
Streaming Model of Computation

A streaming algorithm processes a data stream 𝑆:

• Input is presented as a sequence of items and can be examined in only

a few passes (typically just one).

• The algorithm has limited memory and cannot store the whole input

sequence.

• The algorithm can spend limited processing time per item.

• In some problems we are satisfied with an approximate answer.

• Approximation algorithms can be based on sketches (summaries) of the

data stream in memory.

Streaming Graph Algorithms

In many applications we deal with massive graphs. E.g. (vertices – edges):

• Web-pages – hyperlinks

• Neurons – synapses

• IP addresses – network flows

• People – friendships

Processing such graphs with a classic graph algorithm may be infeasible!

But it may be possible to use an algorithm developed for the data stream model.

Streaming Graph Algorithms

In many applications we deal with massive graphs. E.g. (vertices – edges):

• Web-pages – hyperlinks

• Neurons – synapses

• IP addresses – network flows

• People – friendships

Processing such graphs with a classic graph algorithm may be infeasible!

But it may be possible to use an algorithm developed for the data stream model.

Presentation based on:

A. McGregor “Graph Stream Algorithms: A Survey” [ACM SIGMOD Record 2014]

Streaming Graph Algorithms

Streaming Graph Algorithms

Data stream model

• The input is given by a stream of data. E.g., the stream could be the graph

edges.

• The algorithm can use a limited amount of memory to process the stream.

• The input stream must be processed in the order it arrives.

Related goals:

• Real-time systems.

• I/O efficiency.

• Trade-off size and accuracy.

Streaming Graph Algorithms

Data stream model

How much memory should our model allow in order to be able to process a graph

with 𝑛 vertices?

• Most problems are intractable if space is < 𝑛.

• We will work in the semi-streaming model that allows O(𝑛 log𝑘𝑛) memory, for

some constant 𝑘.

• Some algorithms will be randomized. We will say that an event 𝐸 occurs with

high probability if Pr 𝐸 ≥ 1 − 1/𝑛.

Streaming Graph Algorithms

Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉

1

2

3 4

𝐺

E.g., data stream 𝑆 = (1,2), (2,3), (1,3), (3,4)

Streaming Graph Algorithms

Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉

The goal is to test if 𝐺 is connected, i.e., for any two vertices there is a path that

connects them.

𝑥 𝑦

𝐺

Streaming Graph Algorithms

Graph connectivity

Data stream 𝑆: Edges of a graph 𝐺 = (𝑉, 𝐸) with 𝑛 = 𝑉

The goal is to test if 𝐺 is connected, i.e., for any two vertices there is a path that

connects them.

𝑥 𝑦

𝐺

Simple algorithm: Maintain a set of edges 𝐻. When we read the next edge (𝑢, 𝑣)

from the stream, we add it to 𝐻 if there is currently no path between 𝑢 and 𝑣.

Streaming Graph Algorithms

Spanners

𝑎-spanner 𝐻 of a graph 𝐺 = (𝑉, 𝐸): subgraph of 𝐺 such that for all pairs 𝑢, 𝑣 ∈ 𝑉,

𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑎 ∙ 𝑑𝐺(𝑢, 𝑣)

𝑑𝐺 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐺

𝑑𝐻 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐻

1

2

3 4

𝐺

Streaming Graph Algorithms

Spanners

𝑎-spanner 𝐻 of a graph 𝐺 = (𝑉, 𝐸): subgraph of 𝐺 such that for all pairs 𝑢, 𝑣 ∈ 𝑉,

𝑑𝐺(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑎 ∙ 𝑑𝐺(𝑢, 𝑣)

𝑑𝐺 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐺

𝑑𝐻 𝑢, 𝑣 = length of the shortest path between 𝑢 and 𝑣 in 𝐻

1

2

3 4 1

2

3 4

𝐺 𝐻

2-spanner

Streaming Graph Algorithms

Spanners

Construction of an 𝑎-spanner 𝐻: add next edge (𝑢, 𝑣) if it does not create a short

cycle in 𝐻

Greedy Spanner Algorithm

1. 𝐻 ← ∅

2. for each edge (𝑢, 𝑣) ∈ 𝑆 do

3. if 𝑑𝐻 𝑢, 𝑣 > 𝑎 then add (𝑢, 𝑣) to 𝐻

4. return 𝐻

• Does this work?

• What is the size (#edges) of the spanner?

Streaming Graph Algorithms

Spanners

Proof that the Greedy Spanner Algorithm works:

For any edge (𝑥, 𝑦) of 𝐺 we have 𝑑𝐻 𝑥, 𝑦 ≤ 𝑎.

Length of 𝑃 in 𝐺 = 𝑘 = 𝑑𝐺 𝑣0, 𝑣1 + 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘

𝑣0 𝑣1 𝑣𝑘−1 𝑣𝑘𝑃

𝑑𝐻 𝑣0, 𝑣1 ≤ 𝑎 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘 ≤ 𝑎

Consider a path 𝑃 = 𝑣0, 𝑣1, . . , 𝑣𝑘−1, 𝑣𝑘 in 𝐺

Streaming Graph Algorithms

Spanners

Proof that the Greedy Spanner Algorithm works:

For any edge (𝑥, 𝑦) of 𝐺 we have 𝑑𝐻 𝑥, 𝑦 ≤ 𝑎.

Length of 𝑃 in 𝐺 = 𝑘 = 𝑑𝐺 𝑣0, 𝑣1 + 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘

𝑣0 𝑣1 𝑣𝑘−1 𝑣𝑘𝑃

𝑑𝐻 𝑣0, 𝑣1 ≤ 𝑎 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘 ≤ 𝑎

Length in 𝐻 ≤ 𝑑𝐻 𝑣0, 𝑣1 + 𝑑𝐻 𝑣1, 𝑣2 +⋯+ 𝑑𝐻 𝑣𝑘−1, 𝑣𝑘

Consider a path 𝑃 = 𝑣0, 𝑣1, . . , 𝑣𝑘−1, 𝑣𝑘 in 𝐺

≤ 𝑎 ∙ 𝑑𝐺 𝑣0, 𝑣1 + 𝑎 ∙ 𝑑𝐺 𝑣1, 𝑣2 +⋯+ 𝑎 ∙ 𝑑𝐺 𝑣𝑘−1, 𝑣𝑘 = 𝑎 ∙ 𝑘

Streaming Graph Algorithms

Spanners

How many edges are inserted into 𝐻?

• By a known result in Graph Theory, any such graph has at most

O 𝑛1+ Τ1 𝑡

• Let 𝑎 = 2𝑡 − 1, for some integer 𝑡.

• Then 𝐻 does not contain cycles of length < 2𝑡.

edges.

Streaming Graph Algorithms

Minimum Spanning Tree

Data stream 𝑆: Edges of a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤) with 𝑛 = 𝑉

Greedy MST Algorithm

1. 𝐻 ← ∅

2. for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝑆 do

3. if 𝑒 creates a cycle 𝐶 in 𝐻 then

4. find the maximum weight edge 𝑓 ∈ 𝐶

5. add 𝑒 to 𝐻

6. delete 𝑓 from 𝐻

7. return 𝐻

Construction: if next edge (𝑢, 𝑣) creates a cycle 𝐶 in 𝐻 , delete from 𝐻 the

maximum weight edge of 𝐶.

Streaming Graph Algorithms

Graph Sparsification

Given a graph 𝐺 = (𝑉, 𝐸) we want to construct a weighted subgraph

𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 that estimates various (connectivity) properties of 𝐺

E.g.:

• Cut sparsification [Benczur-Karger]

• Spectral sparsification [Spielman-Teng]

Streaming Graph Algorithms

Picture from https://simons.berkeley.edu/sites/default/files/docs/1768/slidessrivastava1.pdf

Streaming Graph Algorithms

Cuts in Graphs

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

Streaming Graph Algorithms

Cuts in Graphs

26

17

12

14

7
9

20

4

10𝑎

𝑏 𝑐

𝑑

𝑓 𝑒

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

Streaming Graph Algorithms

Cuts in Graphs

26

17

12

14

7
9

20

4

10𝑎

𝑏 𝑐

𝑑

𝑓 𝑒

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

𝜆𝐴 𝐺 =
𝑤 𝑎, 𝑓 + 𝑤 𝑏, 𝑓 + 𝑤 𝑐, 𝑓 + 𝑤 𝑐, 𝑒
+ 𝑤 𝑐, 𝑑 = 17 + 10 + 9 + 7 + 20 = 63

𝐴

𝑉\𝐴

Streaming Graph Algorithms

Cuts in Graphs

26

17

12

14

7
9

20

4

10𝑎

𝑏 𝑐

𝑑

𝑓 𝑒

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

𝐴-cut: partition of 𝑉 into two sets 𝐴 and 𝑉\𝐴

𝛿𝐺 𝛢 = set of edges in 𝐺 crossing the 𝐴-cut. 𝛿𝐺 𝛢 = 𝑢, 𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝐴, 𝑣 ∈ 𝑉\A

Size of 𝐴-cut in 𝐺: 𝜆𝐴 𝐺 = σ𝑒∈𝛿𝐺(𝛢)
𝑤(𝑒)

𝜆𝐴 𝐺 = 𝑤 𝑏, 𝑐 + 𝑤 𝑓, 𝑐 + 𝑤 𝑓, 𝑒
= 12 + 9 + 14 = 35

𝐴

𝑉\𝐴

Streaming Graph Algorithms

Cut Sparsification

Given a graph 𝐺 = (𝑉, 𝐸) we want to construct a weighted subgraph

𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 that estimates the size of each cut of 𝐺

(1 + 𝜀) cut sparsification

1 − 𝜀 ∙ 𝜆𝐴 𝐺 ≤ 𝜆𝐴 𝐻 ≤ (1 + 𝜀) ∙ 𝜆𝐴 𝐺

for all vertex subsets 𝐴 ⊂ 𝑉

Streaming Graph Algorithms

Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

Streaming Graph Algorithms

Graph Laplacian

1

2

4

3
1

2

8
9

3

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

𝐿𝐺 =

14 −3 −9 −2
−3 4 −1 0
−9 −1 18 −8
−2 0 −8 10

Streaming Graph Algorithms

Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

Let 𝑥 =
𝑥1
⋮
𝑥𝑛

be a real vector in ℝ𝑛. Recall that 𝑥𝑇 = 𝑥1 ⋯ 𝑥𝑛

Streaming Graph Algorithms

Graph Laplacian

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → 𝑅

Laplacian of 𝐺: 𝑛 × 𝑛 real matrix 𝐿𝐺, 𝑛 = |𝑉|

𝐿𝐺 𝑖, 𝑗 =

෍
𝑖,𝑘 ∈𝐸

𝑤 𝑖, 𝑘 , 𝑖 = 𝑗

−𝑤 𝑖, 𝑗 , 𝑖 ≠ 𝑗

where 𝑤(𝑖, 𝑗) = 0 if (𝑖, 𝑗) ∉ 𝐸

Let 𝑥 =
𝑥1
⋮
𝑥𝑛

be a real vector in ℝ𝑛. Recall that 𝑥𝑇 = 𝑥1 ⋯ 𝑥𝑛

Then

𝑥𝑇𝐿𝐺𝑥 = ෍

(𝑖,𝑗)∈𝐸

𝑤(𝑖, 𝑗) 𝑥𝑖 − 𝑥𝑗
2

Streaming Graph Algorithms

Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

Streaming Graph Algorithms

Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

A spectral sparsifier of 𝐺 can approximate:

• Size of all cuts

• Eigenvalues

• Effective resistances (in the corresponding electrical network)

• Properties of random walks

Streaming Graph Algorithms

Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

Theorem [Spielman and Teng] A (1 + 𝜀) spectral sparsifier with O(𝑛 log 𝑛 /𝜀2)

edges can be constructed in O(𝑚 polylog(𝑛)/𝜀2), where 𝑛 is the number of vertices

and 𝑚 is the number of edges of the input graph.

Streaming Graph Algorithms

Spectral Sparsification

Graph 𝐺 = (𝑉, 𝐸)

A weighted subgraph 𝐻 = (𝑉, 𝐸𝐻 , 𝑤) of 𝐺 is a (1 + 𝜀) spectral sparsifier of 𝐺 if

1 − 𝜀 ∙ 𝑥𝑇𝐿𝐺𝑥 ≤ 𝑥𝑇𝐿𝐻𝑥 ≤ (1 + 𝜀) ∙ 𝑥𝑇𝐿𝐺𝑥

for all real vectors 𝑥 ∈ ℝ𝑛

Theorem [Spielman and Teng] A (1 + 𝜀) spectral sparsifier with O(𝑛 log 𝑛 /𝜀2)

edges can be constructed in O(𝑚 polylog(𝑛)/𝜀2), where 𝑛 is the number of vertices

and 𝑚 is the number of edges of the input graph.

Theorem [Batson, Spielman and Srivastava] A graph with 𝑛 vertices has a (1 + 𝜀)

spectral sparsifier with O(𝑛/𝜀2) edges.

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

• Use as a black box any existing algorithm ALG that returns a (1 + 𝛾)
spectral sparsifier.

• ALG returns a spectral sparsifier with 𝑠𝑖𝑧𝑒(𝛾) = O(𝑛/𝛾2) number of edges.

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

• Use as a black box any existing algorithm ALG that returns a (1 + 𝛾)
spectral sparsifier.

• ALG returns a spectral sparsifier with 𝑠𝑖𝑧𝑒(𝛾) = O(𝑛/𝛾2) number of edges.

We use the following properties of spectral sparsification

• Mergeable: Suppose 𝐻1 and 𝐻2 are 𝛽 spectral sparsifiers of two graphs

𝐺1 and 𝐺2 on the same set of vertices. Then 𝐻1 ∪ 𝐻2 is a 𝛽 spectral

sparsifier of 𝐺1 ∪ 𝐺2.

• Composable: If 𝐻3 is a 𝛽 spectral sparsifier for 𝐻2 and 𝐻2 is a 𝛿 spectral

sparsifier for 𝐻1 then 𝐻3 is a 𝛽𝛿 spectral sparsifier for 𝐻1.

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

Let 𝐺 = (𝑉, 𝐸) be the input graph with 𝑛 = |𝑉| and 𝑚 = 𝐸

Data stream 𝑆 = the 𝑚 edges of 𝐺

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment

…𝑠𝑖𝑧𝑒(𝛾) 𝑠𝑖𝑧𝑒(𝛾) 𝑠𝑖𝑧𝑒(𝛾)

𝐺1
0 𝐺2

0 𝐺𝑡
0

𝑆

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment

For 𝑖 = 1,2, … , lg 𝑡 and 𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

E.g., for 𝑡 = 4

𝐺1
1 = 𝐺1

0 ∪ 𝐺2
0 𝐺2

1 = 𝐺3
0 ∪ 𝐺4

0

𝐺1
0 𝐺2

0 𝐺3
0 𝐺4

0

𝐺1
2 = 𝐺1

1 ∪ 𝐺2
1 = 𝐺

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment

For 𝑖 = 1,2, … , lg 𝑡 and 𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

For each 𝐺𝑖
𝑗

define a weighted subgraph 𝐻𝑖
𝑗

:

• 𝐻𝑖
0 = 𝐺𝑖

0

• 𝐻𝑖
𝑗
= ALG(𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1
), 𝑗 > 0

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

Set 𝑡 = 𝑚/𝑠𝑖𝑧𝑒(𝛾). For simplicity assume that 𝑡 is a power of 2 (𝑡 = 2𝑘 , 𝑘 = lg 𝑡)

We divide 𝑆 into 𝑡 segments of 𝑠𝑖𝑧𝑒(𝛾) edges

𝐺𝑖
0 = graph that consists of the edges in the 𝑖-th segment

For 𝑖 = 1,2, … , lg 𝑡 and 𝑗 = 1,2, … , 𝑡/2𝑖 define 𝐺𝑖
𝑗
= 𝐺2𝑖−1

𝑗−1
∪ 𝐺2𝑖

𝑗−1

For each 𝐺𝑖
𝑗

define a weighted subgraph 𝐻𝑖
𝑗

:

• 𝐻𝑖
0 = 𝐺𝑖

0

• 𝐻𝑖
𝑗
= ALG(𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1
), 𝑗 > 0

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺

Space required

𝐻𝑖
𝑗
= ALG 𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1

𝐻2𝑖−1
𝑗−1

𝐻2𝑖
𝑗−1

Delete 𝐻2𝑖−1
𝑗−1

and 𝐻2𝑖
𝑗−1

as soon as 𝐻𝑖
𝑗

is computed

⇒

For each 𝑗 we need to store 𝐻𝑖
𝑗

only for two values of 𝑖

Streaming Graph Algorithms

Spectral Sparsification – Construction in the semi-streaming model

By the mergeable and composable properties 𝐻1
lg 𝑡

is a (1 + 𝛾)lg 𝑡 sparsifier of 𝐺

Set 𝛾 = 𝜀/(2 lg 𝑡) ⇒ (1 + 𝛾)lg 𝑡 ~ (1 + 𝜀)

Then 𝐻1
lg 𝑡

is a (1 + 𝜀) sparsifier of 𝐺

Space required

𝐻𝑖
𝑗
= ALG 𝐻2𝑖−1

𝑗−1
∪ 𝐻2𝑖

𝑗−1

𝐻2𝑖−1
𝑗−1

𝐻2𝑖
𝑗−1

Delete 𝐻2𝑖−1
𝑗−1

and 𝐻2𝑖
𝑗−1

as soon as 𝐻𝑖
𝑗

is computed

⇒

For each 𝑗 we need to store 𝐻𝑖
𝑗

only for two values of 𝑖

So at any given time we need to store ≤ 2 ∙ 𝑠𝑖𝑧𝑒 𝛾 ∙ lg 𝑡 = O(𝑛 lg3𝑛/𝜀2)

Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at

most one edge in 𝑀

Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at

most one edge in 𝑀

Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

Greedy Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. if 𝑀 ∪ {𝑒} is a matching then add 𝑒 to 𝑀

4. return 𝑀

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at

most one edge in 𝑀

Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Goal: Find a maximum cardinality matching 𝑀∗

The Greedy Matching Algorithm computes a matching 𝑀 with cardinality

𝑀 ≥ 𝑀∗ /2

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at

most one edge in 𝑀

Streaming Graph Algorithms

Matchings

Graph 𝐺 = (𝑉, 𝐸)

Matching: Subset of edges 𝑀 ⊆ 𝐸 such that each vertex is adjacent to at

most one edge in 𝑀

Goal: Find a maximum cardinality matching 𝑀∗

The Greedy Matching Algorithm computes a matching 𝑀 with cardinality

𝑀 ≥ 𝑀∗ /2

𝑢 𝑣

∈ 𝑀∗

Consider an edge (𝑢, 𝑣) ∈ 𝑀∗

If (𝑢, 𝑣) ∉ 𝑀 then 𝑀 must contain at least one

edge 𝑒 adjacent to 𝑢 or to 𝑣

𝑒 is adjacent to at most 2 edges of 𝑀∗

𝑢′ 𝑣′
∈ 𝑀∗

∈ 𝑀𝑒

Streaming Graph Algorithms

Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to

augment the current matching 𝑀

Streaming Graph Algorithms

Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to

augment the current matching 𝑀

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.

Streaming Graph Algorithms

Weighted Matchings

Weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). Edge weights 𝑤 ∶ 𝐸 → ℝ+ (𝑤(𝑒) > 0, ∀𝑒 ∈ 𝐸)

Goal: Find a maximum weight matching 𝑀∗

As before, we process the edges of the stream 𝑆 as they arrive and try to

augment the current matching 𝑀

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.

∈ 𝑀

∈ 𝑀

𝑒

𝐶 has at most two edges. Let 𝑤(𝐶) be the total weight of the

edges in 𝐶.

If 𝑤(𝑒) > 𝑤(𝐶) then we increase the weight of 𝑀 by

including 𝑒 and deleting the edges of 𝐶.

Streaming Graph Algorithms

Weighted Matchings

Let 𝑒 be the next edge read from 𝑆. Let 𝐶 be the edges of 𝑀 that are in conflict

with 𝑒 : and edge in 𝐶 and 𝑒 are adjacent to a common vertex.

∈ 𝑀

∈ 𝑀

𝑒
If 𝑤(𝑒) > 𝑤(𝐶) then we increase the weight of 𝑀 by

including 𝑒 and deleting the edges of 𝐶.

𝑤(𝐶) = total weight of the edges in 𝐶.

Greedy Weighted Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. let 𝐶 be the set of edges that are in conflict with 𝑒

4. if 𝑤 𝑒 > 𝑤(𝐶) then add 𝑒 to 𝑀 and delete 𝐶 from 𝑀

5. return 𝑀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

𝑀 = {}

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(1,2)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(1,2)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(2,3)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(2,3)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(3,4)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(4,5)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(4,5)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀

𝑤(𝑀) = 1 + 5𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

𝑀∗ = { 1,2 , 3,4 , (5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀∗) = 3 + 9𝜀

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario

𝑆 = (1,2), (2,3), (3,4), … , (𝑛, 𝑛 − 1)

Edge 𝑒𝑖 = (𝑖, 𝑖 + 1) has weight 𝑤(𝑒𝑖) = 1 + 𝑖𝜀, for a small 𝜀 > 0

The computed matching 𝑀 has weight 𝑤(𝑀) = 1 + (𝑛 − 1)𝜀

The optimal matching 𝑀 has weight 𝑤(𝑀∗) = σ𝑖 1 + 2𝑖 − 1 𝜀 > (𝑛 − 1)/2

Hence, the approximation ratio is
𝑤(𝑀∗)

𝑤(𝑀)
>

(𝑛 − 1)/2

1 + 𝑛 − 1 𝜀
~
𝑛

2

Streaming Graph Algorithms

Weighted Matchings

The problem is that the trailing edges of 𝑆 that were once inserted into 𝑀 but

removed later may have much larger total weight than the edges added later.

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

trailing edges

Streaming Graph Algorithms

Weighted Matchings

∈ 𝑀

∈ 𝑀

𝑒
We include 𝑒 in 𝑀 If 𝑤 𝑒 > 𝛽𝑤(𝐶) for some constant

𝛽 = 1 + 𝛾 > 1.

Modified algorithm

Greedy Weighted Matching Algorithm

1. 𝑀 ← ∅

2. for each edge 𝑒 ∈ 𝑆 do

3. let 𝐶 be the set of edges that are in conflict with 𝑒

4. if 𝑤 𝑒 > (1 + 𝛾) ∙ 𝑤(𝐶) then add 𝑒 to 𝑀 and delete 𝐶 from 𝑀

5. return 𝑀

Streaming Graph Algorithms

Weighted Matchings

The problem is that the trailing edges of 𝑆 that were once inserted into 𝑀 but

removed later may have much larger total weight than the edges added later.

𝑀 = {(5,6)}

1 + 𝜀

21 43 5 6

1 + 2𝜀 1 + 3𝜀 1 + 4𝜀 1 + 5𝜀 𝑤(𝑀) = 1 + 5𝜀

trailing edges

We include 𝑒 in 𝑀 If 𝑤 𝑒 > 𝛽𝑤(𝐶) for some constant 𝛽 = 1 + 𝛾 > 1.

For an edge 𝑒 define

• 𝐶0 = {𝑒}

• 𝐶𝑖 = edges removed when an edge in 𝐶𝑖−1 was added to 𝑀

• 𝑇𝑒 = 𝐶1 ∪ 𝐶2 ∪⋯

Then 𝑤(𝑇𝑒) ≤ 𝑤(𝑒)/𝛾

Streaming Graph Algorithms

Weighted Matchings

It can be shown that

𝑤(𝑀∗) ≤ (1 + 𝛾) ∙ ෍

𝑒∈𝑀

(𝑤 𝑇𝑒 + 2𝑤(𝑒))

By applying a careful charging scheme we get
𝑤(𝑀∗)

𝑤(𝑀)
< 5.828

Streaming Graph Algorithms

Weighted Matchings

Multi-pass Algorithm

Greedy Weighted

Matching Algorithm

𝑆

𝑀 = ∅
𝑀

We can get a (2 + 𝜀)-approximation with O(𝜀−3) passes over 𝑆, where 𝛾 = O(𝜀)

Streaming Graph Algorithms

Graph Sketches

Random linear projection 𝑀 ∶ ℝ𝑛 → ℝ𝑘, where 𝑘 ≪ 𝑛

𝑀 𝒗 = 𝑀𝒗

∈ ℝ𝑛

∈ ℝ𝑘

For any vector 𝒗 ∈ ℝ𝑛, the projection 𝑀𝒗 ∈ ℝ𝑘 preserves properties of 𝒗

with high probability

Many applications: estimating entropy, heavy hitters, estimating norms,

fitting polynomials,…

Rich theory: dimensionality reduction, sparse recovery, metric embeddings,…

∈ ℝ𝑘×𝑛

Streaming Graph Algorithms

Graph Sketches

Can we use this approach for graphs?

That is, can we project the adjacency matrix 𝐴𝐺 of a graph 𝐺 to a smaller

matrix 𝑀𝐴𝐺, so that we can use 𝑀𝐴𝐺 to compute properties of 𝐺?

• For a graph 𝐺 with n vertices, 𝐴𝐺 has O 𝑛2 dimensions.

• To work in the semi-streaming model we want 𝑀𝐴𝐺 to have O(𝑛 polylog(𝑛))
dimensions.

Streaming Graph Algorithms

Graph Sketches

Picture from https://people.cs.umass.edu/~mcgregor/711S12/lec-2-2.pdf

Streaming Graph Algorithms

Graph Sketches

Dynamic graph stream 𝑆 = 𝑎1, 𝑎2, … where 𝑎𝑖 = (𝑒𝑖 , Δ𝜄)

𝑒𝑖 = an edge of the graph

Δ𝑖 = ቐ
+1, 𝑒𝑖 is inserted

−1, 𝑒𝑖 is deleted

Multiplicity of edge 𝑒 : 𝑓𝑒 = ෍

𝑖∶ 𝑒𝑖=𝑒

Δ𝑖

For simplicity we will assume that 𝑓𝑒 ∈ 0,1 , for all edges e.

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with

𝑛 vertices has up to 𝑛
2

edges).

1

2

3

𝑒12

𝑒13

𝑒23
𝒇 =

𝑓𝑒12
𝑓𝑒13
𝑓𝑒23

=
1
0
1

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with

𝑛 vertices has up to 𝑛
2

edges).

Index vector of edge 𝑒 : 𝒊𝑒 ∈ 0,1
𝑛
2 . The only nonzero entry of 𝒊𝑒 is the one that

corresponds to edge 𝑒.

1

2

3

𝑒12

𝑒13

𝑒23
𝒊𝒆𝟐𝟑 =

𝑖𝑒12
𝑖𝑒13
𝑖𝑒23

=
0
0
1

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with

𝑛 vertices has up to 𝑛
2

edges).

Sketch of 𝒇 : 𝐴(𝒇) ∈ ℝ𝑑, 𝑑 =dimensionality of the sketch

When we read the next item 𝑒, Δ from the stream, we can update the sketch as

follows:

𝐴 𝒇 = 𝐴 𝒇 + Δ ∙ 𝐴(𝒊𝑒)

Index vector of edge 𝑒 : 𝒊𝑒 ∈ 0,1
𝑛
2 . The only nonzero entry of 𝒊𝑒 is the one that

corresponds to edge 𝑒.

Streaming Graph Algorithms

Homomorphic Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with

𝑛 vertices has up to 𝑛
2

edges).

For a vertex 𝑣 let 𝒇𝒗 ∈ 0,1 𝑛−1 be the restriction of 𝒇 to the coordinates that

involve 𝑣 (i.e., the 𝑛 − 1 edges that can be adjacent to 𝑣 in 𝐺)

1

2

3

𝑒12

𝑒13

𝑒23
𝒇 =

𝑓𝑒12
𝑓𝑒13
𝑓𝑒23

=
1
0
1

𝒇𝟏 =
𝑓𝑒12
𝑓𝑒13

=
1
0

Streaming Graph Algorithms

Homomorphic Sketches

Vector of edge multiplicities 𝒇 ∈ 0,1
𝑛
2

Each entry of 𝒇 is a multiplicity 𝑓𝑒 of a (potential) edge 𝑒 of 𝐺 (a simple graph with

𝑛 vertices has up to 𝑛
2

edges).

For a vertex 𝑣 let 𝒇𝒗 ∈ 0,1 𝑛−1 be the restriction of 𝒇 to the coordinates that

involve 𝑣 (i.e., the 𝑛 − 1 edges that can be adjacent to 𝑣 in 𝐺)

𝐴 𝒇 = 𝐴1 𝒇
𝒗𝟏 ∘ 𝐴2 𝒇

𝒗𝟐 ∘ ⋯ ∘ 𝐴𝑛 𝒇
𝒗𝒏

The sketches of 𝒇 are formed by concatenation (∘) of the sketches of each 𝒇𝒗

Homomorphic sketches: For each operation on 𝐺 there is a corresponding

operation on the sketches

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

Connectivity Algorithm

1. repeat

2. for each vertex 𝑣 of the current graph do

3. select an edge incident to 𝑣

4. contract all selected edges

5. until the current graph has no edges

Let’s begin with a simple (non-sketch) algorithm

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

12

34

567

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

12

34

567

super-vertices

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

12

34

567

12
34

567

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

1

2

3

4

6

7

5

12

34

567

12
34

567

new

super-vertices

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph 𝐺 = (𝑉, 𝐸)

Connectivity Algorithm

1. repeat

2. for each vertex 𝑣 of the current graph do

3. select an edge incident to 𝑣

4. contract all selected edges

5. until the current graph has no edges

Let’s begin with a simple (non-sketch) algorithm

Finds the connected components of 𝐺, and a spanning forest, in O(log 𝑛) rounds

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

2. Apply ℓ0-sampling via linear sketches

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

2. Apply ℓ𝟎-sampling via linear sketches

Let 𝐾 = polylog(𝑁). There is a distribution over matrices 𝑀 ∈ ℝ𝐾×𝑁 such that for

any 𝒙 ∈ ℝ𝑁, a random non-zero element of 𝒙 can be reconstructed from 𝑀𝒙 with

high probability.

ℓ𝟎-sampling

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇

𝒂𝟏 + 𝒂𝟐 =

0 1 0 1 0 0 𝑇

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1

2

3 4

𝒂𝒊 = 𝒂 1,2
𝑖 𝒂 1,3

𝑖 𝒂(1,4)
𝑖 𝒂 2,3

𝑖 𝒂 2,4
𝑖 𝒂 3,4

𝑖 𝑇
Vector of vertex 𝑖 :

𝒂𝟏 = 1 1 0 0 0 0 𝑇

𝒂𝟐 = −1 0 0 1 0 0 𝑇

𝒂𝟑 = 0 −1 0 −1 0 1 𝑇

𝒂𝟒 = 0 0 0 0 0 −1 𝑇

𝒂𝟏 + 𝒂𝟐 =

0 𝟏 0 𝟏 0 0 𝑇

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

𝒂(𝑗,𝑘)
𝑖 = ቐ

+1,
−1,
0,

if 𝑖 = 𝑗 < 𝑘 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

if 𝑗 < 𝑘 = 𝑖 and (𝑣𝑗, 𝑣𝑘) ∈ 𝐸

otherwise

For each vertex 𝑣𝑖 we define a vector 𝒂𝒊 ∈ −1,0,1
𝑛
2

with entries

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that

cross the cut (𝑈, 𝑉\U)

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that

cross the cut (𝑈, 𝑉\U)

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices 𝑈 ⊆ 𝑉, let 𝒂 𝑈 = ෍

𝑣𝑖∈𝑈

𝒂𝒊

The non-zero entries of 𝒂(𝑈) correspond to 𝛿𝐺 𝑈 = the set of edges of 𝐺 that

cross the cut (𝑈, 𝑉\U)

Thus σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 = 𝑀 σ𝑣𝑖∈𝑈

𝒂𝒊 gives a random edge in 𝛿𝐺 𝑈

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

1. Choose 𝑡 = O(log 𝑛)

2. for 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑡 do

3. Construct the random projection 𝑀𝑗𝒂
𝑖

4. for 𝑖 = 1,2, … , 𝑛 do

5. Compute 𝐴𝑖 𝒇
𝒗𝒊 = (𝑀1𝒂

𝑖) ∘ (𝑀2𝒂
𝑖) ∘ ⋯ ∘ (𝑀𝑡𝒂

𝑖)

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

1. Choose 𝑡 = O(log 𝑛)

2. for 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑡 do

3. Construct the random projection 𝑀𝑗𝒂
𝑖

4. for 𝑖 = 1,2, … , 𝑛 do

5. Compute 𝐴𝑖 𝒇
𝒗𝒊 = (𝑀1𝒂

𝑖) ∘ (𝑀2𝒂
𝑖) ∘ ⋯ ∘ (𝑀𝑡𝒂

𝑖)

• Each sketch 𝐴𝑖 has dimension O(polylog𝑛)

• Since there are n sketches, the required space is O(𝑛 polylog𝑛)

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

1. Let ෠𝑉 = 𝑉 be the initial set of super-vertices

2. for 𝑖 = 1,2, … , 𝑡 do

3. for each super-vertex 𝑈 ∈ ෠𝑉 do

4. use σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 to sample an edge between 𝑈 and another super-vertex 𝑊

5. collapse 𝑈 and 𝑊 to form a new super-vertex

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

1. Let ෠𝑉 = 𝑉 be the initial set of super-vertices

2. for 𝑖 = 1,2, … , 𝑡 do

3. for each super-vertex 𝑈 ∈ ෠𝑉 do

4. use σ𝑣𝑖∈𝑈
𝑀𝒂𝒊 to sample an edge between 𝑈 and another super-vertex 𝑊

5. collapse 𝑈 and 𝑊 to form a new super-vertex

The update time (to process the next edge in 𝑆) is O(polylog𝑛)

Streaming Graph Algorithms

Concluding remarks

• Many graph algorithms in the data stream model are known for

basic problems. E.g., estimating connectivity, approximating

distances, finding approximate matchings, counting subgraphs,…

• But limited work on directed graphs!

• Space constraints: semi-stream model not suited for sparse

graphs (𝑚 = O(𝑛 polylog𝑛))

Streaming Architectures

Picture from https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html

Streaming Architectures

Google Cloud Platform

https://cloud.google.com/solutions/architecture/streamprocessing

