
Streaming Model of Computation

A streaming algorithm processes a data stream 𝑆:

• Input is presented as a sequence of items and can be examined in only 

a few passes (typically just one). 

• The algorithm has limited memory and cannot store the whole input 

sequence.

• The algorithm can spend limited processing time per item.

• In some problems we are satisfied with an approximate answer. 

• Approximation algorithms can be based on sketches (summaries) of the 

data stream in memory.



Streaming Graph Algorithms

In many applications we deal with massive graphs.  E.g. (vertices – edges):

• Web-pages – hyperlinks

• Neurons – synapses

• IP addresses – network flows

• People – friendships

Processing such graphs with a classic graph algorithm may be infeasible!

But it may be possible to use an algorithm developed for the data stream model.
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Streaming Graph Algorithms

Data stream model

• The input is given by a stream of data. E.g., the stream could be the graph 

edges.

• The algorithm can use a limited amount of memory to process the stream.

• The input stream must be processed in the order it arrives.

Related goals: 

• Real-time systems.

• I/O efficiency.

• Trade-off size and accuracy.



Streaming Graph Algorithms

Data stream model

How much memory should our model allow in order to be able to process a graph 

with 𝑛 vertices?

• Most problems are intractable if space is < 𝑛.

• We will work in the semi-streaming model that allows O(𝑛 log𝑘𝑛) memory, for 

some constant 𝑘.

• Some algorithms will be randomized. We will say that an event 𝐸 occurs with 

high probability if Pr 𝐸 ≥ 1 − 1/𝑛.



Streaming Graph Algorithms

Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉
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E.g., data stream 𝑆 = (1,2), (2,3), (1,3), (3,4)



Streaming Graph Algorithms

Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉

The goal is to test if 𝐺 is connected, i.e., for any two vertices there is a path that 

connects them.

𝑥 𝑦

𝐺
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Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉

The goal is to test if 𝐺 is connected, i.e., for any two vertices there is a path that 

connects them.

𝑥 𝑦

𝐺

Simple algorithm:  Maintain a set of edges 𝐻. When we read the next edge (𝑢, 𝑣)

from the stream, we add it to 𝐻 if there is currently no path between 𝑢 and 𝑣.
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Spanners

𝑎-spanner 𝐻 of a graph 𝐺 = (𝑉, 𝐸): subgraph of 𝐺 such that for all pairs 𝑢, 𝑣 ∈ 𝑉,  

𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑎 ∙ 𝑑𝐺(𝑢, 𝑣)

𝑑𝐺 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐺

𝑑𝐻 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐻
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Spanners

𝑎-spanner 𝐻 of a graph 𝐺 = (𝑉, 𝐸): subgraph of 𝐺 such that for all pairs 𝑢, 𝑣 ∈ 𝑉,  

𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑎 ∙ 𝑑𝐺(𝑢, 𝑣)

𝑑𝐺 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐺

𝑑𝐻 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐻
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2-spanner
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Spanners

Construction of an 𝑎-spanner 𝐻:  add next edge (𝑢, 𝑣) if it does not create a short 

cycle in 𝐻

Greedy Spanner Algorithm

1. 𝐻 ← ∅

2. for each edge (𝑢, 𝑣) ∈ 𝑆 do

3. if  𝑑𝐻 𝑢, 𝑣 > 𝑎 then add (𝑢, 𝑣) to 𝐻

4. return 𝐻

• Does this work?

• What is the size (#edges) of the spanner?
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Spanners

Proof that the Greedy Spanner Algorithm works: 

For any edge (𝑥, 𝑦) of 𝐺 we have 𝑑𝐻 𝑥, 𝑦 ≤ 𝑎.

Length of 𝑃 in 𝐺 = 𝑘 = 𝑑𝐺 𝑣0, 𝑣1 + 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘

𝑣0 𝑣1 𝑣𝑘−1 𝑣𝑘𝑃

𝑑𝐻 𝑣0, 𝑣1 ≤ 𝑎 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘 ≤ 𝑎

Consider a path 𝑃 = 𝑣0, 𝑣1, . . , 𝑣𝑘−1, 𝑣𝑘 in 𝐺
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Spanners

Proof that the Greedy Spanner Algorithm works: 

For any edge (𝑥, 𝑦) of 𝐺 we have 𝑑𝐻 𝑥, 𝑦 ≤ 𝑎.

Length of 𝑃 in 𝐺 = 𝑘 = 𝑑𝐺 𝑣0, 𝑣1 + 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘

𝑣0 𝑣1 𝑣𝑘−1 𝑣𝑘𝑃

𝑑𝐻 𝑣0, 𝑣1 ≤ 𝑎 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘 ≤ 𝑎

Length in 𝐻 ≤ 𝑑𝐻 𝑣0, 𝑣1 + 𝑑𝐻 𝑣1, 𝑣2 +⋯+ 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘

Consider a path 𝑃 = 𝑣0, 𝑣1, . . , 𝑣𝑘−1, 𝑣𝑘 in 𝐺

≤ 𝑎 ∙ 𝑑𝐺 𝑣0, 𝑣1 + 𝑎 ∙ 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑎 ∙ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘 = 𝑎 ∙ 𝑘
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Spanners

How many edges are inserted into 𝐻?

• By a known result in Graph Theory, any such graph has at most

O 𝑛1+ Τ1 𝑡

• Let 𝑎 = 2𝑡 − 1, for some integer 𝑡.

• Then 𝐻 does not contain cycles of length < 2𝑡. 

edges.
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Minimum Spanning Tree

Data stream 𝑆: Edges of a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with 𝑛 = 𝑉

Greedy MST Algorithm

1. 𝐻 ← ∅

2. for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝑆 do

3. if  𝑒 creates a cycle 𝐶 in 𝐻 then

4. find the maximum weight edge 𝑓 ∈ 𝐶

5. add 𝑒 to 𝐻

6. delete 𝑓 from 𝐻

7. return 𝐻

Construction: if next edge (𝑢, 𝑣) creates a cycle 𝐶 in 𝐻 , delete from 𝐻 the

maximum weight edge of 𝐶.
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Graph Sparsification

Given a graph 𝐺 = (𝑉, 𝐸) we want to construct a weighted subgraph 

𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 that estimates various (connectivity) properties of 𝐺

E.g.:

• Cut sparsification [Benczur-Karger]

• Spectral sparsification [Spielman-Teng]
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Picture from https://simons.berkeley.edu/sites/default/files/docs/1768/slidessrivastava1.pdf
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Cuts in Graphs

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)
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Cuts in Graphs
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Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)
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Cuts in Graphs
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𝑓 𝑒

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

𝜆𝐴 𝐺 =
𝑤 𝑎, 𝑓 + 𝑤 𝑏, 𝑓 + 𝑤 𝑐, 𝑓 + 𝑤 𝑐, 𝑒
+ 𝑤 𝑐, 𝑑 = 17 + 10 + 9 + 7 + 20 = 63

𝐴

𝑉\𝐴
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Cuts in Graphs
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Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

𝜆𝐴 𝐺 = 𝑤 𝑏, 𝑐 + 𝑤 𝑓, 𝑐 + 𝑤 𝑓, 𝑒
= 12 + 9 + 14 = 35

𝐴

𝑉\𝐴
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Cut Sparsification

Given a graph 𝐺 = (𝑉, 𝐸) we want to construct a weighted subgraph 

𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 that estimates the size of each cut of 𝐺

(1 + 𝜀) cut sparsification

1 − 𝜀 ∙ 𝜆𝐴 𝐺 ≤ 𝜆𝐴 𝐻 ≤ (1 + 𝜀) ∙ 𝜆𝐴 𝐺

for all vertex subsets 𝐴 ⊂ 𝑉
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Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸
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Graph Laplacian
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Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

𝐿𝐺 =

14 −3 −9 −2
−3 4 −1 0
−9 −1 18 −8
−2 0 −8 10
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Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

Let 𝑥 =
𝑥1
⋮
𝑥𝑛

be a real vector in ℝ𝑛. Recall that  𝑥𝑇 = 𝑥1 ⋯ 𝑥𝑛
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Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

Let 𝑥 =
𝑥1
⋮
𝑥𝑛

be a real vector in ℝ𝑛. Recall that  𝑥𝑇 = 𝑥1 ⋯ 𝑥𝑛

Then

𝑥𝑇𝐿𝐺𝑥 = ෍

(𝑖,𝑗)∈𝐸

𝑤(𝑖, 𝑗) 𝑥𝑖 − 𝑥𝑗
2
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Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛
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Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

A spectral sparsifier of 𝐺 can approximate:

• Size of all cuts

• Eigenvalues

• Effective resistances (in the corresponding electrical network)

• Properties of random walks
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Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

Theorem [Spielman and Teng] A (1 + 𝜀) spectral sparsifier with O(𝑛 log 𝑛 /𝜀2)

edges can be constructed in O(𝑚 polylog(𝑛)/𝜀2), where 𝑛 is the number of vertices

and 𝑚 is the number of edges of the input graph.



Streaming Graph Algorithms

Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

Theorem [Spielman and Teng] A (1 + 𝜀) spectral sparsifier with O(𝑛 log 𝑛 /𝜀2)

edges can be constructed in O(𝑚 polylog(𝑛)/𝜀2), where 𝑛 is the number of vertices

and 𝑚 is the number of edges of the input graph.

Theorem [Batson, Spielman and Srivastava] A graph with 𝑛 vertices has a (1 + 𝜀)

spectral sparsifier with O(𝑛/𝜀2) edges.
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Spectral Sparsification – Construction in the semi-streaming model

• Use as a black box any existing algorithm ALG that returns a (1 + 𝛾)
spectral sparsifier.

• ALG returns a spectral sparsifier with 𝑠𝑖𝑧𝑒(𝛾) = O(𝑛/𝛾2) number of edges.
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Spectral Sparsification – Construction in the semi-streaming model

• Use as a black box any existing algorithm ALG that returns a (1 + 𝛾)
spectral sparsifier.

• ALG returns a spectral sparsifier with 𝑠𝑖𝑧𝑒(𝛾) = O(𝑛/𝛾2) number of edges.

We use the following properties of spectral sparsification

• Mergeable: Suppose 𝐻1 and 𝐻2 are 𝛽 spectral sparsifiers of two graphs

𝐺1 and 𝐺2 on the same set of vertices. Then 𝐻1 ∪ 𝐻2 is a 𝛽 spectral

sparsifier of 𝐺1 ∪ 𝐺2.

• Composable: If 𝐻3 is a 𝛽 spectral sparsifier for 𝐻2 and 𝐻2 is a 𝛿 spectral 

sparsifier for 𝐻1 then 𝐻3 is a 𝛽𝛿 spectral sparsifier for 𝐻1. 
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Spectral Sparsification – Construction in the semi-streaming model

Let 𝐺 = (𝑉, 𝐸) be the input graph with 𝑛 = |𝑉| and 𝑚 = 𝐸

Data stream 𝑆 = the 𝑚 edges of 𝐺

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges 

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment 

…𝑠𝑖𝑧𝑒(𝛾) 𝑠𝑖𝑧𝑒(𝛾) 𝑠𝑖𝑧𝑒(𝛾)

𝐺1
0 𝐺2

0 𝐺𝑡
0

𝑆
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Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges 

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment 

For  𝑖 = 1,2, … , lg 𝑡 and  𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

E.g., for 𝑡 = 4

𝐺1
1 = 𝐺1

0 ∪ 𝐺2
0 𝐺2

1 = 𝐺3
0 ∪ 𝐺4

0

𝐺1
0 𝐺2

0 𝐺3
0 𝐺4

0

𝐺1
2 = 𝐺1

1 ∪ 𝐺2
1 = 𝐺
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Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges 

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment 

For  𝑖 = 1,2, … , lg 𝑡 and  𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

For each 𝐺𝑖
𝑗

define a weighted subgraph 𝐻𝑖
𝑗

:

• 𝐻𝑖
0 = 𝐺𝑖

0

• 𝐻𝑖
𝑗
= ALG(𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1
), 𝑗 > 0
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Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges 

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment 

For  𝑖 = 1,2, … , lg 𝑡 and  𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

For each 𝐺𝑖
𝑗

define a weighted subgraph 𝐻𝑖
𝑗

:

• 𝐻𝑖
0 = 𝐺𝑖

0

• 𝐻𝑖
𝑗
= ALG(𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1
), 𝑗 > 0

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺
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Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺
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Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺

Space required

𝐻𝑖
𝑗
= ALG 𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1

𝐻2𝑖−1
𝑗−1

𝐻2𝑖
𝑗−1

Delete 𝐻2𝑖−1
𝑗−1

and 𝐻2𝑖
𝑗−1

as soon as 𝐻𝑖
𝑗

is computed

⇒

For each 𝑗 we need to store 𝐻𝑖
𝑗

only for two values of 𝑖
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Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺

Space required

𝐻𝑖
𝑗
= ALG 𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1

𝐻2𝑖−1
𝑗−1

𝐻2𝑖
𝑗−1

Delete 𝐻2𝑖−1
𝑗−1

and 𝐻2𝑖
𝑗−1

as soon as 𝐻𝑖
𝑗

is computed

⇒

For each 𝑗 we need to store 𝐻𝑖
𝑗

only for two values of 𝑖

So at any given time we need to store ≤ 2 ∙ 𝑠𝑖𝑧𝑒 𝛾 ∙ lg 𝑡 = O(𝑛 lg3𝑛/𝜀2)



Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at 

most one edge in 𝑀
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Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at 

most one edge in 𝑀



Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Greedy Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. if  𝑀 ∪ {𝑒} is a matching then add 𝑒 to 𝑀

4. return 𝑀

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at 

most one edge in 𝑀



Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

The Greedy Matching Algorithm computes a matching 𝑀 with cardinality 

𝑀 ≥ 𝑀∗ /2

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at 

most one edge in 𝑀



Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at 

most one edge in 𝑀

Goal: Find a maximum cardinality matching 𝑀∗

The Greedy Matching Algorithm computes a matching 𝑀 with cardinality 

𝑀 ≥ 𝑀∗ /2

𝑢 𝑣

∈ 𝑀∗

Consider an edge (𝑢, 𝑣) ∈ 𝑀∗

If (𝑢, 𝑣) ∉ 𝑀 then 𝑀 must contain at least one 

edge 𝑒 adjacent to 𝑢 or to 𝑣

𝑒 is adjacent to at most 2 edges of 𝑀∗

𝑢′ 𝑣′
∈ 𝑀∗

∈ 𝑀𝑒
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Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to 

augment the current matching 𝑀



Streaming Graph Algorithms

Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to 

augment the current matching 𝑀

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict 

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.



Streaming Graph Algorithms

Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to 

augment the current matching 𝑀

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict 

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.

∈ 𝑀

∈ 𝑀

𝑒

𝐶 has at most two edges. Let 𝑤(𝐶) be the total weight of the 

edges in 𝐶.

If 𝑤(𝑒) > 𝑤(𝐶) then we increase the weight of 𝑀 by 

including 𝑒 and deleting the edges of 𝐶.
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Weighted Matchings

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict 

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.

∈ 𝑀

∈ 𝑀

𝑒
If 𝑤(𝑒) > 𝑤(𝐶) then we increase the weight of 𝑀 by 

including 𝑒 and deleting the edges of 𝐶.

𝑤(𝐶) = total weight of the edges in 𝐶.

Greedy Weighted Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. let 𝐶 be the set of edges that are in conflict with 𝑒

4. if  𝑤 𝑒 > 𝑤(𝐶) then add 𝑒 to 𝑀 and delete 𝐶 from 𝑀

5. return 𝑀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

𝑀 = {}
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(1,2)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(1,2)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(2,3)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(2,3)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀



Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(4,5)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(4,5)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀



Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

𝑤(𝑀) = 1 + 5𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

𝑀∗ = { 1,2 , 3,4 , (5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀∗) = 3 + 9𝜀
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Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

The computed matching 𝑀 has weight 𝑤(𝑀) = 1 + (𝑛 − 1)𝜀

The optimal matching 𝑀 has weight 𝑤(𝑀∗) = σ𝑖 1 + 2𝑖 − 1 𝜀 > (𝑛 − 1)/2

Hence, the approximation ratio is
𝑤(𝑀∗)

𝑤(𝑀)
>

(𝑛 − 1)/2

1 + 𝑛 − 1 𝜀
~
𝑛

2
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Weighted Matchings

The problem is that the trailing edges of 𝑆 that were once inserted into 𝑀 but 

removed later may have much larger total weight than the edges added later.

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

trailing edges
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Weighted Matchings

∈ 𝑀

∈ 𝑀

𝑒
We include 𝑒 in 𝑀 If 𝑤 𝑒 > 𝛽𝑤(𝐶) for some constant 

𝛽 = 1 + 𝛾 > 1.

Modified algorithm

Greedy Weighted Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. let 𝐶 be the set of edges that are in conflict with 𝑒

4. if  𝑤 𝑒 > (1 + 𝛾) ∙ 𝑤(𝐶) then add 𝑒 to 𝑀 and delete 𝐶 from 𝑀

5. return 𝑀



Streaming Graph Algorithms

Weighted Matchings

The problem is that the trailing edges of 𝑆 that were once inserted into 𝑀 but 

removed later may have much larger total weight than the edges added later.

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

trailing edges

We include 𝑒 in 𝑀 If 𝑤 𝑒 > 𝛽𝑤(𝐶) for some constant 𝛽 = 1 + 𝛾 > 1.

For an edge 𝑒 define 

• 𝐶0 = {𝑒}

• 𝐶𝑖 = edges removed when an edge in 𝐶𝑖−1 was added to 𝑀

• 𝑇𝑒 = 𝐶1 ∪ 𝐶2 ∪⋯

Then 𝑤(𝑇𝑒) ≤ 𝑤(𝑒)/𝛾
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Weighted Matchings

It can be shown that

𝑤(𝑀∗) ≤ (1 + 𝛾) ∙ ෍

𝑒∈𝑀

(𝑤 𝑇𝑒 + 2𝑤(𝑒))

By applying a careful charging scheme we get
𝑤(𝑀∗)

𝑤(𝑀)
< 5.828
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Weighted Matchings

Multi-pass Algorithm

Greedy Weighted 

Matching Algorithm

𝑆

𝑀 = ∅
𝑀

We can get a (2 + 𝜀)-approximation with O(𝜀−3) passes over 𝑆, where 𝛾 = O(𝜀)
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Graph Sketches

Random linear projection 𝑀 ∶ ℝ𝑛 → ℝ𝑘, where 𝑘 ≪ 𝑛

𝑀 𝒗 = 𝑀𝒗

∈ ℝ𝑛

∈ ℝ𝑘

For any vector 𝒗 ∈ ℝ𝑛, the projection 𝑀𝒗 ∈ ℝ𝑘 preserves properties of 𝒗

with high probability

Many applications: estimating entropy, heavy hitters, estimating norms, 

fitting polynomials,… 

Rich theory: dimensionality reduction, sparse recovery, metric embeddings,…

∈ ℝ𝑘×𝑛
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Graph Sketches

Can we use this approach for graphs?

That is, can we project the adjacency matrix 𝐴𝐺 of a graph 𝐺 to a smaller 

matrix 𝑀𝐴𝐺, so that we can use 𝑀𝐴𝐺 to compute properties of 𝐺?

• For a graph 𝐺 with n vertices, 𝐴𝐺 has O 𝑛2 dimensions. 

• To work in the semi-streaming model we want 𝑀𝐴𝐺 to have O(𝑛 polylog(𝑛))
dimensions.
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Graph Sketches

Picture from https://people.cs.umass.edu/~mcgregor/711S12/lec-2-2.pdf



Streaming Graph Algorithms

Graph Sketches

Dynamic graph stream 𝑆 = 𝑎1, 𝑎2, … where 𝑎𝑖 = (𝑒𝑖 , Δ𝜄)

𝑒𝑖 = an edge of the graph

Δ𝑖 = ቐ
+1, 𝑒𝑖 is inserted

−1, 𝑒𝑖 is deleted

Multiplicity of edge 𝑒 : 𝑓𝑒 = ෍

𝑖∶ 𝑒𝑖=𝑒

Δ𝑖

For simplicity we will assume that 𝑓𝑒 ∈ 0,1 , for all edges e. 
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Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with 

𝑛 vertices has up to 𝑛
2

edges).

1
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𝑒12

𝑒13

𝑒23
𝒇 =

𝑓𝑒12
𝑓𝑒13
𝑓𝑒23

=
1
0
1



Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with 

𝑛 vertices has up to 𝑛
2

edges).

Index vector of edge 𝑒 : 𝒊𝑒 ∈ 0,1
𝑛
2 . The only nonzero entry of 𝒊𝑒 is the one that 

corresponds to edge 𝑒.  

1

2

3

𝑒12

𝑒13

𝑒23
𝒊𝒆𝟐𝟑 =

𝑖𝑒12
𝑖𝑒13
𝑖𝑒23

=
0
0
1



Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with 

𝑛 vertices has up to 𝑛
2

edges).

Sketch of 𝒇 :  𝐴(𝒇) ∈ ℝ𝑑, 𝑑 =dimensionality of the sketch

When we read the next item 𝑒, Δ from the stream, we can update the sketch as 

follows:

𝐴 𝒇 = 𝐴 𝒇 + Δ ∙ 𝐴(𝒊𝑒)

Index vector of edge 𝑒 : 𝒊𝑒 ∈ 0,1
𝑛
2 . The only nonzero entry of 𝒊𝑒 is the one that 

corresponds to edge 𝑒.  



Streaming Graph Algorithms

Homomorphic Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with 

𝑛 vertices has up to 𝑛
2

edges).

For a vertex 𝑣 let 𝒇𝒗 ∈ 0,1 𝑛−1 be the restriction of 𝒇 to the coordinates that 

involve 𝑣 (i.e., the 𝑛 − 1 edges that can be adjacent to 𝑣 in 𝐺) 

1

2

3

𝑒12

𝑒13

𝑒23
𝒇 =

𝑓𝑒12
𝑓𝑒13
𝑓𝑒23

=
1
0
1

𝒇𝟏 =
𝑓𝑒12
𝑓𝑒13

=
1
0



Streaming Graph Algorithms

Homomorphic Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with 

𝑛 vertices has up to 𝑛
2

edges).

For a vertex 𝑣 let 𝒇𝒗 ∈ 0,1 𝑛−1 be the restriction of 𝒇 to the coordinates that 

involve 𝑣 (i.e., the 𝑛 − 1 edges that can be adjacent to 𝑣 in 𝐺) 

𝐴 𝒇 = 𝐴1 𝒇
𝒗𝟏 ∘ 𝐴2 𝒇

𝒗𝟐 ∘ ⋯ ∘ 𝐴𝑛 𝒇
𝒗𝒏

The sketches of 𝒇 are formed by concatenation (∘) of the sketches of each 𝒇𝒗

Homomorphic sketches: For each operation on 𝐺 there is a corresponding 

operation on the sketches
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

Connectivity Algorithm

1. repeat

2. for each vertex 𝑣 of the current graph do

3. select an edge incident to 𝑣

4. contract all selected edges

5. until the current graph has no edges 

Let’s begin with a simple (non-sketch) algorithm
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)
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Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

Connectivity Algorithm

1. repeat

2. for each vertex 𝑣 of the current graph do

3. select an edge incident to 𝑣

4. contract all selected edges

5. until the current graph has no edges 

Let’s begin with a simple (non-sketch) algorithm

Finds the connected components of 𝐺, and a spanning forest, in O(log 𝑛) rounds



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

2. Apply ℓ0-sampling via linear sketches



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

2. Apply ℓ𝟎-sampling via linear sketches

Let 𝐾 = polylog(𝑁). There is a distribution over matrices 𝑀 ∈ ℝ𝐾×𝑁 such that for

any 𝒙 ∈ ℝ𝑁, a random non-zero element of 𝒙 can be reconstructed from 𝑀𝒙 with

high probability.

ℓ𝟎-sampling
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Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries
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Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇

𝒂𝟏 + 𝒂𝟐 =

0 1 0 1 0 0 𝑇



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇

𝒂𝟏 + 𝒂𝟐 =

0 𝟏 0 𝟏 0 0 𝑇



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that 

cross the cut (𝑈, 𝑉\U)



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that 

cross the cut (𝑈, 𝑉\U)



Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that 

cross the cut (𝑈, 𝑉\U)

Thus  σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 = 𝑀 σ𝑣𝑖∈𝑈

𝒂𝒊 gives a random edge in 𝛿𝐺 𝑈
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Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

1. Choose 𝑡 = O(log 𝑛)

2. for 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑡 do

3. Construct the random projection 𝑀𝑗𝒂
𝑖

4. for 𝑖 = 1,2, … , 𝑛 do

5. Compute 𝐴𝑖 𝒇
𝒗𝒊 = (𝑀1𝒂

𝑖) ∘ (𝑀2𝒂
𝑖) ∘ ⋯ ∘ (𝑀𝑡𝒂

𝑖)
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Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

1. Choose 𝑡 = O(log 𝑛)

2. for 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑡 do

3. Construct the random projection 𝑀𝑗𝒂
𝑖

4. for 𝑖 = 1,2, … , 𝑛 do

5. Compute 𝐴𝑖 𝒇
𝒗𝒊 = (𝑀1𝒂

𝑖) ∘ (𝑀2𝒂
𝑖) ∘ ⋯ ∘ (𝑀𝑡𝒂

𝑖)

• Each sketch 𝐴𝑖 has dimension O(polylog𝑛)

• Since there are n sketches, the required space is O(𝑛 polylog𝑛)
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Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

1. Let ෠𝑉 = 𝑉 be the initial set of super-vertices

2. for 𝑖 = 1,2, … , 𝑡 do

3. for each super-vertex 𝑈 ∈ ෠𝑉 do

4. use σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 to sample an edge between 𝑈 and another super-vertex 𝑊

5. collapse 𝑈 and 𝑊 to form a new super-vertex 
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Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

1. Let ෠𝑉 = 𝑉 be the initial set of super-vertices

2. for 𝑖 = 1,2, … , 𝑡 do

3. for each super-vertex 𝑈 ∈ ෠𝑉 do

4. use σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 to sample an edge between 𝑈 and another super-vertex 𝑊

5. collapse 𝑈 and 𝑊 to form a new super-vertex 

The update time (to process the next edge in 𝑆) is O(polylog𝑛)
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Concluding remarks

• Many graph algorithms in the data stream model are known for

basic problems. E.g., estimating connectivity, approximating

distances, finding approximate matchings, counting subgraphs,…

• But limited work on directed graphs!

• Space constraints: semi-stream model not suited for sparse

graphs (𝑚 = O(𝑛 polylog𝑛))



Streaming Architectures

Picture from https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html



Streaming Architectures

Google Cloud Platform

https://cloud.google.com/solutions/architecture/streamprocessing


