.8(5) 17(16) 32(36) 96(152) 295(334) 2/15
T: 1351 9503 16524 16524 16969 [15/15
[54 1171 1572 1572 1597 15/15 , 7)
1: psol589(940) 930(922) 2363(2591) 2363(2733) 2326(2372) 1/15 L Ps < s 0 oty oty oo2.0e6 0/15
2:de| 8.9(6)*3 10(22)*3 9.2(17)*3 9.2(171)*3 a1(60)*3 |10/15 Z:fdef 502(2781;; e > - °°2'4”:g4 lgﬁg
fg 73 336 391 410 422 15/15 '8
1:pso 3.0(2) 1.6(0.8) 1.5(0.7) 1.5(0.7) 1.4(0.7) [15/15 1 P° }g(}) ;';(i) g’*g(? g-g(g) 32%2) }:/}g
2:de| 2.8(2) 1.1(0.5) 1.1(0.4) 1.1(0.4) 11(0.4) [15/15 27 des ~1;1)6 '32(7; '325; -3;91 '3(7;7 15%5
9
fo 35 214 300 335 369 15/15) bs 1.7(0.7) 5.7(4) 7.1(5) 6.9(5) 6.9(4) 15/15
1:pso| 4.1(1) 1.6(0.9) 1.3(0.6) 1.2(0.5) 1.1(0.5) [15/15 3005 1760 S 728 I 0 SR S
2:de_| 4.2(0.7) 1.9(0.9) 1.5(0.7) 1.3(0.6) 1.2(0.5) [|i5/152:de| 1.8(1) -8(1) -7(1) 7(1) 7(1) /
o B T 556) =230 15715 _T10 7413 10735 14920 17073 17476 [15/15
1:pso 1.3(1) 0.84(0.9) 0.79(0.8) 0.62(0.6) 1.7(0.6) [15/15 L Ps9 29(15) 20(10) 14(7) 12(6) 12(6) 14/15
2:de_| 0.75(0.7)% 0.49(0.4)¥2 0.48(0.4)¥2 0.39(0.3)¥2 0.50(0.9)} |15/15 ;ldle’ 6'1[()?))2 4‘:2(% 3‘917((‘:’; 2i72(2?;;)5 2.;3;22“ igﬁg
:11 o 6(1;(13 YEI 1;?3’ ok o 1(1)(7(3 o o ;3?; o o fz{f 0)¢412§12 ipsg 0.25(0.2)¥3 0.05(0.0)¥% 0.04(0.0)¥% 0.04(0.0)* 0.05(0.0)¥415/15
. (‘l’so 0'70(0'2)¢ 0.15(0‘0)“ 0'11<0'0)¢4 0‘11(o>0)¢4 0'12(0'1)¢415/15 2:de| 0.2000.)%* 0.05(0.0)%% 0.04(0.0)¥% 0.04(0.0)¥% 0.05(0.0)¥415/15
H e_|
T1o T042 2740 1140 12407 13827 [15/15
1f12) 8?2)8 L 5?17)1 L 74(611) o ;g?g 5 o ;‘éi’g 0) i:ﬁg 1:psd 2.2(2) 2.3(2) 3.7(3) 5.0(4) 21(24) 13/15
: ps *3 *2
2:de_| 2.8(1) 1.9(1) 1.9(1) 0.80(0.5) 11(0.7) |15/152de] 14(0.8) L.6(1) 1.7(1) 1.1(0.6) 4.6(4) 15/15
fis 35 555 510) 5555 T5/T5 f13 652 2751 B 18749 B 24455 30201 [15/15
1:pso| 0.99(0.1) 0.810.1)H 0.22(0.0)44 181(286) 05005 0/15 1t PE 1.2(0.1) 0,51(0.0)¢4 0,21(0.1)J'4 133(166) 002.0e6 0/15
2.de| 1.0(0.9) 08701942 0.2300.0044 2.6(1.0) s29(597)*2 | 0y152:de| 1.3(0.1) 0.53(0.0) 0.18(0.2) 92(116) 002.0e6 0/15
3 75 304 932 1648 15661 [15/15
f14 10 58 139 251 476 15/15 14
1: pso| 2.3(3) 1.6(0.2) 0.98(0.1) 0.76(0.1) 134(203) 4/15 1:pso 1.7(0.6) 0.98(0.2) 0.63(0.1)+4 0.57(0.1)+* 892(958) 0/15
2:de_| 1.0(1) 1.5(0.3) 0.95(0.1) 0.71(0.1) 6.4(10) 13/152:de | 1.7(0.4) 0.90(0.2) 0.62(0.1)¥% 0.56(0.1)+% 125(151) 0/15
fis 511 19369 20073 20769 21359 T4/15 f1g 30378 3.1e5 3.205 1565 1.6e5 15/15
1: pso| 10(7) 39(36) 37(38) 36(33) 35(32) 8/15 1: pso o o oo oo ©02.0¢6 0/15
2:de_| 3.8(3)* 1.6(1)*2 1.6(1)*2 1.5(1)*2 1.5(1)*2 |15/15 2: de | 28(15)*3 co*3 oo*3 co*3 02.0e6*3 0/15
fie 120 2662 10449 11644 12095 15/15 f1g 1384 77015 T.965 3.0e5 3.2¢5 15/15
1:pso| 6.9(8) 75(97) 111(130) 298(323) 593(622) 1/15 1: pso| 542(550) o oo oo 02.0e6 0/15
2:de| 8.0(8) 21(9)* 33(48) 30(43) 585(663) 0/15 2: de_| 595(508) o oo oo 02.0e6 0/15
f17 5.2 899 3669 6351 7934 15/15 f17 63 1005 30677 56288 80472 |15/15
1:pso| 1.5(1.0) 21(19) 13(21) 9.2(12) 907(979) 0/15 1: pso 19(15) oo oo oo 00 2.0e6 0/15
2:de_| 3.0(3) 35(110) 10(27)* 6.9(16)* 145(160) 0/15 2: de| 17(19) 327(293)*3 952(1028)*3 co*3 02.0e6*3 0/15
fis 103 3068 9280 10905 12469 15/15 f1g 621 10561 67569 T.365 T.565 15/15
1: pso| 24(18) 16(10) 38(38) 53(58) 005.0¢5 0/15 1: psd 210(159) o oo oo 02.0e6 0/15
2:de| 5.7(7)* 28(64) 19(27) 20(24) 587(645) 0/15 2: de| 69(61)* 1503(1689)*3 oo oo 00 2.0¢6 0/15
f19 (§ (24)2 1»(20)5 1‘(20)5 (1»2;35 15§15 fio 1 3.4e5 6.2¢6 6.7¢6 6.7¢6 15/15
1: pso| 69(94 60(51 3.6(3 3.6(3 19(19 1/15 . * %2 *2 *2
2: de_| 40(38) 71(65) 4.3(4) 4.3(4) 11(11) 2/15 & o 2%?22;? ;‘i(é) > > °°212”‘;;66 g/}g
f20 16 38111 54470 54861 55313 14/15 — () -4(6) > > et 4/
1:pso| 4.9(0.9) 3.5(3) 2.4(2) 2.4(2) 2.4(2) 14/15 1:2})‘; 71?12) 3‘;56 5'556 5'05:6 o;;%zg loﬁ:
2:de | 4.1(2) 10(14) 7.1(7) 7.0(9) 7.0(10) 10/15 57027 6 a(a) o g o s ous o/1s
o1 a1 1674 1705 1729 1757 T4/15 =61 e ot = = VAT
Lhe 182 1 1o Le@men e, B) 056(0.9) 08509 osr(y oe(11s) | /13
ide] 2. : : : 2:de | 10(11) 17(26) 16(25) 15(24) 205(247) 1/15
3 71 938 1008 1040 1068 14/15
1:2;?50 1.6(2) 3.4(4) 3.2(4) 3.3(4) 170(237) 5%5 foo 467 234913 24948 R 26847 5 1.3e5 12/15
. 1: ps 1.7(2) 10(13)* 9.0(13)* 8.6(12)* 209(238) 0/15
2:de| 6.7(15) 23(24) 21(22) 21(22) 131(244) 8/15 L 1 5
tos 5o TS STeET 5T e e s 2ide] 5.7(13) 151(143) 142(134) 132(124) 02.0¢6 0/15
T 3.2 67457 4.9¢5 8.1eb §.4e5 15/15
1: pso| 1.4(1) 3.3(4) 30(34) o cob.0e5 0/15 723
2:de | 2.2(2) 2.0(2) 1.3(0.9)*3 1.4(0.9)*3 96(117)*3 | 0/15 i = é?gg giggf‘lg o o :gg:g gﬁg
f2a 1622 6.466 9.666 T.367 1.367 3/15
1:pso| 3.2(2) 0.20(0.2) 0.23(0.3) 0.18(0.2) 0.18(0.2) | 3/15 1_f2p‘§o 1‘0356 5‘0257 5'0257 5‘(3:7 OO“Z%ZZ gﬁg
2:de| 1.3(1) 0.19(0.2) 0.24(0.3) 0.18(0.2) 0.180.2) | 3/155 527 405 o o ol O 0/15

Table 1: ERT in number of function evaluations divided by the best ERT measured during BBOB-2009 given
in the respective first row and the half inter-80%ile in brackets for different A f values. #succ is the number of
trials that reached the final target fopt+10_8. 1:pso is pso-bfgs and 2:de_ is de-bfgs. Bold entries are statistically
significantly better compared to the other algorithm, with p = 0.05 or p = 107* where k € {2,3,4,...} is the
number following the * symbol, with Bonferroni correction of 48. A | indicates the same tested against the
best BBOB-2009.

[5]

[6]

7]

[12]

[13]

[14]

[15]

[16]

N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009. Updated February 2010.

W. E. Hart. Adaptive Global Optimization with Local
Search. PhD thesis, University of California, San
Diego,USA, 1994.

J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proc. IEEE Int. Conf. Neural
Networks, volume 1V, pages 1942-1948, Piscataway,
NJ, 1995. IEEE Service Center.

J. Kennedy and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers, 2001.

P. Moscato. Memetic algorithms: A short
introduction. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 219-235.
McGraw—Hill, London, 1999.

D. Papageorgiou, I. Demetropoulos, and I. Lagaris.
MERLIN-3.1. 1. A new version of the Merlin
optimization environment. Computer Physics
Communications, 159(1):70-71, 2004.

K. E. Parsopoulos and M. N. Vrahatis. UPSO: A
unified particle swarm optimization scheme. In Lecture
Series on Computer and Computational Sciences, Vol.
1, Proceedings of the International Conference of
Computational Methods in Sciences and Engineering
(ICCMSE 2004), pages 868-873. VSP International
Science Publishers, Zeist, The Netherlands, 2004.

K. E. Parsopoulos and M. N. Vrahatis. Particle
Swarm Optimization and Intelligence: Advances and
Applications. Information Science Publishing (IGI
Global), 2010.

Y. G. Petalas, K. E. Parsopoulos, and M. N. Vrahatis.
Memetic particle swarm optimization. Annals of
Operations Research, 156(1):99-127, 2007.

R. Storn and K. Price. Differential evolution—a simple
and efficient heuristic for global optimization over
continuous spaces. J. Global Optimization, 11:341-359,
1997.

C. Voglis, P. Hadjidoukas, I. Lagaris, and

D. Papageorgiou. A numerical differentiation library
exploiting parallel architectures. Computer Physics
Communications, 180(8):1404-1415, 2009.

C. Voglis, K. Parsopoulos, D. Papageorgiou, 1. Lagaris,
and M. Vrahatis. Mempsode: A global optimization
software based on hybridization of population-based
algorithms and local searches. Computer Physics
Communications, 183(5):1139-1154, 2012.

Algorithm 1: Pseudocode of the implemented memetic
algorithm

N O s WN =

10

11
12
13

14

15

16
17
18

19
20

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42

43
44
45
46
a7
48

49

50

51

52
53
54
55

Input: Objective function, f : S C R™ — R; algorithm
PSO/DE: algo ; swarm size: N; memetic strategy:
memetic, maximum function evaluations: maxfev;
unification factor: UF; use mutation: mut; probability for
local search: p

Output: Best detected solution: z*, f (z*).

// Initialization

fori=1,2,...,N do

Initialize position x; and velocity u;

Set p; < x; // Initialize best position

fi < f(x;(0)) // Evaluate particle

fP <« fi // Best position

local; <— 0 // Best position is minimum is set to false
end

// Update Best Indices

Calculate global best index g1 and local best index g2

// Main Iteration Loop

Set t < 0
while termination criterion do
// Update Swarm
if algo = ’pso’ then
fori=1,2,...,N do
Calculate local best velocity update for particle ui
using g1
Caflculate global best velocity update for particle uf
using g2
if mut =1 then
// Unified PSO with mutation
R <+ N(u,0)
if rand() < 0.5 then
‘ ui + RUFul + (1 — UF)u? // Unified PSO +
Mutate local term
else
‘ u; + UFul + R(1 — UF)u? // Unified PSO +
Mutate global term
end

else

| w; + UFul + (1 — UF)uf // Unified PSO
end
x; = x; + u; // Update particle’s position

end
else if algo = ’de’ then
fori=1,2,...,N do
x; < p; // Replicate best positions p to swarm
array T
end
fori=1,2,...,N do
Calculate u; using a strategy from Eqgs. (6)—(?7?)
if rand() < C then
‘ Ti < U;
else
| @i+ ps
end
end

end
// Evaluate Swarm
for:=1,2,...,N do
| fi < f(z;) // Evaluate particle
end
// Update Best Positions
fori=1,2,...,N do
if f; < f(pi) then
Pi < T
L fi
end
end
Calculate global best index g; and local best index g2
Apply one of the schemes using p
Calculate global best index g1 and local best index g2

// If all best positions are local minima, restart
if =N | local; = N then

‘ Keep global best particle and reinitialize the swarm
end

end

