
Piecewise Neural Networks for Function
Approximation, Cast in a Form Suitable for

Parallel Computation

Ioannis G. Tsoulos, Isaac E. Lagaris, and Aristidis C. Likas

Dept. of Computer Science, University of Ioannina,
Ioannina - GREECE 45110

Abstract. We present a technique for function approximation in a par-
titioned domain. In each of the partitions a form containing a Neural
Network is utilized with parameterized boundary conditions. This pa-
rameterization renders feasible the parallelization of the computation.
Conditions of continuity across the partitions are studied for the func-
tion itself and for a number of its derivatives. A comparison is made with
traditional methods and the results are reported.

1 Introduction

1.1 Rationale and Motivation

Piecewise continuous polynomials are well established tools for approximation
and interpolation. As examples we refer to the Natural splines, to B-splines and
to Hermite splines[1]. In this article we present a partitioning technique, where
instead of polynomials we introduce Neural Networks as the basic approxima-
tion element, obtaining so a scheme that may be referred to as ”Neural Splines”.
Other non-polynomial splines have been developed in the past, for instance we
mention the ”Tension Splines” that are based on the exponential function [2].
Neural Networks are well known for their universal approximation capabilities
[3],[4] and have been employed for interpolation, approximation and modeling
tasks in many cases, ranging from pattern recognition[5], signal processing, con-
trol and the solution of ordinary and partial differential equations [6], [7],[8].

Partitioning a large domain into smaller ones, has the obvious advantage of
the reduced problem size and the disadvantage of the increased number of prob-
lems. However there are more points to consider. It is not clear if partitioning is
always worthwhile, since in most cases is being accompanied by computational
overhead, matching discontinuities and increased complexity. However a serious
problem with extended domains is that since non-linear optimization is often the
only method of choice, the resulting objective function possesses a large number
of useless local minima, a fact that corresponds to excessive computational load
that diminishes the efficiency of any method, hence in that respect partitioning
has an edge. Note also that partitioning schemes may profit dramatically from
parallel processing if formulated properly. Taking all the above into account, we

I.P. Vlahavas and C.D. Spyropoulos (Eds.): SETN 2002, LNAI 2308, pp. 314–324, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Piecewise Neural Networks for Function Approximation 315

developed a method that uses partitions and manages to cope with the men-
tioned difficulties and in addition is cast in a suitable form so as to benefit when
executed on parallel multiprocessor machines or on a distributed system.

1.2 General Description of the Method

Let us first consider the classical fitting problem:
Given M points and associated values (xi, yi), i = 1, 2, ...,M , where the

points xi ∈ R(N) , draw a smooth hypersurface, that is optimal in the least
squares sense.
The traditional way of solving the above is to assume a parametric model Ψ(x, p)
for the solution, and consequently adjust the parameters p, so as to minimize

the least squares ”total error” ET [p] =
M∑
i=1

[Ψ(xi, p) − yi]2.

In this article we assume that the domain D containing the x-points, is an N-
dimensional rectangular hyperbox and we proceed by first partitioning it in sev-
eral non-overlapping rectangular subdomains Di. In each of these subdomains,
the solution is represented by a proper model ψi(x, pi, qi) that is constructed in
such a way so as to meet certain conditions on the subdomain-boundary ∂Di,
imposed by continuity requirements. These boundary conditions depend on the
additional parameters denoted by qi but are independent of pi.

If we define the least squares ”local error”, i.e. the error in the subdomain
Di as:

EL[pi, qi] =
∑

xk∈Di

[ψi(xk, p
i, qi) − yk]2, ∀ i = 1, 2. . . . (1)

then, the total error is given by:

ET [p, q] =
∑

i

EL[pi, qi] (2)

The parameters pi are determined by minimizing EL[pi, qi] for a given set
of values for qi. The additional parameters qi, are then adjusted so that the
complete solution written as:

Ψ(x, p, q) = ψi(x, pi, qi), ∀ x ∈ Di

minimizes the ”total error” given by equation 2. The above steps are repeated
until a convergence criterion prevails. A detailed algorithmic description is de-
ferred to section 3.

316 I.G. Tsoulos, I.E. Lagaris, and A.C. Likas

2 Definitions and Terms

2.1 Obreshkov Polynomials and Related Operators

Consider a continuously differentiable function f(x), with x ∈ [a, b], and a
polynomial P k,m

a,b (f, x) with the following properties:

dj

dxj
P k,m

a,b (f, a) =
dj

dxj
f(x)|x=a ≡ f (j)(a),∀ j = 0, 1, . . . , k (3)

dj

dxj
P k,m

a,b (f, b) =
dj

dxj
f(x)|x=b ≡ f (j)(b),∀ j = 0, 1, . . . ,m (4)

Obreshkov [9], obtained the following result for the unique polynomial of the
minimal degree k +m+ 1.

P k,m
a,b (f, x) =

k∑
j=0

f (j)(a)
(x − b)m+1(x − a)j

j!(a − b)m+1

k−j∑
i=0

(
m+ i

i

)
(x − a)i

(b − a)i
+

m∑
j=0

f (j)(b)
(x − a)k+1(x − b)j

j!(b − a)k+1

m−j∑
i=0

(
k + i

i

)
(x − b)i

(a − b)i
(5)

We may then define an operator Lm,k
x∈[a,b] via the following relation:

Lk,m
x∈[a,b]f(x) = P k,m

a,b (f, x) (6)

We define the quantities:

Sk,m
a,b (f, x) ≡ f(x) − P k,m

a,b (f, x) = (1 − Lk,m
x∈[a,b])f(x) (7)

with the understanding that outside the domain, i.e. for x /∈ [a, b], Sk,m
a,b (f, x)

vanishes, and

Bk,m
a,b (f, x) ≡ f(x) − Sk,m

a,b (f, x) = (1 − (1 − Lk,m
x∈[a,b]))f(x)

= Lk,m
x∈[a,b]f(x) = P k,m

a,b (f, x) (8)

Sk,m
a,b (f, x) has the property that at x = a, (x = b) vanishes along with all its

derivatives up to kth, (mth) order. We call it an f-spline (since it is based on the
function f) and the quantity Bk,m

a,b (f, x) a boundary match (since it resembles
f on the boundary).

2.2 Neural Splines and Model Description

When f(.) is chosen to be a Neural Network, then we may call S(f, .) a Neural
Spline. In each of the rectangular subdomains Di we represent our model as:

ψi(x, pi, qi) = Bk,m
a,b (f, x) + Sl,n

a,b(N,x) (9)

Piecewise Neural Networks for Function Approximation 317

where N(x, pi) is a Neural Network with weights denoted by pi. The parameters
qi represent the values of f(x) and possibly of its derivatives on the boundary
∂Di. In one dimension the model ψi(x, pi, qi) so defined, satisfies by construction
the following boundary conditions:

dj

dxj
ψi(x, pi, qi)|x=a = f (j)(a), j = 0, ...,min(k, l) (10)

dj

dxj
ψi(x, pi, qi)|x=b = f (j)(b), j = 0, ...,min(m,n) (11)

As an example in the case k = l = m = n = 0, the one-dimensional model is
written as:

ψ(x, p, q) = f(a)
x − b

a − b
+ f(b)

x − a

b − a
+

N(x, p) − [N(a, p)
x − b

a − b
+N(b, p)

x − a

b − a
] (12)

with q referring collectively to f(a) and f(b), and satisfies ψ(a, p, q) = f(a) and
ψ(b, p, q) = f(b), as it can readily be verified. For the case k = l = m = n = 1,
we have the following one dimensional model:

ψ(x, p, q) = f (0)(a)π3,0 (x, a, b) + f (1)(a)π3,1 (x, a, b)

+ f (0)(b)τ3,0 (x, a, b) + f (1)(b)τ3,1 (x, a, b)

+N(x, p) − [N(a, p)π3,0 (x, a, b) +N (1)(a, p)π3,1 (x, a, b)

+N(b, p)τ3,0 (x, a, b) +N (1)(b, p)τ3,1 (x, a, b)]

where the following notation is used:

π1,0(x, a, b) =
x − b

a − b

π3,0 (x, a, b) =
(x − b)2

(a − b)2

(
1 + 2

x − a

b − a

)

π3,1 (x, ti−1, ti) = (x − a)
(x − b)2

(a − b)2

τ2k+1,j(x, a, b) ≡ π2k+1,j(x, b, a) (13)

3 Partitioning and Procedures

We proceed by first defining a number of knots ti, i.e. points that partition the
domain of interest D in several non-overlapping subdomains Di = [ti, ti+1].

1. Introduce a set of external parameters f
(0)
i , f

(1)
i , · · · , f

(k)
i (collectively de-

noted by qi) that specify values for the solution and for a number of its
derivatives at each knot ti.

318 I.G. Tsoulos, I.E. Lagaris, and A.C. Likas

2. For i = 1, 2, . . . use a model ψi(x, pi, qi) for x ∈ Di that satisfies the
conditions specified at the two bracketing knots ti and ti+1 and minimize the
local least squares ”error” Ei[pi, qi] with respect to pi, keeping the external
qi parameters fixed.

3. Adjust the external parameters qi (i.e. the prescribed values at the knots)
in such a way so as to minimize the total ”error” ET [p, q] =

∑
i EL

[
pi, qi

]
keeping pi fixed.

4. Repeat from step 2, until some termination criterion is satisfied.

Note that the procedure in step 2, can be implemented in parallel, since
the local models are being determined independently, given that the external
parameters remain constant, as it will become evident shortly. This is not the
case for the procedure in step 3, where a change in the external parameters at
the knot ti affects the representation in both the Di−1 and the Di domains.
However this part is not time consuming and hence it is not critical. There
are some important points that must be stressed. The initial values for the
external parameters are extremely important. Far off values, may decelerate the
convergence dramatically. Hence we deviced a preprocessing scheme to ensure
that the initial values are close to their actual values. This is achieved by fitting
a single neural network in every interval and then use this model to generate
the initial values for the external parameters. The network parameters resulting
from the preprocessing are subsequently used to initialize the weights pi of the
final model ψi(x, pi, qi) = B(f, x) + S(N,x). In this article the Neural Network
used is the sigmoidal perceptron with one hidden layer, given by:

N(x, p) =
H∑

i=1

p3i−2σ(p3i−1x+ p3i), σ(z) =
1

1 + e−z
(14)

Global optimization is used in each subdomain in the phase of preprocessing. In
practice, in order to accelerate the process, we proceed by first applying a local
search procedure, and only if this proves to be inadequate (i.e. if it produces a
local error above a set threshold) we employ global optimization techniques.

4 Numerical Experiments

Experiments were conducted with several data sets. We present in what follows
experiments with the function f(x) = x sin(x2) whose plot in the interval [−4, 4]
is shown in Figure 1

Several cases were examined by varying the number of partitions and the
number of hidden units of the Neural Networks in each partition. Two sets of
points were used: a rather sparse point set for the training and a dense point
set for testing. Since the local models are mutually independent, there are no
propagating errors across the subdomains and so a rather modest optimization
stopping criterion may be used, that accelerates the process without substan-
tially sacrificing the model’s approximation capability.

Piecewise Neural Networks for Function Approximation 319

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

f(x)

x

x*sin(x * x)

Fig. 1. Plotting of x sinx2

To test the efficiency we compared solution times for several combinations
of the partition number and the number of the hidden nodes of each network
keeping their product at comparable values to avoid overblown model complexity.
A solution is taken to be one that produces a prescribed value for the max
absolute pointwise error for the training set. The solution time is taken to be
the cpu time spent by a uniprocessor system. In order to test the gain coming
from parallel processing, our implementation that is based on message passing
programming, was run on a multiprocessor system and observed how the solution
time scaled down.

5 Experiments

5.1 Resources

The following results were obtained by using 25 Pentium III - 450MHZ machines
running on Linux with kernel 2.4.0 The Lam v6.5.3 of MPI was employed for
the distributed processing.

5.2 Results

In table 1 we list the square approximation error (columns ERR) and the number
of knots (columns N) for cubic spline interpolation. 1000 points were used for
testing. Diagrammatically tis is represented in figure 2.

320 I.G. Tsoulos, I.E. Lagaris, and A.C. Likas

Table 1. Approximation error for the cubic spline interpolation

N ERR N ERR

40 168.05 75 7.86
45 90.95 80 6.08
50 52.37 85 4.82
55 32.18 90 3.90
60 21.00 95 3.22
65 14.54 100 2.69
70 10.47

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80 90 100

ER
RO

R

N

CUBIC SPLINE ERROR

ERROR

Fig. 2. Approximation error for the cubic spline interpolation

In all of our experiments we used 200 randomly selected points from the in-
terval [-4,4] for training and 1000 points for testing. The reported approximation
error refers to the test error. In table 2 we list the square approximation error
(column ERR) and the training time (column TIME) for a single neural net-
work. For the train of the neural network we used the single linkage clustering
global optimization method due to Kan[10]. The column NODES represents the
number of hidden nodes in the neural network.

In table 3 we list the square approximation error (column ERR) and the
training time (column TIME) for the suggested method. For the training of the
neural networks we used the single linkage clustering global optimization method
due to Kan[10] The column INTERVALS represents the number of the intervals,

Piecewise Neural Networks for Function Approximation 321

Table 2. Approximation error and execution time for a single neural network

NODES ERR TIME

8 4.52 46.27
10 1.9 ∗ 10−3 110.86
12 2.0 ∗ 10−4 179.33
14 1.3 ∗ 10−5 349.75
16 2.0 ∗ 10−6 418.334
18 1.4 ∗ 10−7 488.219
24 9 ∗ 10−8 598.124
30 6 ∗ 10−8 634.896
36 4.3 ∗ 10−8 697.150

in which we partitioned the problem. In this experiments we used 4 hidden nodes
in each of the neural networks.

Table 3. Approximation error and execution time for the proposed method

INTERVALS ERR TIME

2 4.733 56.25
4 0.1497 90.72
8 2.7 ∗ 10−5 182.86
10 1.1 ∗ 10−5 193.55
15 2.3 ∗ 10−7 87.30

In table 4 we list the square approximation error (column ERR) and the
training time (column TIME) for the suggested method. For the training of the
neural networks we used the single linkage clustering global optimization method
due to Kan[10]. The column INTERVALS represents the number of the intervals,
in which we partitioned the problem. In this experiments we used 8 hidden nodes
in each of the neural networks.

In figure 5.2 we show the absolute difference between x sin(x2) and our ap-
proximation for 10 intervals and 8 nodes at each interval.

In table 5 we compare the training time for the multiple interval method on
one processor (column T1) in comparison with the training time for the same
method run on multiple processors (column TI , where I is the number of pro-
cessors). We use column I for the number of intervals and column N for the
number of hidden nodes in each of the neural networks. We use column E for
the maximum absolute approximation error. In the column DIFF we have the
relative difference between the multiple processor case and the single processor
case.

322 I.G. Tsoulos, I.E. Lagaris, and A.C. Likas

Table 4. Approximation error and execution time for the proposed method

INTERVALS ERR TIME

2 1.1 ∗ 10−5 296.53
4 3 ∗ 10−7 126.53
8 2 ∗ 10−7 103.076
10 2 ∗ 10−8 86.40
15 10−8 276.67

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

-4 -3 -2 -1 0 1 2 3 4

ER
RO

R

X

APPROXIMATION ERROR(10 INTERVALS)

ERROR

Fig. 3. Approximation error for the proposed method

Table 5. Multiple processors vs one processor

I N E T1 TI DIFF

2 8 0.0021 603.19 296.53 -50.84%
4 8 0.00012 476.90 126.53 -73.47%
8 4 0.0038 857.46 182.86 -78.67%
10 2 0.072 620.96 135.71 -78.15%
10 4 0.0054 866.38 193.55 -77.66%
15 1 0.073 1065.74 216.87 -79.65%
15 2 0.015 1187.66 282.51 -76.21%

Piecewise Neural Networks for Function Approximation 323

6 Conclusions

Although our results are only preliminary, we can however
draw some conclusions.

– The Neural Splines seem to be quite convenient and offer a flexible basis for
functional approximation.

– Parallel processing plays an important role to the efficiency of the method,
as can be realised by comparing the times spent on uniprocessor and multi-
processor systems. For large problems this will be the key advantage of our
method.

– The scaling behaviour seems to be described by:

T1
TI

=
1 − e−γI

1 − e−γ
, γ > 0

which for small values of I, scales linearly.(I, denotes the number of processors
that is equal to the number of the partitions). The value of γ reflects the over-
head of the calculation as well as the non-parallelized parts of it. Note that the
optimization with respect to the external parameters can be accelerated by ap-
plying even-odd knot parallelization that will further reduce the value of γ. This
will be important for problems in higher dimensions, since there the number of
the external parameters is expected to grow significantly.

Future research will focus on higher dimensional problems and to the solution
of differential equations.

References

1. De Boor C., A practical guide to Splines, Springer-Verlag, New York 1978.
2. Kincaid D., and Cheney W., Numerical Analysis, Brooks/Cole Publishing Com-

pany 1991.
3. Hornik K., Stinchcombe M., and White H., Neural Networks 2(1989) 359
4. Cybenko G., Approximation by superpositions of a sigmoidal function, Mathemat-

ics of Control Signals and Systems 2(1989)303-314
5. Bishop C., Neural Networks for Pattern recognition, Oxford University Press,1995.
6. Lagaris I. E., Likas A., Fotiadis D. I., Artificial Neural Networks for solving

ordinary and partial differential equations, IEEE Trans. on Neural Networks,
9(1998)987-1000.

7. Lagaris I. E., Likas A., Fotiadis D. I., Artificial Neural Network methods in Quan-
tum Mechanics, Computer Physics Communications, 104(1997)1-14

8. Lagaris I. E., Likas A., Papageorgiou D. G., Neural Network methods for bound-
ary value problems with irregular boundaries, IEEE Trans. on Neural Networks,
11(2000)1041-1049

9. Obreshkov N., On the Mechanical Quadratures, J. Bulgar. Acad. Sci. and Arts
LXV-8,(1942)191-289

10. Stochastic Global Optimization Methods: Clustering Methods. A.H.G Rinnooy
Kan, G.T. Timmer, Mathematical Prograaming 39(1987) pp:27-56.

324 I.G. Tsoulos, I.E. Lagaris, and A.C. Likas

11. F. Theos, Master Thesis, June 2001, Department of Computer Science, University
of Ioannina, Greece.

12. Papageorgiou D. G., Demetropoulos I. N. and Lagaris I. E., The Merlin Control
Language for strategic optimization, Comput. Phys. Commun. 109(1998)250-275

13. Papageorgiou D. G., Demetropoulos I. N. and Lagaris I. E., MERLIN-3.0 A mul-
tidimensional optimization environment, Comput. Phys. Commun. 109(1998)227-
249

View publication statsView publication stats

https://www.researchgate.net/publication/221238982

