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A Hybrid Numerical-
Experimental Method for
Determining Thermal
Conductivities
Determining the thermal conductivity of a material from temperature measurements in a
cooling or heating process belongs to the class of inverse problems. In this article, we
present a method for a simple experimental setup, consisting of a glass tube containing
the material under investigation, two thermistors for temperature monitoring (one at the
central axis and the other attached on the outer surface of the tube), and a water heat
bath maintained at a desired temperature. We solve the direct problem, i.e., the transient
heat conduction equation, treating the thermal conductivity as a parameter whose value
is determined by minimizing the difference between the calculated and the experimentally
measured temperatures. The method is based on the numerical solution of the one-
dimensional transient heat conduction equation in cylindrical coordinates that accurately
describes the temperature evolution of a material in a narrow, long glass tube. The tech-
nique has been validated by applying it to the lauric and capric acids, whose thermal
conductivities are accurately known and therefore it could be a valuable tool for the
determination of the thermal properties of phase change materials suitable for thermal
storage applications. [DOI: 10.1115/1.4048468]

1 Introduction

Thermal properties of phase changing materials (PCM) are usu-
ally determined by means of the so-called T-History method [1],
according to which sample and reference material (typically water)
are preheated above the PCM melting temperature, and subse-
quently, during cooling, the temperature evolution is monitored.
The thermal properties, i.e., melting point, specific and latent heats
are evaluated by simple application of energy balance equations.
However, the method, although very simple and easy to imple-
ment, suffers from several drawbacks: the accurate determination
of the critical times of the T-History curve upon cooling, i.e., the
time entering in the solidification and the time at which the solid
starts to cool down is difficult to assess, especially in mixed PCMs.
Hong et al. [2] tried to overcome this issue using time derivatives
of the temperature evolution curve, which proved to work satisfac-
torily in the case of pure substances with clearly defined phase
change zones, but it is troublesome in mixtures, which are the most
common case of industrial PCMs in which the limits of solid and
liquid phases do not appear clearly in the T-History curve. An
alternative approach based on the numerical determination of the
enthalpy versus temperature by successive integrations of the
T-History curve was proposed [3]. Although this method tackles
rather well the problem of critical time determination, it has prob-
lems in the phase change zone at which the temperature remains
almost constant and therefore the numerical evaluation of the

enthalpy becomes challenging. To overcome this issue, Sandnes
et al. used a quadratic polynomial adjusted to the T-History curve
to evaluate the heat loss upon cooling, thus providing a more stable
procedure [4]. However, in all these approaches the thermal con-
ductivity, which is of major importance, e.g., in applications of
thermal storage cannot be determined.

Aiming in providing an answer to these issues, we devised an
easy and flexible experimental procedure in conjunction with a
robust and accurate computational tool that is based on the numer-
ical solution of the well-known transient heat conduction equa-
tion. In what follows, we describe the experimental setup and the
computational approach, to continue with representative results
and end up with some concluding remarks.

2 Experimental Setup and Computational Details

Contrary to the T-History method, we use only one cylindrical
tube having length of 25 cm and external diameter and thickness
of 1.2 cm and 3 mm, respectively. The tube was of Borosilicate
glass DURAN having thermal conductivity of 1.2 W/(mK) at 90 �C
and a density of 2.23 g/cm3, while the specific heat (not provided
from the producer) was evaluated as a weighted average of the
specific heat of its constituents, i.e., 81% SiO2, 13% B2O3, 4%
Na2OþK2O, and 2% Al2O3. For the validation of the method, we
used two different prototypes PCMs to fill the tube (typical using
about 10 g), namely the lauric and capric acid purchased from
Quartzy. Two negative temperature coefficient 5-mm thermistors
of 14 KOhms purchased from Mouser Corporation UK were used
for the temperature measurements (accuracy 60.01 �C), one at the
center of the tube containing a PCM and the second one attached
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at the tube’s external surface. The central thermistor was sup-
ported by a Teflon thin stick (diameter 0.6 mm) and attached at
the top at upper end of the tube by means of solid support, thus
ensuring correct positioning within 0.2 mm, Fig. 1(a). We eval-
uated that such a misalignment results in meaningless differences
in the evaluated thermal quantities. The temperature acquisition
was obtained by means of the measurement computing and coun-
ter USB data acquisition card. The tube with the PCM was ini-
tially equilibrated in a water bath at a certain temperature, below
the solidification or above the melting temperature, depending on
whether we wished to evaluate the thermal conductivity of the
solid or the liquid phase, to subsequently immerse the tube into a
cold water bath with a constant temperature at 10 �C. Taking into
account the geometry of the tube, i.e., that its length is approxi-
mately 20 times longer than its diameter, we may assume that we
are dealing with 1D transient heat conduction problem in cylindri-
cal coordinates. We will proceed by first solving the heat conduc-
tion equation for a thin and long cylindrically shaped material
with its peripheral surface kept at a constant temperature. The pur-
pose of this is to illustrate the numerical technique and leave out
the complexities due to the cylindrical glass tube and the associ-
ated interface conditions. Subsequently, the actual problem will
be tackled, i.e., that of a material filling a cylindrical glass tube of
finite width, with its outer surface maintained at a temperature that
is known as a function of time. We note here that the proposed
approach is substantially different from those used previously: we
solve numerically the differential equation of heat transfer and at
the same time we perform minimization for the determination of
the thermal conductivity. The T-history method and its variations
employ energy balance, they do not compare to a solution of the
heat transfer equation, and therefore, the conductivity is not deter-
mined by fitting the experimental temperature values.

2.1 Governing Equation. The heat conduction is described
by the following partial differential equation:

@T r; tð Þ
@t

¼ aLT r; tð Þ; a ¼ k

qcp
; L ¼ r2; r 2 0; b½ � (1)

With the conditions

Tðr; 0Þ ¼ H0 ðinitial conditionÞ (2)

@T r; tð Þ
@r

����
r¼0

¼ 0; t > 0 boundary condition 1ð Þ (3)

Tðb; tÞ ¼ H1; t > 0 ðboundary condition 2Þ (4)

In cylindrical coordinates with no z-dependence and azimuthal
symmetry

L � @2

@r2
þ 1

r

@

@r
(5)

The Crank–Nicolson scheme reads

T r; tþ dtð Þ ¼ T r; tð Þ þ
adt

2
L T r; tð Þ þ T r; tþ dtð Þ
� �

(6)

Or if rewritten

1� adt

2
L

� �
T r; tþ dtð Þ ¼ 1þ adt

2
L

� �
T r; tð Þ (7)

This equation provides the scheme that permits the time propaga-
tion while the spatial evolution is inherently included.

The space coordinate r ranging in [0,b] may be discretized as

ri ¼ ih; 8 i ¼ 0; 1; … ; nþ 1; with h ¼ b

nþ 1
(8)

Fig. 1 (a) Experimental setup of the present approach and (b) experimental setup of T-history methods
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We make the following conventions for convenience:

Ti � T ri; tð Þ; T0i �
@T ri; tð Þ
@r

; T00i �
@2T ri; tð Þ
@r2

and likewise

(9)

Tþi � T ri; tþ dtð Þ; Tþ0i �
@T ri; tþ dtð Þ

@r
;

Tþ00i � @2T ri; tþ dtð Þ
@r2

(10)

At r ¼ rnþ1 ¼ b we know that Tnþ1 ¼ H1; 8t > 0. Hence T
will be represented by a vector T 2 Rnþ1 with components
Ti; i ¼ 0; 1; … ; n (and similarly for Tþ).

The action of the L operator on may be represented by

LT ¼ AT þ d; A 2 Rðnþ1Þ�ðnþ1Þ; d 2 Rnþ1 (11)

The first and second derivatives at ri with i 6¼ 0 and i 6¼ n may be
approximated by

T0i �
Tiþ1 � Ti�1

2h
(12)

T00i �
Tiþ1 � 2Ti þ Ti�1

h2
(13)

and

LT i ¼
1

h2
1� 1

2i

� �
Ti�1 � 2T i þ 1þ 1

2i

� �
T iþ1

� �
(14)

8i ¼ 1; � � � ; n� 1

2.2 Treating the Boundary Conditions. At r ¼ 0, there is

an apparent singularity in calculating 1
r @Tðr; tÞ=@r. Hence we will

make use of the boundary conditions at r ¼ 0, namely, Eq. (3)

@2T 0; tð Þ
@r2

� lim
r!0

@T r; tð Þ
@r

� @T 0; tð Þ
@r

r � 0
¼ lim

r!0

1

r

@T r; tð Þ
@r

(15)

Hence 1
r0

T00 ¼ T000 and so LT0 ¼ 2T000 . From Taylor expansion, we
obtain

T1 ¼ T0 þ hT00 þ 0:5h2T000 þ Oðh3Þ (16)

T2 ¼ T0 þ 2hT00 þ 2h2T000 þ Oð8h3Þ (17)

Using the boundary condition at r ¼ 0;T00 ¼ 0 and eliminating the
third-order terms from Eqs. (16) and (17), we obtain to second
order the following:

T000 ¼
1

2h2
8T1 � T2 � 7T0ð Þ (18)

Again from the same equations by eliminating second-order
terms, we obtain

T00 ¼
4T1 � T2 � 3T0

2h
(19)

Since T00 ¼ 0; 4T1 � T2 � 3T0 ¼ 0 and hence

T000 ¼
1

2h2
T1 � T0ð Þ and (20)

LT0 ¼
1

h2
�4T0 þ 4T1ð Þ (21)

For the LTn we proceed in the following manner: From Eq. (14)
for i ¼ n and replacing Tnþ1 ¼ H1 using Eq. (4), we obtain

LTn ¼
1

h2
1� 1

2n

� �
Tnþ1 � 2Tn

� �
þ 1

h2
1þ 1

2n

� �
H1 (22)

From Eqs. (21), (14), (22), and (11), we may deduce the expres-
sion for the matrix Ai;j and the vector di by direct comparison, i.e.,

A0;0 ¼ �4=h2; A0;1 ¼ 4=h2; A0;j ¼ 0; 8j � 2 (23)

Aij ¼
1

h2
1� 1

2i

� �
di�1;j � 2di;j þ 1þ 1

2i

� �
diþ1;j

� �
8i 6¼ 0; j 2 0; 1; …; nf g (24)

di ¼
1

h2
1þ 1

2n

� �
H1di;n; t > 0 and di ¼

1

h2
1þ 1

2n

� �
H0di;n; t ¼ 0

(25)

2.3 Implementation The matrix

The matrix B � I � adt

2
A with elements (26)

Bi;j ¼ di;j �
adt

2
Ai;j; 8i; j 2 0; 1; …; nf g (27)

is a tridiagonal matrix that will be repeatedly used in solving lin-
ear systems of the kind: By¼ z. Therefore, it is important, in order
to efficiently solve the linear systems, to maintain it in lower-
upper decomposition (LU) factors. Explicitly the B-matrix ele-
ments may be written as

8 j ¼ 0; 1; …; n

B0;j ¼ 1þ 4bð Þd0;j � 4bd1;j; and b � adt

2h2
(28a)

Bi;j ¼ 1þ 2bð Þdi;j � b 1� 1

2i

� �
di�1;j � b 1þ 1

2i

� �
diþ1;j;

8i ¼ 1; …; n (28b)

The main diagonal Bi,i of B and likewise its lower Bj,j�1 and upper
Bk,kþ1 off diagonals may be written as

ai ¼ Bi;i; 8i ¼ 0; …; n (29a)

bi ¼ Bj;j�1; 8j ¼ 1; …; n (29b)

ck ¼ Bk;kþ1; 8k ¼ 0; …; n� 1 (29c)

B ¼

a0 c0 0 � � � � � � 0

b1 a1 c1 0 � � � 0

0 . .
. . .

. . .
. . .

.
�

� . .
. . .

. . .
. . .

.
�

� 0 . .
.

bn�1 an�1 cn�1

0 � � � � � � 0 bn an

2
6666666664

3
7777777775

(30)

Hence

a0 ¼ 1þ 4b; ai ¼ 1þ 2b; 8i ¼ 1; …; n (31a)

Journal of Heat Transfer JANUARY 2021, Vol. 143 / 011702-3



c0 ¼ �4b; ck ¼ �b 1þ 1

2k

� �
; 8k ¼ 0; …; n� 1 (31b)

bj ¼ �b 1� 1

2j

� �
; 8j ¼ 1; …; n (31c)

The LU decomposition of B is easily performed by a matrix L

Li;j ¼ di;j þ lidi;jþ1 (32)

with li; 8i ¼ 1; …; n (33)

to be determined, and a matrix U

Ui;j ¼ uidi;j þ cidi;j�1 (34)

i.e., with identical upper off diagonal as that of B, and diagonal
elements ui ¼ Ui;i to be determined

u0 ¼ a0 (35a)

8i ¼ 1; …; n (Next two lines indented)

li ¼ bi=ui�1 (35b)

ui ¼ ai � lici�1 (35c)

Combining Eqs. (7), (11), and (27), the time development scheme
becomes

BTþ ¼ I þ adt

2
A

� �
T þ adt

2
dþ þ dð Þ (36)

Note that ðþÞ superscripts denote quantities calculated at time
tþ dt
ðI þ adt

2
AÞ is tridiagonal and it can be obtained from B by the

following substitutions:

ai ! a0i ¼ 2� ai (37a)

bi ! b0i ¼ �bi (37b)

ci ! c0i ¼ �ci (37c)

2.4 Linear Solver. Since we have decomposed

B ¼ LU (38)

the system

BTþ ¼ g (39)

with g ¼ I þ adt

2
A

� �
T þ adt

2
dþ þ dð Þ (40)

may be implemented by introducing a vector z as

z ¼ UTþ (41)

Then Lz ¼ g is solved by (42)

z0 ¼ g0 (43a)

zi ¼ gi � lizi�1; 8i ¼ 1;…; n (43b)

Subsequently, Tþ is obtained by solving UTþ ¼ z as

Tþn ¼ zn=un (44a)

Tþi ¼ ðzi � ciT
þ
iþ1Þ=ui; 8i ¼ n� 1; …; 1; 0 (44b)

To calculate g, a matrix–vector multiplication is needed, which
may be simplified considering Eq. (37), namely

I þ adt

2
A

� �
T

� �
i

¼
2� a0ð ÞT0 � c0T1; i ¼ 0

2� anð ÞTn � bnTn�1; i ¼ n

2� aið ÞTi � ciTiþ1 � biTi�1; i ¼ 1; …; n� 1

8><
>:

(45)

2.6 Interface of Two Materials. Once we have the frame-
work given above, we now turn to a cylindrical glass tube with
internal and external radii R1 and R2. The tube is filled with a
material and the whole system (glass–material) is initially brought
at temperature H1. The tube’s external surface in maintained at a
time-dependent temperature

H2 ¼ H2ðtÞ (46)

At the glass–material interface, we assume that there is no bound-
ary resistance and therefore the temperature is continuous, i.e.,
approaches the same value from both sides. Also since heat cannot
be stored on the interface, heat flux is balanced out. The heat
flux is given by �k@T r; tð Þ=@r and therefore at the interface

k1@T R1 � �; tð Þ=@r ¼ k2@T R1 þ �; tð Þ=@r, i.e., there is a disconti-
nuity in the temperature gradient across the interface

The governing equation is again Eq. (1) with the remark that
a; k; q; cp are different for r 2 ½0;R1Þ and r 2 ðR1;R2�

a ¼
	

að1Þ 8r < R1

að2Þ 8r > R1

; k ¼
	

kð1Þ 8r < R1

kð2Þ 8r > R1

;

q ¼
	

qð1Þ 8r < R1

qð2Þ 8r > R1

; cp ¼
	

c
ð1Þ
p 8r < R1

c
ð2Þ
p 8r > R1

(47)

The grid in r uses two steps, one for 0 	 r 	 R1 and another for
R1 	 r 	 R2

ri ¼ ih; with h ¼ R1

n
; 8i ¼ 0; 1; …; n (48a)

ri ¼ R1 þ i� nð Þd; with d ¼ R2 � R1

mþ 1� n
; 8i ¼ n; …; mþ 1

(48b)

Again the tridiagonal matrix is comprised of

a0 ¼ 1þ 4
a 1ð Þdt

2h2
; ai ¼ 1þ 2

a 1ð Þdt

2h2
; 8i ¼ 1; …; n� 1 (49a)

ai ¼ 1þ 2
a 2ð Þdt

2d2
; 8i ¼ nþ 1; …; m;

an ¼ 1� dt

s2 � s1

a 2ð Þs1

d2
� a 1ð Þs2

h2

 ! (49b)

with

s1 ¼
a 1ð Þ

c 1ð Þ
p

1

R1

þ 2

h

� �
; s2 ¼

a 2ð Þ

c 2ð Þ
p

1

R1

� 2

d

� �
(50)

bi ¼ �
a 1ð Þdt

2h2
1� 1

2i

� �
; 8i ¼ 1; …; n� 1; bn ¼ �

a 1ð Þs2dt

s2 � s1ð Þh2

(51a)
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bi ¼ �
a 2ð Þdt

2d2
1� 1

2 i� nþ R1

d

� �0
B@

1
CA; 8i ¼ nþ 1; …; m

(51b)

c0 ¼ �4
a 1ð Þdt

2h2
; ci ¼ �

a 1ð Þdt

2h2
1þ 1

2i

� �
; 8i ¼ 1; …; n� 1

(52a)

cn ¼
a 2ð Þs1dt

s2 � s1ð Þd2
; ci ¼ �

a 2ð Þdt

2d2
1þ 1

2 i� nþ R1

d

� �0
B@

1
CA;

8i ¼ nþ 1; …; m� 1

(52b)

And for the d-vector

di ¼ dm;i
H2 tð Þ

d2
1þ 1

2 m� nþ R1

d

� �0
B@

1
CA (53)

The above coefficients satisfy at the interface r ¼ R1 the follow-
ing conditions:

T R1 � e; tð Þ ¼ T R1 þ e; tð Þ and k 1ð Þ @T R1 � e; tð Þ
@r

¼ k 2ð Þ @T R1 þ e; tð Þ
@r

; e! 0

(54)

We have again to solve repeatedly Eq. (36) with B reconstructed
using the above values for ai; bi; ci .

3 Results and Discussion

The numerical procedure described above was implemented in
a homemade code written in Fortran and first tested against an
analytical solution that is available for the case of transient heat
conduction in 1D cylindrical tube shaped materials, i.e., no inter-
face [5]. Figure 1 depicts the analytical and the numerical results
referring to the time evolution of the temperature in this case. It
turns out that the model reproduces very well the analytical
solution.

We then passed in the more realistic cases of lauric and capric
acids. In Figs. 2(a) and (b), we provide the experimental data
along with the numerical predictions for these two cases.

As it can be seen, the model reproduces very well the experi-
mental data, yielding thermal conductivities of 0.2360.02 W/mK
and 0.1960.03 W/mK for the lauric and capric acids, in line with
available reference values, e.g., 0.21560.01 and 0.15 W/mK, [6]
and [7], respectively. We note that the error bars represent the
standard deviations evaluated over 30 independent measurements
and calculations, and the provided values are obtained from the
mean values. In addition, we verified that the specific heat
capacity we used for the glass tube (by varying its value by as
much 650%) does not affect the obtained thermal conductivity
values, a result that is somehow expected taking into account its
small thickness and the fact that its conductivity value is 5–6
times larger than those of the PCMs.

4 Concluding Remarks

We presented a method based on the numerical solution of the
one-dimensional transient heat conduction equation in cylindrical
coordinates that describes accurately the temperature evolution of
a material in a narrow and long glass tube. The experimental setup

permitting the application of the method is very simple and easy
to implement.

The thermal conductivity is determined by fitting the numeri-
cally simulated temporal profile to the one measured experimen-
tally. The procedure was applied successfully in the representative

Fig. 2 Comparison between analytical and numerical solu-
tions for the particular case of a material with long cylindrical
shape

Fig. 3 (a) Numerical evaluation of the time evolution of the
temperature according to the numerical solution of the tran-
sient heat conduction method adjusted to the experimental
data in the case of lauric acid and (b) the same as Fig. 2(a) but
for capric acid

Journal of Heat Transfer JANUARY 2021, Vol. 143 / 011702-5



cases of lauric and capric acids, suggesting that it could be of val-
uable use in choosing phase change materials to be used in ther-
mal storage applications.
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