Streaming Model of Computation

A streaming algorithm processes a data stream S

Input is presented as a sequence of items and can be examined in only
a few passes (typically just one).

The algorithm has limited memory and cannot store the whole input
sequence.

The algorithm can spend limited processing time per item.
In some problems we are satisfied with an approximate answer.

Approximation algorithms can be based on sketches (summaries) of the
data stream in memory.

Streaming Graph Algorithms

In many applications we deal with massive graphs. E.g. (vertices — edges):

Web-pages — hyperlinks

Neurons — synapses

IP addresses — network flows

People — friendships

Processing such graphs with a classic graph algorithm may be infeasible!

But it may be possible to use an algorithm developed for the data stream model.

Streaming Graph Algorithms

In many applications we deal with massive graphs. E.g. (vertices — edges):
* Web-pages — hyperlinks

« Neurons — synapses

« |P addresses — network flows

» People — friendships

Processing such graphs with a classic graph algorithm may be infeasible!

But it may be possible to use an algorithm developed for the data stream model.

Presentation based on:
A. McGregor “Graph Stream Algorithms: A Survey” [ACM SIGMOD Record 2014]

The Internet

Graph from Albert-Laszl6 Barabasi’ s SIGIR09 keynote

Streaming Graph Algorithms

Data stream model

« The input is given by a stream of data. E.g., the stream could be the graph
edges.

» The algorithm can use a limited amount of memory to process the stream.

« The input stream must be processed in the order it arrives.

Related goals:
» Real-time systems.
« 1/O efficiency.

« Trade-off size and accuracy.

Streaming Graph Algorithms

Data stream model

How much memory should our model allow in order to be able to process a graph
with n vertices?

« Most problems are intractable if space is < n.

« We will work in the semi-streaming model that allows 0O(n log®n) memory, for
some constant k.

« Some algorithms will be randomized. We will say that an event E occurs with
high probability if Pr[E] = 1 — 1/n.

Streaming Graph Algorithms

Graph connectivity

Data stream S: Edges of a graph ¢ = (V,E) with n = |V/|

1 (3) (4)

E.g., data stream S = (1,2),(2,3),(1,3),(3,4)

Streaming Graph Algorithms

Graph connectivity
Data stream S: Edges of a graph ¢ = (V,E) with n = |V/|

The goal is to test if G is connected, i.e., for any two vertices there is a path that
connects them.

Streaming Graph Algorithms

Graph connectivity
Data stream S: Edges of a graph ¢ = (V,E) with n = |V/|

The goal is to test if G is connected, i.e., for any two vertices there is a path that
connects them.

Simple algorithm: Maintain a set of edges H. When we read the next edge (u, v)
from the stream, we add it to H if there is currently no path between u and v.

Streaming Graph Algorithms

Spanners
a-spanner H of a graph ¢ = (V, E): subgraph of ¢ such that for all pairs u,v € V,

de(u,v) <dy(u,v) <a-dg(u,v)

d;(u,v) = length of the shortest path between u and v in G

dy(u, v) = length of the shortest path between u and v in H

Streaming Graph Algorithms

Spanners
a-spanner H of a graph ¢ = (V, E): subgraph of ¢ such that for all pairs u,v € V,

de(u,v) <dy(u,v) <a-dg(u,v)

d;(u,v) = length of the shortest path between u and v in G

dy(u, v) = length of the shortest path between u and v in H

2-spanner

@ (3—©
(2) w

Streaming Graph Algorithms

Spanners

Construction of an a-spanner H: add next edge (u, v) if it does not create a short
cycle in H

Greedy Spanner Algorithm

H« @
for each edge (u,v) € S do

if dy(u,v) > athenadd (u,v)to H
return H

= W e

* Does this work?
« What is the size (#edges) of the spanner?

Streaming Graph Algorithms

Spanners

Proof that the Greedy Spanner Algorithm works:
For any edge (x,y) of G we have dy(x,y) < a.

Consider a path P = (vg, v4,..,Vk_1, V%) IN G

dy(vo,v1) < a dy(Vi-1,v,) S a

Length of PinG =k = dG(vo, vl) + dG(vl, Uz) + -+ dG(vk_l, Uk)

Streaming Graph Algorithms

Spanners

Proof that the Greedy Spanner Algorithm works:
For any edge (x,y) of G we have dy(x,y) < a.

Consider a path P = (vg, v4,..,Vk_1, V%) IN G

dy(vo,v1) < a dy(Vi-1,v,) S a

Length of PinG =k = dG(vo, vl) + dG(vl, Uz) + -+ dG(vk_l, vk)

Lengthin H < dy(vy,vy) +dy(vy,vy) + -+ dy(Vi—1, Vg)

<a-d¢gvy)+a-deg(w,vy)++a-de(Vp_1,vx) =a-k

Streaming Graph Algorithms

Spanners
How many edges are inserted into H?
 Leta =2t -1, for some integer t.

 Then H does not contain cycles of length < 2t.

« By a known result in Graph Theory, any such graph has at most

O(n1+1/t)

edges.

Streaming Graph Algorithms

Minimum Spanning Tree

Data stream S: Edges of a weighted graph ¢ = (V, E,w) with n = |V/|

Construction: if next edge (u,v) creates a cycle C in H, delete from H the
maximum weight edge of C.

Greedy MST Algorithm

H<0Q
for each edge e = (u,v) € Sdo
if e creates a cycle C in H then
find the maximum weight edge f € C
addeto H
delete f from H
return H

NS s W N

Streaming Graph Algorithms

Graph Sparsification

Given a graph ¢ = (V, E) we want to construct a weighted subgraph
H = (V,Ey,w) of G that estimates various (connectivity) properties of ¢

E.gQ.:
« Cut sparsification [Benczur-Karger]

« Spectral sparsification [Spielman-Teng]

Streaming Graph Algorithms

Sample Application

Output

Approx
Output

Picture from https://simons.berkeley.edu/sites/default/files/docs/1768/slidessrivastaval.pdf

Streaming Graph Algorithms

Cuts in Graphs
Weighted graph ¢ = (V,E,w). Edge weights w : E - R
A-cut: partition of V into two sets A and V\4
5 (A) = set of edges in G crossing the A-cut. 6;(4) = {(u,v) EE: u€ A, v e V\A}

Size of A-cutin G: A4(G) = Zeeac(A) w(e)

Streaming Graph Algorithms

Cuts in Graphs
Weighted graph ¢ = (V,E,w). Edge weights w : E - R
A-cut: partition of V into two sets A and V\4
5 (A) = set of edges in G crossing the A-cut. 6;(4) = {(u,v) EE: u€ A, v e V\A}

Size of A-cutin G: A4(G) = Zeeac(A) w(e)

b1 €
)
26 20
a 10 g |7 d
17 4
4
14

Streaming Graph Algorithms

Cuts in Graphs
Weighted graph ¢ = (V,E,w). Edge weights w : E - R
A-cut: partition of V into two sets A and V\4
5, (A) = set of edges in G crossing the A-cut. 6;(A) = {(u,v) EE: u€ A,v € V\A}

Size of A-cutin G: 14(G) = Zeeac(A) w(e)

A4(G) = 17 4
w(a, f)+w(, f)+w(,f)+w(ce) ” C
+w(c,d) =17 +10+9+7 + 20 = 63 f e V\A4

Streaming Graph Algorithms

Cuts in Graphs
Weighted graph ¢ = (V,E,w). Edge weights w : E - R
A-cut: partition of V into two sets A and V\4
5, (A) = set of edges in G crossing the A-cut. 6;(A) = {(u,v) EE: u€ A,v € V\A}

Size of A-cutin G: 14(G) = Zeeac(A) w(e)

26 20

A4(G) =w(b,c) +w(f,c) + w(f,e) 17 4

=1249+ 14 =35 C
14
f e V\A

Streaming Graph Algorithms

Cut Sparsification

Given a graph ¢ = (V, E) we want to construct a weighted subgraph
H = (V,Ey,w) of G that estimates the size of each cut of ¢

(1 + ¢) cut sparsification
(1—28) - 2(G) < 14(H) < (1+¢)-24(6)

for all vertex subsets A c V

Streaming Graph Algorithms

Graph Laplacian

Weighted graph ¢ = (V,E,w). Edge weights w : E - R

Laplacian of G: n X n real matrix L;, n = |V|

L:(i,j) =+

\—W(i,j),

r
Z w@i k), Q=]
(i,k)EE

[#]

where w(i,j) =0if (i,j) ¢ E

Streaming Graph Algorithms

Graph Laplacian

Weighted graph ¢ = (V,E,w). Edge weights w : E - R

Laplacian of G: n X n real matrix L;, n = |V|

L:(i,j) =+

\—W(i,j),

r
Z w@i k), Q=]
(i,k)EE

i #j
14 -3
-3 4
-9 —1
-2 0

where w(i,j) =0if (i,j) ¢ E

Streaming Graph Algorithms

Graph Laplacian

Weighted graph ¢ = (V,E,w). Edge weights w : E - R

Laplacian of G: n X n real matrix L;, n = |V|

r
Z w@i k), Q=]
(i,k)EE

—w(i,), i #

Lo(i,)) =4 where w(i,j) =0if (i,j) € E

X1

Let X = () be a real vector in R™. Recall that x7 = (X1 * Xp)

Xn

Streaming Graph Algorithms

Graph Laplacian

Weighted graph ¢ = (V,E,w). Edge weights w : E - R

Laplacian of G: n X n real matrix L;, n = |V|

r
Z w@i k), Q=]
(i,k)EE

Lo(i,)) =4 where w(i,j) =0if (i,j) € E
k—w(i,j), L+]J
X
Let X = (;1) be a real vector in R™. Recall that x7 = (X1 * Xp)
Xn
Then

xT'Lex = z w(i, j)(x; — xj)z

(i,j)EE

Streaming Graph Algorithms

Spectral Sparsification
Graph ¢ = (V,E)

Aweighted subgraph H = (V,Ey,w) of G is a (1 + ¢) spectral sparsifier of G if
(1—¢&) xTLlex <xTLyx< (14+¢)-xTLgx

for all real vectors x € R"

Streaming Graph Algorithms

Spectral Sparsification
Graph ¢ = (V,E)

Aweighted subgraph H = (V,Ey,w) of G is a (1 + ¢) spectral sparsifier of G if
(1—¢&) xTLlex <xTLyx< (14+¢)-xTLgx
for all real vectors x € R"

A spectral sparsifier of G can approximate:

» Size of all cuts

« Eigenvalues

» Effective resistances (in the corresponding electrical network)
* Properties of random walks

Streaming Graph Algorithms

Spectral Sparsification

Graph ¢ = (V,E)

Aweighted subgraph H = (V,Ey,w) of G is a (1 + ¢) spectral sparsifier of G if
(1—¢&) xTLlex <xTLyx< (14+¢)-xTLgx

for all real vectors x € R"

Theorem [Spielman and Teng] A (1 + ¢) spectral sparsifier with O(nlogn /&%)
edges can be constructed in O(m polylog(n)/c?), where n is the number of vertices
and m is the number of edges of the input graph.

Streaming Graph Algorithms

Spectral Sparsification
Graph ¢ = (V,E)

Aweighted subgraph H = (V,Ey,w) of G is a (1 + ¢) spectral sparsifier of G if
(1—¢&) xTLlex <xTLyx< (14+¢)-xTLgx
for all real vectors x € R"

Theorem [Spielman and Teng] A (1 + ¢) spectral sparsifier with O(nlogn /&%)
edges can be constructed in O(m polylog(n)/c?), where n is the number of vertices
and m is the number of edges of the input graph.

Theorem [Batson, Spielman and Srivastava] A graph with n vertices has a (1 + ¢)
spectral sparsifier with O(n/<?) edges.

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model

« Use as a black box any existing algorithm ALG that returns a (1 +y)
spectral sparsifier.

« ALG returns a spectral sparsifier with size(y) = 0(n/y?) number of edges.

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model
« Use as a black box any existing algorithm ALG that returns a (1 +y)
spectral sparsifier.

« ALG returns a spectral sparsifier with size(y) = 0(n/y?) number of edges.

We use the following properties of spectral sparsification

 Mergeable: Suppose H; and H, are 3 spectral sparsifiers of two graphs
G, and G, on the same set of vertices. Then H{ UH, is a [spectral
sparsifier of G; U G,.

« Composable: If H; is a 8 spectral sparsifier for H, and H, is a § spectral
sparsifier for H; then H; is a 6 spectral sparsifier for H,.

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model

Let G = (V, E) be the input graph with n = |V| and m = |E]|
Data stream S = the m edges of ¢

Sett = m/size(y). For simplicity assume that t is a power of 2

We divide S into t segments of size(y) edges

G = graph that consists of the edges in the i-th segment

S size(y) size(y) - size(y)

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model

Set t = m/size(y). For simplicity assume that t is a power of 2 (t = 2%, k = 1gt)
We divide S into t segments of size(y) edges

G = graph that consists of the edges in the i-th segment

For i =1,2,..,1gt and j =1,2,...,t/2" define Gij = szi—_11 U szi_l

omiss () () () (a0

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model

Set t = m/size(y). For simplicity assume that t is a power of 2 (t = 2%, k = 1gt)
We divide S into t segments of size(y) edges

G = graph that consists of the edges in the i-th segment

For i =1,2,..,1gt and j =1,2,...,t/2" define Gij = szi—_11 U szi_l

For each Gij define a weighted subgraph Hij :
- H) =G}

. - L
* H/ =ALG(Hj, UH;,), j>0

Streaming Graph Algorithms

Spectral Sparsification — Construction in the semi-streaming model

Set t = m/size(y). For simplicity assume that t is a power of 2 (t = 2%, k = 1gt)
We divide S into t segments of size(y) edges

G = graph that consists of the edges in the i-th segment

For i =1,2,..,1gt and j = 1,2,..,t/2¢ define G/ = G/ " uG)"
For each Gij define a weighted subgraph Hij :

- H) =g}

. - L
* H/ =ALG(Hj, UH;,), j>0

By the mergeable and composable properties Higt isa (1 + y)'et sparsifier of G

Streaming Graph Algorithms
Spectral Sparsification — Construction in the semi-streaming model

By the mergeable and composable properties Higt is a (1 + y)'8t sparsifier of G
Sety =¢/Qlgt) = (1+y)8t~ (1 +¢)

Then H\2" is a (1 + ¢) sparsifier of G

Streaming Graph Algorithms
Spectral Sparsification — Construction in the semi-streaming model

By the mergeable and composable properties Higt is a (1 + y)'8t sparsifier of G
Sety =¢/Qlgt) = (1+y)8t~ (1 +¢)

Then H\2" is a (1 + ¢) sparsifier of G

: j-1 j-1
Space required @ @ Delete H;;_; and Hj,

as soon as H; is computed
=

For each j we need to store Hl.j
only for two values of i

Streaming Graph Algorithms
Spectral Sparsification — Construction in the semi-streaming model

By the mergeable and composable properties Higt is a (1 + y)'8t sparsifier of G
Sety =¢/Qlgt) = (1+y)8t~ (1 +¢)
Then H2" is a (1 + ¢) sparsifier of G

: j-1 j-1
Space required @ @ Delete H;;_; and Hj,

as soon as Hij Is computed

=
For each j we need to store Hij
only for two values of i

So at any given time we need to store < 2 - size(y) -1gt = O(nlg3n/e?)

Streaming Graph Algorithms

Matchings

Graph ¢ = (V,E)

Matching: Subset of edges M < E such that each vertex is adjacent to at
most one edge in M

Goal: Find a maximum cardinality matching M*

Streaming Graph Algorithms

Matchings

Graph ¢ = (V,E)

Matching: Subset of edges M < E such that each vertex is adjacent to at
most one edge in M

Goal: Find a maximum cardinality matching M*

Streaming Graph Algorithms

Matchings

Graph ¢ = (V,E)

Matching: Subset of edges M < E such that each vertex is adjacent to at
most one edge in M

Goal: Find a maximum cardinality matching M*

Greedy Matching Algorithm

M<0Q
for each edge e € S do

if M U {e}is a matching then add e to M
return M

el o

Streaming Graph Algorithms

Matchings

Graph ¢ = (V,E)

Matching: Subset of edges M < E such that each vertex is adjacent to at
most one edge in M

Goal: Find a maximum cardinality matching M*

The Greedy Matching Algorithm computes a matching M with cardinality
M| = |M*|/2

Streaming Graph Algorithms

Matchings

Graph ¢ = (V,E)

Matching: Subset of edges M < E such that each vertex is adjacent to at
most one edge in M

Goal: Find a maximum cardinality matching M*

The Greedy Matching Algorithm computes a matching M with cardinality
M| = |M*|/2

| € M*
Consider an edge (u,v) € M* u' v’
: eleM
If (u,v) € M then M must contain at least one
edge e adjacent to u or to v u %
EM”

e IS adjacent to at most 2 edges of M*

Streaming Graph Algorithms

Weighted Matchings
Weighted graph G = (V,E,w). Edge weights w : E - R* (w(e) > 0, Ve € E)
Goal: Find a maximum weight matching M*

As before, we process the edges of the stream S as they arrive and try to
augment the current matching M

Streaming Graph Algorithms

Weighted Matchings
Weighted graph G = (V,E,w). Edge weights w : E - R* (w(e) > 0, Ve € E)
Goal: Find a maximum weight matching M*

As before, we process the edges of the stream S as they arrive and try to
augment the current matching M

Let e be the next edge read from S. Let C be the edges of M that are in conflict
with e : and edge in C and e are adjacent to a common vertex.

Streaming Graph Algorithms

Weighted Matchings
Weighted graph G = (V,E,w). Edge weights w : E - R* (w(e) > 0, Ve € E)
Goal: Find a maximum weight matching M*

As before, we process the edges of the stream S as they arrive and try to
augment the current matching M

Let e be the next edge read from S. Let C be the edges of M that are in conflict
with e : and edge in C and e are adjacent to a common vertex.

C has at most two edges. Let w(C) be the total weight of the eM
edges in C.

If w(e) > w(C) then we increase the weight of M by

including e and deleting the edges of C. e M

Streaming Graph Algorithms

Weighted Matchings

Let e be the next edge read from S. Let C be the edges of M that are in conflict
with e : and edge in C and e are adjacent to a common vertex.

eEM
w(C) = total weight of the edges in C.
e
If w(e) > w(C) then we increase the weight of M by
including e and deleting the edges of C. y
€

Greedy Weighted Matching Algorithm

M<Q
foreach edge e € S do

if w(e) > w(C) then add e to M and delete C from M

1
2
3. let C be the set of edges that are in conflict with e
4
5. return M

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario
S=(12),02,3),34),..,.(nn—1)
Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—®@ ©) @ ® ©
1+ 142 14+3 1+4¢ 1+ 5¢

M= {}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—00—C@—0—06—=0

14¢ 142 143 1+4 1+ 5¢

M = {(1,2)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—00—C@—0—06—=0

14¢ 142 143 1+4 1+ 5¢

M = {(1,2)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

@—@i@ >—O—6

14¢ 142 143 1+4 1+ 5¢

M = {(2,3)}

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—0—0B—0—06—=0

14¢ 142 143 1+4 1+ 5¢

M = {(2,3)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

@@@i@®@

14¢ 142 143 1+4 1+ 5¢

M ={(3,4)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

@@@i@®@

14¢ 142 143 1+4 1+ 5¢

M ={(3,4)}

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—0—C@—10—06—=~0®

14¢ 142 143 1+4 1+ 5¢

M ={(3,4)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—20—B 4 5 ®
14¢ 142 143 1+4 1+ 5¢

M = {(4,5)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—20—B 4 5 ®
14¢ 142 143 1+4 1+ 5¢

M = {(4,5)}

Streaming Graph Algorithms

Weighted Matchings
Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

O—0—0@—0—06—0®

14¢ 142 143 1+4 1+ 5¢

M={(56) w(M)=1+5¢

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario
S=(12),02,3),34),..,.(nn—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0

M = {(5,6)}

O—0—0@—0—06—0®

1+ 142 1+3¢ 1+4¢ 1+ 5¢ w(M) =1+ 5¢

O—2—B @ S M ={12),34 (6]
1+ 14+2 143 144 1+ 5¢ w(M*) =3 + 9¢

Streaming Graph Algorithms

Weighted Matchings

Consider the following scenario
S=(1,2),(23),34),..,(n,n—1)

Edge e; = (i,i + 1) has weight w(e;) = 1+ ie, forasmall ¢ > 0
The computed matching M has weight w(M) =14+ (n—1)¢

The optimal matching M has weight w(M*) =>,(1+ (2i — 1)) > (n—1)/2

Hence, th mation ratiois —oa), (- D72 n
ence, the approximation ratiois A > 1~ o~

Streaming Graph Algorithms

Weighted Matchings

trailing edges

A\
(\
M = {(5,6
D>—O—C—@—C—0E t>6)}

1+ 142 1+3e 1+4¢ 1+ 5¢ w(M) =1+ 5¢

The problem is that the trailing edges of S that were once inserted into M but
removed later may have much larger total weight than the edges added later.

Streaming Graph Algorithms

Weighted Matchings

eEM
Modified algorithm
e
We include e in M If w(e) > Bw(C) for some constant
=1 > 1.
B=>0+y) c M

Greedy Weighted Matching Algorithm

M<0Q
for each edge e € S do

if w(e) > (1+y) - -w(C)thenadd e to M and delete C from M

1
2
3. let C be the set of edges that are in conflict with e
4
5. return M

Streaming Graph Algorithms

Weighted Matchings

trailing edges

A\
(\
M= {56
D—O—O—D—C—0O t>6)}

1+ 142 1+3e 1+4¢ 1+ 5¢ w(M) =1+ 5¢

The problem is that the trailing edges of S that were once inserted into M but
removed later may have much larger total weight than the edges added later.

We include e in M If w(e) > pw(C) for some constant § = (1 +y) > 1.

For an edge e define

* (o ={e}
« (; = edges removed when an edge in C;_; was added to M
e T,=C;UC, U -

Thenw(T,) <w(e)/y

Streaming Graph Algorithms

Weighted Matchings

It can be shown that

WM < (L+7) -) W(T,) +2w(e))

eeM

w(M™)

.82
w0 < 5.828

By applying a careful charging scheme we get

Streaming Graph Algorithms

Weighted Matchings

Multi-pass Algorithm

Greedy Weighted
M=¢ ———> Matching Algorithm

We can get a (2 + ¢£)-approximation with O(¢~3) passes over S, where y = 0(¢)

Streaming Graph Algorithms

Graph Sketches

Random linear projection M : R™ — R¥*, where k « n

For any vector v € R", the projection Mv € R preserves properties of v
with high probability

e R"

Many applications: estimating entropy, heavy hitters, estimating norms,
fitting polynomials,...
Rich theory: dimensionality reduction, sparse recovery, metric embeddings,...

Streaming Graph Algorithms

Graph Sketches

Can we use this approach for graphs?

That is, can we project the adjacency matrix A, of a graph ¢ to a smaller
matrix MA;, so that we can use MA_; to compute properties of G?
 For a graph G with n vertices, A; has 0(n?) dimensions.

« To work in the semi-streaming model we want MA; to have O(n polylog(n))
dimensions.

Streaming Graph Algorithms

Graph Sketches

(CAigorithm ———> ANSWER «———(Algorithm)

l Original Graph 'E : Sketch Space

--

Picture from https://people.cs.umass.edu/~mcgregor/711S12/lec-2-2.pdf

Streaming Graph Algorithms

Graph Sketches

Dynamic graph stream S = (a4, a,, ...) where a; = (e;,A))

e; = an edge of the graph

+1, ¢; is inserted
Ai =

—1, e; is deleted

Multiplicity of edge e : f, = Z A;

i:ej=e

For simplicity we will assume that f, € {0,1}, for all edges e.

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities f c {0,1}(?)

Each entry of f is a multiplicity f, of a (potential) edge e of ¢ (a simple graph with
n vertices has up to () edges).

f€12 1 €13
f= f313 — <O> e
fezg 1

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities f c {0,1}(?)

Each entry of f is a multiplicity f, of a (potential) edge e of ¢ (a simple graph with
n vertices has up to () edges).

Index vector of edge e : i° € {0,1}(3). The only nonzero entry of i€ is the one that
corresponds to edge e.

Streaming Graph Algorithms

Graph Sketches

Vector of edge multiplicities f c {0,1}(?)

Each entry of f is a multiplicity f, of a (potential) edge e of ¢ (a simple graph with
n vertices has up to () edges).

Index vector of edge e : i° € {0,1}(3). The only nonzero entry of i€ is the one that
corresponds to edge e.

Sketch of f: A(f) € R%, d =dimensionality of the sketch

When we read the next item (e, A) from the stream, we can update the sketch as

follows:
A(f) = A(f) + A - A(i°)

Streaming Graph Algorithms
Homomorphic Sketches
Vector of edge multiplicities f c {0,1}(?)

Each entry of f is a multiplicity f, of a (potential) edge e of ¢ (a simple graph with

n vertices has up to () edges).

For a vertex v let f¥ € {0,1}" 1 be the restriction of f to the coordinates that
involve v (i.e., the n — 1 edges that can be adjacent to v in G)

fe12 1 €13
f= f€13 =10 e, ey3
fezg 1

(o)

1 _ f612>
f - <fe13

Streaming Graph Algorithms

Homomorphic Sketches
n
Vector of edge multiplicities f c {0,1}(2)

Each entry of f is a multiplicity f, of a (potential) edge e of ¢ (a simple graph with

n vertices has up to () edges).

For a vertex v let f¥ € {0,1}" 1 be the restriction of f to the coordinates that
involve v (i.e., the n — 1 edges that can be adjacent to v in G)

The sketches of f are formed by concatenation (o) of the sketches of each f¥

A(f) = A1 (f) o Ay (f2) 0 -+ 0 Ay (™)

Homomorphic sketches: For each operation on G there is a corresponding
operation on the sketches

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Let's begin with a simple (non-sketch) algorithm

Connectivity Algorithm

1. repeat

2 for each vertex v of the current graph do
3. select an edge incident to v

4 contract all selected edges

5. until the current graph has no edges

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

super-vertices

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

: new

super-vertices

% = ® @

Streaming Graph Algorithms

Connectivity via Sketches

We wish to maintain a spanning forest of a graph ¢ = (V,E)

Let's begin with a simple (non-sketch) algorithm

Connectivity Algorithm

1. repeat

2 for each vertex v of the current graph do
3. select an edge incident to v

4 contract all selected edges

5. until the current graph has no edges

Finds the connected components of G, and a spanning forest, in O(logn) rounds

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:
1. Define an appropriate graph representation

2. Apply £,-sampling via linear sketches

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:
1. Define an appropriate graph representation

2. Apply £4-sampling via linear sketches

fo-sampling

Let K = polylog(N). There is a distribution over matrices M € R¥*" such that for
any x € RY, a random non-zero element of x can be reconstructed from Mx with
high probability.

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For each vertex v; we define a vector a' € {—1,0,1}(121)

with entries
+1, ifi =j <kand (vj,vg) €EE
Ay =11 ifj <k=iand (vj,vy) €EE
0, otherwise

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1 (3) (4)

Vector of vertex i ;: a' = (ah,z) ah,g) a%1,4) aE2,3) afz,4) a%3,4))

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1 (3) (4)

Vector of vertex i ;: a' = (ah,z) ah,g) af1,4) afz,s) afz,4) a%3,4))

al=1 1 0 0 0 0) a3=0 -1 0 -1 0 DT

a*=(-1 0 0 1 0 0O)F a*=0 0 0 0 0o -1

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1 (3) @ al + a? =
0 1 0 1 0 0F

Vector of vertex i ;: a' = (ah,z) ah,g) af1,4) afz,s) afz,4) a%3,4))

al=1 1 0 0 0 0) a3=0 -1 0 -1 0 DT

a*=(-1 0 0 1 0 0)F a*=0 0 0 0 0o -1

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

1 (3) @ al + a? =
(0 1 0 1 0 0)F

Vector of vertex i ;: a' = (ah,z) ah,g) a%1,4) aE2,3) afz,4) a%3,4))

al=1 1 0 0 0 0) a3=0 -1 0 -1 0 DT

a*=(-1 0 0 1 0 0)F a*=0 0 0 0 0o -1

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For each vertex v; we define a vector a' € {—1,0,1}(121)

with entries
+1, ifi =j <kand (vj,vg) €EE

Ay =11 ifj <k=iand (vj,vy) €EE
0, otherwise

For any subset of vertices U € V, let a(U) = z a’
v;elU

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For each vertex v; we define a vector a' € {—1,0,1}(121)

with entries
+1, ifi =j <kand (vj,vg) €EE

Ay =11 ifj <k=iand (vj,vy) €EE
0, otherwise

For any subset of vertices U € V, let a(U) = z a'
v;elU

The non-zero entries of a(U) correspond to 6, (U) = the set of edges of G that
cross the cut (U, V\U)

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices U € V, let a(U) = z a'
vieEU

The non-zero entries of a(U) correspond to 6, (U) = the set of edges of G that
cross the cut (U,V\U)

Streaming Graph Algorithms

Connectivity via Sketches

To design an algorithm that uses sketches we have to:

1. Define an appropriate graph representation

For any subset of vertices U € V, let a(U) = z a'
vieEU

The non-zero entries of a(U) correspond to 6, (U) = the set of edges of G that
cross the cut (U,V\U)

Thus ZviEUMai = M(Zvieu a') gives a random edge in &5 (U)

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

Choose t = O(logn)
fori =1,2,..,nandj =1,2,...,t do
Construct the random projection Mjai
fori =1,2,..,ndo
Compute 4; (%) = (M;a’) o (M,a') o - o (Ma")

v & W N

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm I: Compute the Sketches in a Single Pass

Choose t = O(logn)
fori =1,2,..,nandj =1,2,...,t do
Construct the random projection Mjai
fori =1,2,..,ndo
Compute 4; (%) = (M;a’) o (M,a') o - o (Ma")

v & W N

« Each sketch 4; has dimension O(polylogn)
« Since there are n sketches, the required space is O(n polylogn)

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

Let V = V be the initial set of super-vertices
fori =1,2,...,tdo
for each super-vertex U € V do

use Y. ey M a’ to sample an edge between U and another super-vertex W

v & W N

collapse U and W to form a new super-vertex

Streaming Graph Algorithms

Connectivity via Sketches

Connectivity via Sketches Algorithm II: Emulate Connectivity Algorithm

Let V = V be the initial set of super-vertices
fori =1,2,...,tdo
for each super-vertex U € V do

use Y. ey M a’ to sample an edge between U and another super-vertex W

v & W N

collapse U and W to form a new super-vertex

The update time (to process the next edge in S) is O(polylogn)

Streaming Graph Algorithms

Concluding remarks

« Many graph algorithms in the data stream model are known for
basic problems. E.g., estimating connectivity, approximating
distances, finding approximate matchings, counting subgraphs,...

» But limited work on directed graphs!

« Space constraints: semi-stream model not suited for sparse
graphs (m = O(n polylogn))

Streaming Architectures

Spc.w‘lgZ Streaming

discretized stream processing

batches
records . RDDS

@00 b Nacolvor H q

batches '_ .»
processed
with tasks

records processed in batches with short tasks
each batchis a RDD (partitioned dataset)

Picture from https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html

Streaming Architectures

Google Cloud Platform

o
X
x
-
L]
-

0

Constrained Staqdard
Devices Devices

=2

=% =8

d ’

== = Non-TCP i Hies
n? e.g. BLE o

d n, Gateway

=
= =

e

T,

o

Pipelines

BN

Storage

|

2
O0a°

Analytics

Applications &
Presentation

https://cloud.google.com/solutions/architecture/streamprocessing

