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Abstract. A new class of Artificial Neural Networks is described incorporating a node density
function and functional weights. This network containing an infinite number of nodes, excels in
generalizing and possesses a superior extrapolation capability.

1. Introduction

Artificial Neural Networks (ANNs) are known to be universal approximators [1, 2] and naturally
have been applied to both regression and classification problems. Usual types are the so
called feed-forward “Multi-Layered Perceptrons (MLP)” and the “Radial Basis Function (RBF)
networks”. The usefulness of ANNs is indisputable and there is a vast literature describing
applications in different fields, such as pattern recognition and data fitting [3, 4], the solution
of ordinary and partial differential equations [5, 6, 7], stock price prediction [8], etc. ANNs can
learn from existing data the underlying law (i.e. a function) that produced the dataset. The
network parameters, commonly referred to as “weights”, are adjusted by a “training” procedure
so as to represent as closely as possible the generating function. When the data are outcomes of
experimental measurements, they are bound to be corrupted by systematic errors and random
noise, a fact that further complicates the “learning” task.

“Over-training” is a phenomenon where, although a network may fit a given dataset
accurately, it fails miserably when used for interpolation. To evaluate the performance of a
network, the dataset is usually split into the “Training-set” and the “Test-set”. The ANN is
trained using the former, and it is evaluated by examining its interpolation capability on the
latter. If the interpolation is satisfactory, the network is said to “generalize” well, and hence
it may be trusted for further use. Over-trained networks do not generalize well. An empirical
observation is that given two networks with similar performance on the training set, the one with
fewer parameters is likely to generalize better. Several techniques have been developed aiming to
improve the network’s generalization; for instance “weight decay” and “weight bounding” [9, 10],
“network pruning” [11], etc. These methods make use of an additional set, the validation set,
i.e. they partition the data into three subsets; the training, the validation and the test subset.
Training may yield in several candidate models (i.e. networks with different weight values).
Then the validation set is used to pick the best performing model, and finally the test set will
give an estimate for the size of the expected error on new data.

Another framework for modeling is through sparse supervised learning models [4, 12] which
utilize only a subset of the training data, discarding unnecessary samples based on certain
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criteria. Sparse models widely used are, among others, the Lasso [13], the Support Vector
Machines (SVMs) [14] and the Relevance Vector Machines (RVMSs) [15]. Sparse learning applies
either L; regularization, leading to penalized regression schemes [13], or sparse priors on the
model parameters under the Bayesian framework [15, 16, 17, 18]. Quite recently, Toronto’s
“Dropout” technique [19] has appeared, stressing the importance of the subject and indicating
the current keen interest of the scientific community. This approach employs a stochastic
procedure for node removal during the training phase, thus reducing the number of model
parameters, in an effort to avoid over-training.

In the present article we introduce a new type of neural network the FWNN, with weights that
depend on a continuous variable, instead of the traditional discrete index. This network employs
a small set of adjustable parameters and at the same time presents superior generalization
performance as indicated by an ample set of numerical experiments. In addition to the
interpolation capability we studied the extrapolation properties of FWNN, found to be quite
promising. Presently, and in order to illustrate the new concept, we focus on particular forms
of the involved weight and kernel functions, which however are not restrictive by any means.
The idea of replacing the indexed parameters with continuous functions has been previously
considered in [20], in a different setting and with rather limited implementation prospects.
However since then, no further followups have been spotted in the literature.

In section 2, we introduce the proposed neural network with continuous weight functions,
by associating it to an ordinary radial basis function network and presenting the process of
the transition to the continuum. In section 3, we report comparative outcomes of numerical
experiments conducted on both homemade datasets and on well known benchmarks established
in the literature. Finally, in section 4, we summarize the strengths of the method, and consider
different architectural choices that may become the subject of future research.

2. A new type of neural network

Radial basis functions (RBF) are known to be suitable for function approximation and
multivariate interpolation [21, 22]. An RBF network with K Gaussian activation nodes, may be
written as:

K K 2
X — s
Nrpr(x;0) = wo + ij¢(x; Wi, 05) = wo + ij exp <—’M]‘> (1)

202
j=1 j=1 J

where x,p; € R" and 0 = {wj, ,uj,aj}]K:O collectively denote the network parameters to be
determined via the training procedure. The total number of adjustable parameters is given by
the expression

NEB —K(©24n)+1 (2)

var

which grows linearly with the number of network nodes.

Consider a dataset S = {x(l), f (l)}, where f®) is the desired output for the corresponding
input x), and let T C S be a subset of S. The interpolating RBF network is then determined
by minimizing the mean squared deviation over 71"

o 1 2
En0) % = > (Nesr(x®;0) - f0) (3)
<0 fOeT

Let § = {wj, 11, 3j}§i1 be the minimizer of Eip(0), i.e.

6 = arg mgin{E[T](H)} . (4)
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The network’s generalization performance is measured by the mean squared deviation, Ejg_7 (5),
over the relative complement set S — T'. In the neural network literature, T" is usually referred
to as the “training” set, while S — T as the “test” set. A well studied issue is the proper choice
for K, the number of nodes.

The training “error” Figj(f), is a monotonically decreasing function of K, while the test

“error” Ejg_7 (5), is not. Hence we may encounter a situation where adding nodes, in an effort to
reduce the training error, will result in increasing the test error, spoiling therefore the network’s
generalization ability. This is what is called “over-fitting” or ”over-training”, which is clearly
undesirable. An analysis of this phenomenon, coined under the name “bias-variance dillema’
may be found in [23]. Over-fitting is a serious problem and considerable research effort has been
invested to find ways to deter it, leading to the development of several techniques such as model
selection, cross-validation, early stopping, weight decay, and weight pruning [4, 12, 23, 24].

2.1. Functionally Weighted Neural Network (FWNN)
We propose a new type of neural network by considering an infinite number of hidden nodes.

This is facilitated by introducing a node density function p(s) = ﬁ of a continuous variable

€ [-1,1] with diverging integral f_ll p(s)ds — oo. We define the “Functionally Weighted
Neural Network” in correspondence to (1) as:

Newt0) = [ 2 (<EHEE) 5)

1 1—s2 202(s)

by applying the following transitions:

K

Wy 006) 5 o), o5 o), 30— [ (6
7j=1

In order to use the Gauss—Chebyshev quadrature, we reset w(s) = v'1 — s2w(s) and the network
becomes: ,
|x — p(s)] )

New() = [ Lo (-EEE ™

The weight model-functions w(s), u(s) and o(s) are parametrized and these parameters are
collectively denoted by 6. We examined polynomial forms, i.e:

Ly Ly
s) = ijsj, Z'U’J ,and  o(s) = Zajsj . (8)
=0 =0

Note that p; Vj = 0,---,L, and pu(s) are vectors in R". Therefore, the set of adjustable
parameters becomes:

9:{{“)]'}]@0’ {ﬂij}z' 1,; 0 {UJ} o} 9)

with a total parameter number given by:

NEW = (14 Ly) +n(Ly +1)+ (Lo + 1) = Ly +nL, + Ly + 142 (10)
The mean squared deviation corresponding to Eq. (3) is given by:
of 1 2
Bn®) % g > (New(x:0) - 1) (11)
xW fOer

The above quantity serves as the objective function for the optimization procedure. Since Ej7(0)
is continuously differentiable, Newton or Quasi-Newton methods are appropriate. Also, since
such an objective function is expected to possess a multitude of local minima, a global procedure
is necessary as usual [25].
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2.2. Optimization strategy

Estimating the model parameters is accomplished by minimizing the mean squared error Ejr(6).
Since this objective is multimodal, a global optimization technique known as ”multistart” has
been employed. This is a two-phase method, consisting of an exploratory global phase and
a subsequent local minimum-seeking phase. In our case, the search during the local phase is
performed via a Quasi-Newton approach with the BFGS update [26]. Since the network is
expressed in a closed form, second derivatives may also be computed if a Newton method is
to be preferred instead. In Multistart, a point 6 is sampled uniformly from within the feasible
region, 6 € S, and subsequently a local search L, is started from it leading to a local minimum
0 = L(#). If 6 is a minimum found for the first time, it is stored, otherwise, it is rejected. The
cycle goes on until a stopping rule [27] instructs termination.

3. Experimental results
We have performed a series of numerical experiments in order to test the performance of FWNN,
and compare it to that of its predecessors, namely the sigmoid MLP and Gaussian RBF networks
Both "homemade”, as well as established benchmarks from the literature, have been employed.
The homemade datasets were constructed by evaluating known functions at a number of selected
points. Each set is divided into a training set and a test set. The training sets have been
further manipulated by adding noise to the target values, in order to simulate the effect of
“corruption” due to measurement errors, while the test sets have been left “clean”, i.e. without
any noise addition. The training of the FWNN is performed simply by minimizing the mean
squared deviation given by Eq.(11), while for the MLP and RBF networks we minimize the
corresponding “error” given in Eq.(3) with the addition of a penalty term, to facilitate the
necessary “weight decay” regularization. Without regularization the MLP and RBF networks
are susceptible to over-training. Since the mission of the network is to filter out the noise and
reveal the underlying generating function, we have the luxury, for the homemade datasets, to
train using noise-corrupted data, and evaluate the test error over clean data.

In the experiments, 10-fold cross-validation was adopted for the training. To quantify and
evaluate network performance, the “Normalized Mean Squared Error” (NMSE) over the test set
S — T, was used, namely:

2
> <NRBF(X(l)§ ) — f(l)>
0, fOes—T

D gwf

20, f0es—T

NMSE =

x 100 . (12)

Note that the above metric is proper for comparisons, being almost insensitive to data scaling.

3.1. FExperiments using artificial data

We conducted experiments with one- and two-dimensional data. Four functions were employed
in one dimension and three in two dimensions. Graphical representations may be found in figures
1(a~d) and 2(a-c) correspondingly.

3.1.1. One-dimensional experiments For each function f(z), an interval [a,b] was chosen for
the range of x values as shown in figures 1(a-d). The training set 7', contains L = 100 equidistant
points, determined by:

b—
Ii:a—f—(i—l)L_(i,

The associated target values were then calculated as:

fi=f(zs) +mi

Vi=1,2,---,L (13)
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(a) f(x) = 22* + exp(r/z) sin(27)
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(¢) f(z) =sin(z?) — 0.25z (d) f(z) = zsin(z?)

Figure 1. Generating functions used for creating the 1d datasets. In each case 100 training
and 1000 testing points were used.

with 7; being white Gaussian noise. Three levels of Signal-to-Noise-Ratio (SNR) were considered:
no noise (0 dB), medium (—5 dB) and high noise (—10 dB). Similarly the test set was created
by picking L = 1000 equidistant points using eq. (13). No noise was added to the corresponding
target values.

3.1.2. Two-dimensional experiments For each function f(x1,z2), intervals [a1, b1|®[ag, ba] were
chosen for the range of x1 ® z2 as shown in figures 2(a-c). For the training set, uniform grids
of 15 points in each direction were used, resulting to a total of 225 training points. Again, we
have added noise at three levels to the target values. Finally, for the test set, uniform grids of
100 points in each direction were used, resulting to a total of 10000 testing points (without any
noise).

3.1.8. Procedural details FWNN, MLP and RBF networks have been investigated using the
same datasets. For each noise level, 50 independent runs were executed and the corresponding
mean NMSE value and its standard deviation are reported for both the training and the test
sets. For the FWNN we used throughout the following values: L,, =5, L, =1 and L, =1, i.e.
a fifth order polynomial for w(s) and first order polynomials for p(s) and o(s), corresponding
to a total of 2n + 8 parameters. For the case of MLP and RBF networks, four architectures,
differing in the number of nodes, were used. In particular the instances of K = 5,10,20 and 30
nodes have been investigated, corresponding to K(n + 2) 4+ 1 parameters.

In table 1, the results for the mean NMSE and its standard deviation, estimated over fifty
independent runs, are laid out for the 1d-examples. Accordingly, the results for the 2d-examples
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Figure 2. Generating functions used for creating the 2d datasets. In each case 225 training
and 10000 testing points were used.
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Figure 3. The 3 datasets were created using three first generating functions shown in figure
1. They contain 150 equidistant points used for evaluating the extrapolation capabilities of the

networks. The training sets (continuous lines) contain 100 points and the extrapolation test sets
(dotted lines) 50 points.

are listed in table 2. All networks perform similarly for the 1d case, however FWNN has a clear
edge in the case of highly corrupted data. This advantage becomes even more evident in the 2d

case, where FWNN employs only 12 parameters to complete the task, yielding at the same time
a superior level of generalization.
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Table 1. NMSE mean and std comparison, for the 1d datasets related to figures 1(a-
d), calculated over 50 independent experiments. The number in brackets is the number of
parameters.
Network without noise medium noise high noise
Architecture train | test train | test train_ | test
dataset 1(a)
FWNN (10) 0.0040.00 | 0.00=+0.00 5.57 4 0.81 0.894+0.58 || 16.95+1.01 | 1.47 +0.59
NN5 | MLP 0.00+0.00 | 0.00=+0.00 5.9840.92 | 0.86+0.45 || 15.884+2.54 | 2.5940.83
(16 ) RBF 0.1540.11 0.12+0.08 6.45 +0.92 0.954+0.54 || 17.56+2.70 | 3.46+2.33
NNy | MLP 0.00 % 0.00 0.00 £ 0.00 6.46 + 0.79 0.934+0.39 || 15.884+3.67 | 245+ 1.27
(31) RBF 0.00£0.00 | 0.00 £ 0.00 6.01 £ 1.11 1.714£1.51 || 13.874+1.86 | 4.194+1.30
NNy | MLP 0.00 % 0.00 0.00 £ 0.00 5.66 + 0.65 1.46+1.19 || 15.67+£1.53 | 2.6140.83
(61) RBF 0.00 % 0.00 0.00 £ 0.00 5.1340.98 1.80+1.72 | 11.70+£2.89 | 8.294+6.24
NNsg | MLP 0.00 £ 0.00 0.00 £ 0.00 5.79 & 1.47 1.754+1.22 || 14.25+2.66 | 4.46 £2.78
(91) RBF 0.00 £ 0.00 0.00 £ 0.00 5.67 & 1.10 1.2940.68 || 16.27+3.17 | 2.90+1.11
dataset 1(b)
FWNN (10) 0.004+0.00 | 0.004+0.00 || 12.53+£1.61 | 2.07+1.25 || 25.94+3.67 | 4.23 +1.64
NNs | MLP 0.00+0.00 | 0.00+0.00 || 12.40+1.67 | 2.50+£0.98 | 28.04+7.16 | 5.494+3.37
(16 ) RBF 0.1840.11 0.27+0.17 || 12.5942.30 | 2.60+1.21 || 24.194+3.48 | 5.40=+2.30
NNyy | MLP 0.00 £ 0.00 0.00 £ 0.00 12.37+1.67 | 2.13+£1.17 | 25.00£2.57 | 4.40+1.22
(31) RBF 0.004£0.00 | 0.004+0.00 || 10.84+£3.04 | 2.694+1.38 || 2532+£4.22 | 7.86+4.55
NNoy | MLP 0.00 % 0.00 0.00 £ 0.00 11.494£091 | 3.19+£1.46 | 26.48+4.57 | 6.74+2.67
(61) RBF 0.00 £ 0.00 0.00 & 0.00 7.80 £ 1.69 5.9941.65 || 24.30+3.83 | 6.734+2.44
NN3y | MLP 0.00 % 0.00 0.00 £ 0.00 11.05+£2.06 | 5.66+=2.87 | 23.80+3.75 | 10.88+5.15
(91) RBF 0.00 # 0.00 0.00 £ 0.00 9.29 4+ 2.39 5344228 || 21.964+3.98 | 8.85+3.49
dataset 1(c)
FWNN (10) 0.00+£0.00 | 0.00+0.00 || 32.52+3.56 | 3.52+2.09 || 54.754+2.84 | 11.11 +3.51
NNs | MLP 0.00£0.00 | 0.00£0.00 || 33.20+5.42 | 7.504+3.05 || 57.74+7.01 | 15.20 £6.71
(16 ) RBF 0.08 +0.06 0.10+0.10 || 32.40+3.75 | 6.72+1.12 || 50.934+4.72 | 15.60 & 11.58
NNy | MLP 0.00 % 0.00 0.00+£0.00 || 32.854+4.65 | 5.55+3.60 || 55.08+7.36 | 16.0248.98
(31) RBF 0.00+£0.00 | 0.00+0.00 || 26.58+4.53 | 9.59+3.78 || 55.41+6.89 | 16.13+£9.00
NNy, | MLP 0.00 % 0.00 0.00 £ 0.00 20.744+584 | 9.88+£6.02 || 53.984+8.19 | 16.37 &+ 8.53
(61) RBF 0.00 £ 0.00 0.00 £ 0.00 21.97+£2.60 | 17.66+7.50 || 51.80 & 6.66 | 25.50 & 14.95
NN3y | MLP 0.00 % 0.00 0.00+£0.00 || 27.134+4.94 | 13.96 + 10.68 || 48.00 & 6.39 | 28.45 & 16.78
(91) RBF 0.00 £ 0.00 0.00 & 0.00 15.54 4+ 2.19 | 24.9847.40 || 47.76 £6.39 | 22.27 £ 15.76
dataset 1(d)
FWNN (10) 0.0040.00 | 0.00 =+ 0.00 7924159 | 2.77+0.93 || 15.314+2.54 | 6.80+0.53
NNs | MLP || 95.08+5.23 | 95.12+5.23 || 99.03+3.38 | 99.10£4.29 || 98.55+ 1.66 | 100.02 + 1.76
(16 ) RBF || 60.50412.49 | 59.22 £ 13.19 || 61.32 4 15.14 | 57.54 +16.47 || 56.35 4+ 9.84 | 52.69 & 11.09
NNy | MLP 0.05 %+ 0.05 0.05 + 0.02 7.2140.97 | 3.83+1.94 || 17.334+4.21 | 9.9446.02
(31) RBF 0.51 +1.58 0.32 +0.99 13.22+£6.95 | 7.46+£5.15 || 19.824+5.31 | 11.76 +5.54
NNyy | MLP 0.004+0.00 | 0.00=+0.00 7.064+1.37 | 4.04+1.35 || 16.104+2.98 | 8.50+2.80
(61) RBF 0.00 £ 0.00 0.00 4 0.00 8.60 & 1.92 5404 1.82 || 18.96 £8.45 | 11.22 4+ 11.19
NN3y | MLP 0.00 % 0.00 0.00 £ 0.00 5.65 4+ 1.31 4.66+2.15 || 15.16 £3.14 | 12.15+6.11
(91) RBF 0.00 % 0.00 0.00 £ 0.00 7.22 4 2.00 3.204+0.61 || 14.58+3.31 | 9.08+3.15
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Table 2. NMSE mean and std comparison, for the 2d datasets related to figures 2(a-
c), calculated over 50 independent experiments. The number in brackets is the number of
parameters.
Network without noise medium noise high noise
Architecture train_ | test train | test train | test
dataset 2(a)
FWNN (12) 0.00 £0.00 | 0.00+0.00 | 46.59+3.04| 2.89+0.83 || 71.73£2.08| 4.66 +2.19
NN;5 | MLP || 430+£0.24 | 3.824+0.26 | 51.97+£3.94| 10.57 £2.00 || 74.88 +3.88 | 20.43 £ 11.11
(21) RBF 0.00 £0.00 | 0.00 £0.00 || 48.63+2.66| 3.36+1.16 71.68 + 2.50 7.42 + 3.14
NNig| MLP || 0.11+£0.00 | 0.09+0.00 ||49.82+3.41| 8.08+1.60 |/ 73.134+4.26| 15.83 +5.00
(41) RBF 0.00£0.00 | 0.00£0.00 |[47.07+2.52| 5.37+2.05 71.27+2.76 9.92 £5.31
NNy | MLP | 0.02+0.00 | 0024+0.00 [[48.72+3.23| 743+1.92 [ 74.71+3.35| 16.65+3.97
(81) RBF 0.00 £+ 0.00 0.00 £ 0.00 45.33 £3.21 | 6.27 £2.41 68.74+299| 13.25+5.96
NN3y| MLP 0.02 £ 0.00 0.01 £0.00 4598 £3.10 | 7.11+£1.66 71.73 +£5.28 | 14.84 + 3.78
(121) RBF 0.00 £ 0.00 0.00 £ 0.00 46.19 £4.18 | 6.79 £+ 3.26 69.39+2.93 | 12.11+6.35
dataset 2(b)

FWNN (12) || 0.00£0.00 | 0.00+0.00 || 51.234+-4.69| 5.14+0.71 || 73.914+4.35| 9.53 £+ 2.59
N N5 MLP 0.19 £0.05 0.17 £ 0.05 51.16 £ 0.66 | 5.42+2.14 74.34 4 8.98 | 19.27 + 26.57
(21) RBF 3.19 £ 1.69 2.90 + 1.58 51.75+3.94| 8.79+4.61 72.21 £2.67| 15.11 4+ 3.49

NNig| MLP | 0.01+0.01 | 0.014+0.00 |[50.50+2.93| 6.60+2.63 | 70.33+2.87| 12.88 +6.68
(41) RBF 0.03 £0.01 0.03£0.01 ||47.614+2.46| 6.15+0.76 | 69.41 +2.66| 13.37+5.14
NNoy| MLP 0.01 £ 0.00 0.00 £ 0.00 49.82+2.80| 7.17 £ 2.62 71.814+2.80| 11.03 4+ 2.81
(81) | RBF || 0.004£0.00 | 0.0040.00 | 45.8742.77 | 11.12£3.61 || 68.07 £2.53 | 16.04 £ 4.35
NN3y| MLP | 0.014+0.00 | 0.00£0.00 |/ 48.644+2.13| 6.09+2.09 | 70.67+2.81| 11.57+4.04
(121) RBF 0.00 = 0.00 0.00 £ 0.00 45.45 £2.83 | 11.05£3.32 || 66.68 = 3.76 | 24.91 + 8.30
dataset 2(c)
FWNN (12) 22.35+1.42|20.95+1.18 || 64.43 £2.90 | 26.76 + 2.05 || 84.27 +2.85 | 63.93 + 18.58
N N5 MLP | 96.44 £2.32| 96.324+2.60 |[96.954+1.80 | 96.724+1.79 | 98.51 +£1.86 | 98.23 +1.72
(21) RBF 65.32+4.34 | 63.69+4.42 || 83.19+2.17| 66.98 +4.11 || 89.61 +2.75| 72.10 £ 3.48
NNip| MLP 87.89+9.93 | 87.26 £ 10.36 || 98.44 £1.34 | 97.82 £ 1.50 || 97.68 +2.46 | 98.70 + 2.15
(41) RBF 62.23 £ 5.85 | 60.59 + 5.88) || 78.88 £ 2.52 | 67.88 +2.89) || 85.54 +3.77 | 81.04 + 11.50
NNyy| MLP | 89.16 +9.73 | 88.85 £ 10.03 || 97.17 - 2.84 | 96.86 +2.74 || 97.00 £3.22 | 98.43 + 1.63
(81) RBF 47.15£3.15 | 45.25 £3.07 || 69.85 +£4.77 | 67.12 4+ 10.16 || 79.51 £ 6.39 | 94.86 £ 13.43
NN3y| MLP | 71.89+£2.69| 70.90+2.88 || 95.58 +3.54 | 99.46 & 3.69 || 94.79 £ 2.87 | 91.89 +4.07
(121) RBF 47.15+£3.15 | 40.07£2.22 || 64.67+4.46 | 68.29 +4.51 || 74.41 +£5.84 | 111.65 £ 20.54

3.2. Extrapolation
FWNN is evaluated as trustworthy as far as interpolation is concerned. It would be quite
interesting to explore its extrapolation capability as well. Although this was not the main goal
of the present article, we were tempted to examine a few one-dimensional cases to obtain an
indication of how its extrapolation capability compares to that of the traditional MLP and RBF
networks. We describe briefly the methodology used for the evaluation of the extrapolation
performance. We construct a grid of 150 equidistant points. The first 100 points are used for
training the networks. The remaining 50 points, x1,z9, -, %50, are used for evaluating the
extrapolation quality. Three such datasets were used as depicted in figure 3.

Let f(x) and N(z) denote the generating function and the corresponding trained network;
then we may consider as a measure for the network’s extrapolation capability, the relative
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Table 3. Comparison of the extrapolation index J, for the 3 datasets.

Network
Architecture

Deviation bound d

0.05

[ 0.10

[0.15 [ 020 | 0.25

dataset of Fig. la

FWNN

25+1|38£2

50+ 0(50£0|50=£0

MLP 10 nodes

15+2(25+£3

31+4|134+£5|50£0

RBF 10 nodes

15£2|19+2

224+3|27+£5(29+4

dataset of Fig. 1b

FWNN

24+3|25+3

35+2|37+£2|38£2

MLP 10 nodes

12+2|14+£2

15£3]16£1|16+1

RBF 10 nodes

14 £2

16 £ 2

17£2]18+1|19+1

dataset of Fig. 1c

FWNN

18+1(20+£1

21£1|21+£1|21+£1

MLP 10 nodes

6+2

8+1

9+1 101 |11+£1

RBF 10 nodes

11£1

13£2

14+£2]15£1|16+1
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Figure 4. FWNN, MLP and RBF relative-deviations r;, defined in eq. (14), evaluated at 50
equidistant points in the extrapolation domain, for the quoted datasets.
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deviation r; at point x; given by:
@)~ N@)|
max{L, [f(zi)[}

Let J be the maximum number of consecutive points z; starting from x; and satisfying r; < d,
where d € [0,0.25], is a bound for the relative deviation. Namely J is determined so that:

(14)

r; <d, Vi<Jand TJ+]_>d

Given a value for d, the best network for extrapolation is the one corresponding to the highest
J. We list our findings for d = 0.05,0.10,0.15,0.20,0.25 in table 3. The mean values and
the standard deviations of the J-index, have resulted from the conduction of 50 independent
experiments. In figure 4(a-c) we compare the relative deviations r;, Vi = 1,---,50, of the
FWNN, MLP and RBF networks, for three quoted datasets. In all cases the proposed FWNN,
displays superior extrapolation performance.

4. Discussion and Conclusions

In this study we have proposed a new type of neural network, the FWNN, in which all of its
parameters are functions of a continuous variable and not of a discrete index. This maybe
interpreted as a neural network with an infinite number of hidden nodes and significantly
restricted number of model parameters. In the conducted experiments on a suite of benchmark
datasets, FWNN achieved superior generalization performance compared to its peers, namely
the conventional MLP and RBF networks. In addition, FWNN is robust and effective even on
difficult problems.

The FWNN has interesting properties. The important issue of generalization is being served
superbly. The number of necessary parameters is rather limited, resisting so over-training.
The positions of the Gaussian centers are determined by the arc pu(s),Vs € [—1,1] and the
corresponding spherical spreads by o(s). In the present article we have used linear forms, hence
the arc is a straight line segment joining the two end points p(—1) and p(+1) in R™. The
spreads are linearly increasing or decreasing with s, depending on the sign of o1. Although this
seems to be a severe constraint, it has not degraded the network’s performance. This may be
understood noting that the infinite number of nodes, renders the approximation of any function
feasible, while the existence of the constraint, deters over-training by substantially restricting
the number of adjustable parameters. If in some cases the linear model for p(s) or o(s) imposes
an overly strict constraint, it can be replaced by a more flexible quadratic, or cubic model, at
the expense of some extra parameters. The Gaussian centers will then be lying on a parabolic,
or a cubic arc correspondingly and the spreads will exhibit a higher level of adaptivity.
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