
MYY106 - Introduction to Computer Science
7th Lab

Introduction
In today’s lab, we will use the C and Python programs from Lab 6 and measure their execution time using
shell scripts. As we noticed from the measurements performed in the previous lab, the execution times
can vary significantly for different runs of the same program. To obtain reliable results, we should run the
same program (process) multiple times and calculate the average of the times measured. The average of a
large number of measurements is much more reliable than a single measurement.

It is common to run the same program 10, 30, or even 100 times, measuring each
execution separately, and then calculate the average. This process is simple for the
computer but extremely tedious for the user if done manually. With shell scripts, we
can automate the entire procedure so that the script performs the measurements for the
desired program and computes the average automatically.

In today’s lab, you do not need to record anything in an answer file. The shell script you create while
answering the questions will serve as the file to submit.

Create the directory lab7 inside the directory myy106 in your personal folder. Download the files sum.c
and sum.py you used in Lab 6 using wget from the address https://www.cse.uoi.gr/~myy106/files/.
Compile the program sum.c using gcc sum.c -o newsum to create the executable newsum.

1. Using vi, create a file experiments.sh to write the shell script. Give execution permissions to
experiments.sh.

2. The first line in a shell script should specify the absolute path of the shell that will execute it. Add
the appropriate line so the script runs under bash.

3. Define a variable named ITERATIONS corresponding to the number of times the script will repeat the
timing. Initialize it to 10.

4. Define a variable named PROG corresponding to the program to execute. Initialize it with the C program
name newsum, including its relative or absolute path.

5. Immediately after defining the variables, use echo to display the message "Running N experiments
for the program: PROG" where PROG shows the program name (the value of the variable PROG) and N
is the number of iterations (the value of the variable ITERATIONS). Execute the script experiments.sh.

6. Use a while loop with the appropriate condition to run for ITERATIONS repetitions.

7. In each iteration, display the message "Running iteration n out of N", where n is the current
iteration number from the while loop variable, and N is the total number of iterations (ITERATIONS).
Execute experiments.sh.

8. Immediately after the message, inside the while, add /usr/bin/time $PROG to measure the program
execution time. Execute the script.

9. For each execution of PROG, we notice two issues:

αʹ. We are not interested in the program output (the sum display in this case). We should avoid
showing this unnecessary information on the screen. We do care about the output of /usr/bin/time.

βʹ. Execution time appears on the screen. To automate the process, we need to filter the /usr/bin/time
output and retain only the actual execution time (the real value).

10. To ignore the program’s output, redirect both stdout and stderr to /dev/null by adding 2>&1
>/dev/null at the end of the program execution command. Execute the script to confirm that the
program output is hidden, but /usr/bin/time output still appears.

1

11. To simplify the /usr/bin/time output, add the -p option. Execute the script again to see the difference.

12. Store the timing information in a variable timing_output instead of displaying it.
Hint: use timing_output=$(. . .).

13. Display timing_output to verify.

14. To extract only the decimal number after real, use real_time=$(echo "$timing_output" | awk
'/^real/ print $2'). Display real_time and run the script to verify.

15. Once verified, remove the commands that display these variables.

16. Initialize total_real_time to 0 before the while loop to store the cumulative execution time. Inside
the loop, update it by adding real_time. Run the script. Why does an error occur?

17. Use bc to handle decimal arithmetic: total_real_time=$(echo "$total_real_time + $real_time"
| bc).

18. After the loop, display "Total real time: N seconds" using total_real_time.

19. To calculate the average, divide total_real_time by ITERATIONS using bc: average=$(echo "scale=6;
$total_real_time / $ITERATIONS" | bc). Display average.

20. To avoid creating a new line for each iteration, use the carriage return character: echo -en "\rRunning
iteration $((i+1)) out of $ITERATIONS".

21. Improve the message to include progress percentage: echo -en "\rRunning iteration $((i+1)) out
of $ITERATIONS, Progress $((i * 100 / ITERATIONS))%".

22. Add a diagnostic message and newline for neat output.

23. Change ITERATIONS from 10 to 17 and execute the script.

24. Change PROG to sum.py (Python) and reduce ITERATIONS to 4. Execute the script.

25. With this shell script, we can easily measure different programs by changing PROG, and adjust
repetitions via ITERATIONS. This demonstrates the usefulness of shell scripts. The script could be
extended to compute standard deviation or accept ITERATIONS and PROG as arguments.

In later years, when implementing large projects or your thesis, you may need to measure
execution times of programs and compare them with other implementations. Remember
that while in your first year as students, you learned an automated way of timing
processes using shell scripts.

Submit your answers: Paste the contents of the file experiments.sh in the form
https://forms.office.com/e/HNRXQJmv0n

2

https://forms.office.com/e/HNRXQJmv0n

