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Abstract
In this article, we introduce the “functionally weighted neural network,” a new addition to the rich collection of artificial 
neural networks. Instead of a finite number of discrete nodes, we consider an infinite number of continuously distributed 
nodes. The weights assume a functional form, and the sum over the nodes becomes an integral. The gain is a significant 
reduction in the number of adjustable parameters, accompanied by an enhanced generalization performance. To quan-
titatively assess the quality of this new network, we have performed numerical experiments on a number of benchmark 
datasets. Comparison with state-of-the-art techniques reveals the advantages of the proposed method and emphasizes 
its modeling potential.
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1  Introduction

Artificial neural networks (ANNs) have proved to be valu-
able tools in a host of different applications, such as func-
tion approximation and data fitting [2], solution of ordi-
nary and partial differential equations [15–17], time-series 
prediction for the stock market [34], pattern recognition 
[2, 29], classification [35] and clustering [7], to name a few. 
ANNs are flexible modeling functions known for their 
excellent approximation capabilities [6, 10–12, 14] and 
have been termed “Universal Approximators.” ANNs may 
be designed according to various architectures, the main 
structural elements being the number of hidden layers, the 
number of neurons and the type of activation functions. 
Deep neural networks (DNNs) are ANNs with multiple hid-
den layers and can model complex mappings between the 
input and output layers.

ANNs suffer from the issue of overfitting, i.e., produc-
ing a model that may be very accurate for a subset of 
data while failing to account for the rest. In DNNs, the 

overfitting issue is even more pronounced due to the extra 
layers that enable the fitting of outliers. Several techniques 
have been developed to combat overfitting known collec-
tively under the name “Regularization Methods.” Examples 
are node pruning [31], weight decay (or L2 regularization) 
[1], weight bounding [20], sparsity (or L1 regularization) 
and more recently the “dropout” technique [32], determi-
nantal point processes (DPPs)[22], approximate empirical 
Bayes methods[37] that may be roughly described as ran-
dom pruning. ANNs are trained using a so-called training 
set, and their performance is evaluated using a “test set.” 
Networks that perform well are said to generalize. An over-
fit/overtrained network obviously does not generalize and 
therefore cannot be trusted for further use.

In the present article, we introduce a new type of ANN, 
the “functionally weighted neural network” (FWNN). 
Single-hidden-layer ANNs may be expressed as a linear 
combination of a number of parametric basis functions. 
Common forms are based on the logistic and Gaussian 
activation functions, namely:
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where � , in both cases, stands collectively for the adjust-
able parameters and K is the number of neural nodes.

Our proposal introduces a neural network that employs a 
continuous nodal distribution �(s), instead of a countable set 
of discrete nodes. The corresponding functionally weighted 
expressions for logistic and Gaussian activation functions 
may be cast as:

Preliminary results assessing the performance of FWNNs 
have been reported earlier [3] and have been presented 
at the Sofianos-2017 international symposium. The sub-
stitution of discrete weights by continuous functions has 
been also considered in [30], where, however, the activa-
tion is restricted to be an odd function, and the weights 
are either piecewise constant or piecewise affine functions. 
Polynomials have not been considered there, because the 
integrals involved cannot be expressed in a closed analytic 
form. To the best of our knowledge, this work has not been 
followed up.

In Sect. 2, we introduce the proposed neural network 
with continuous weight functions, by associating it with an 
ordinary radial basis function (RBF) network and present-
ing the process of the transition to the continuum. Technical 
details are given in Sect. 3, about the numerical quadrature, 
the training optimization methods and the software plat-
forms used. In Sect. 4, we report the results of numerical 
experiments conducted on simulated homemade datasets 
as well as on established benchmarks from the literature. 
Finally, in Sect. 5, we summarize the strengths of the method 
and pose a few questions that may become the subject of 
future research.
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2 � Neural networks with infinite number 
of hidden units

Radial basis functions are known to be suitable for func-
tion approximation and multivariate interpolation [4, 
27]. Assuming an n-dimensional input space, x ∈ Rn , an 
RBF neural network consisting of K Gaussian nodes with 
parameters �k ∈ Rn and �k ∈ R is given by Eq. (2).

The set � = {w0,
(
wk ,�k , �k

)K
k=1

} denotes collectively 
the network parameters to be determined via the train-
ing procedure. The total number of adjustable parameters 
is given by the expression

which grows linearly with the number of network nodes. 
Consider a dataset S = {x i , ti} , where ti is the desired out-
put (target) for the corresponding input x i . Let also T ⊂ S 
be a subset of S with cardinality #T  . The approximating 
RBF network is then determined by minimizing the mean 
squared deviation over T:

Let ̂� = {ŵ0,
(
ŵk , �̂k , �̂k

)K
k=1

} be the minimizer of E[T ](�) , i.e.,

The network’s generalization performance is measured 
by the mean squared deviation, E[S−T ](�̂) , over the relative 
complement set S − T  . In the neural network literature, T 
is usually referred to as the “training” set, while S − T  as the 
“test” set. A well-studied issue is the proper choice for K, 
which denotes the number of nodes in the neural network 
architecture.

The training “error” E[T ](�̂) is a monotonically decreasing 
function of K, while the test “error” E[S−T ](�̂) is not. Hence, 
we may encounter a situation where adding nodes, in an 
effort to reduce the training error, will result in an increase 
in the test error, spoiling therefore the network’s gener-
alization ability. This behavior is known as “overfitting” or 
“overtraining” and is clearly undesirable. An early analysis 
of this phenomenon coined under the name “bias–vari-
ance dilemma” may be found in [9]. Overfitting is a seri-
ous problem, and considerable research effort has been 
invested to find ways to deter it, leading to the develop-
ment of several techniques such as model selection, cross-
validation, early stopping, regularization and weight prun-
ing [2, 9, 13, 24, 25].
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2.1 � Functionally weighted neural network

We define the “functionally weighted neural network” 
(FWNN) to be the limit of the conventional ANN, as 
the number of nodes K → ∞ . The set of discrete nodes 
indexed by an integer (k) is replaced by a nodal distri-
bution �(s) that depends on a continuous variable (s). 
The FWNN may then be cast, in correspondence with 
Eq. (2), as:

by applying the following transitions: 

The density function �(s) should lead to an infinite 
number of nodes, i.e.

For the density function, we have chosen the following 
form that satisfies (10):

The weight functions w̃(s),�(s) and 𝜎(s) are parametrized, 
and these parameters are collectively denoted by � . In this 
article, we have examined the following functional forms: 

 Note that �(s) and �j =
(
�jl

)n
l=1

, j = 0,… , L� are vectors 
in Rn.

The set of adjustable parameters is then represented by:
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with a total parameter number given by:

The “cost” function C(�) , is formed by adding a regulariza-
tion term R(�) to the mean squared deviation of Eq. (6), 

C(�) serves as the objective function for the opti-
mization task, and from now on, we redefine �̂  as 
�̂ = argmin�{C(�)} . For the regularization term R(�) , the 
squared Euclidean (L2) norm multiplied by a penalty factor 
has been adopted.

3 � Technical details

In this section, we present the numerical methods used 
in our calculations. Namely, we describe the employed 
integration technique, the optimization procedure, and 
we also refer to the relevant software.

Substituting the nodal density from Eq. (11) in Eq. (8) 
and using Eq. (12a), the FWNN may be rewritten as:

3.1 � Approximating integrals

Integrals were estimated by the accurate Gauss–Cheby-
shev quadrature:

where

The above explains our choice for the functional form 
of w̃(s) in Eq. (12a). In our experiments, we have used 
M = 100 . The number of integration points has been 
increased up to M = 200 , without noticing any appreci-
able difference.
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3.2 � Learning procedure and software platforms

Determination of the FWNN parameters is accomplished 
by minimizing the cost function given in Eq. (15). Since 
objectives of this kind are known to be multimodal, global 
optimization should be considered. We have employed a 
simple stochastic global optimization technique known 
as “Multistart” [33]. This is a two-phase method, consist-
ing of an exploratory global phase and a subsequent local 
minimum-seeking phase.

In Multistart, a point � is sampled uniformly from within 
the feasible region, � ∈ S , and subsequently a local search 
L , is started from it leading to a local minimum �̂ = L(�) . If 
�̂  is a minimum found for the first time, it is stored; other-
wise, it is rejected. The cycle goes on until a stopping rule 
[18] instructs termination. An algorithmic presentation of 
Multistart is given below:

Simple Multistart Algorithm

1.	 Initialize: Set k = 1 , sample � ∈ S and set �̂k = L(�)

2.	 If a termination rule applies, set �̂ = �̂m and stop (note 
that  m  i s  the index with the proper t y : 
C(�̂m) = min

i
{C(�̂i)})

3.	 M a i n  i te rat i o n :  S a m p l e  � ∈ S  �̂ = L(�) I f 
�̂ ∉ {�̂1, �̂2,… , �̂k} , then k ← k + 1 and �̂k ← �̂  Endif

4.	 Repeat from step 2.

The computer code was written in Python. For the local 
phase, we have relied on the quasi-Newton framework 
with the BFGS update, using the weak Wolfe–Powell condi-
tions for the line search, that is contained in Pythons scipy.
optimize library.

4 � Numerical experiments, comparative 
analysis and extrapolation performance

A series of numerical experiments was devised for testing 
the performance of the proposed FWNN, by comparing its 
outcomes against those obtained by a number of estab-
lished alternatives. We have considered both homemade 
simulated datasets and benchmarks that are widely used 
in the relevant scientific literature.

In our experiments, we have compared FWNN with 
MLP and RBF networks, as well as with Gaussian pro-
cesses (GPs). For the neural networks, a host of archi-
tectural configurations (created by varying the number 
of the hidden nodes K ∈ [5, 100] ) have been consid-
ered. MLPs were trained by the “Limited Memory BFGS” 
(L-BFGS) method that requires low memory computa-
tional resources and has proved to be quite efficient. For 

the RBFs, the exponential parameters were determined 
by K-means clustering, while the amplitudes were deter-
mined by linear regression. For the Gaussian processes, 
we have considered RBF kernels with automatic determi-
nation of its scalar parameter in the range [10−5, 105] . For 
the experiments in all cases (MLP, RBF, GPs), the following 
values for the regularization parameter have been used: 
� = {10−10, 10−5, 10−3, 10−2, 10−1, 1, 0, 10, 102, 103, 105} . We 
have noticed that in some cases the regularization param-
eter had a significant effect. For every experiment, only the 
best result of each approach is reported for comparison 
with the corresponding FWNN outcome. The reason for 
choosing Gaussian processes in our experimental study 
is first its modeling potential and second some neural 
networks become identical to a Gaussian process with a 
specific type of covariance function in the limit of infinite 
hidden units [25, 28]. Finally, we have used Python’s Scikit-
learn library for the implementation of the above three 
regression methodologies.

4.1 � Experiments with simulated datasets

Several datasets were constructed by evaluating a num-
ber of selected test functions at preset sets of equidistant 
points. Four and three test functions have been employed 
for the 1d and for the 2d experiments, respectively, with 
their plots and formulas depicted in Figs. 1a–d and  2a–c.

Each dataset was divided into a training set and a 
test set. The target values of the training sets have been 
deliberately “contaminated” by addition of noise. On the 
other hand, the test sets have been left “clean,” i.e., with no 
noise addition, so that one can make an assessment on the 
capability of the tested methods to filter out the noise and 
reveal the underlying function.

In our experiments, we compare the FWNN to the 
logistic MLP and Gaussian RBF networks with “weight 
decay”(L2) regularization. For the evaluation, we use 
the almost insensitive to data scaling “Normalized Mean 
Squared Error” (NMSE) over the test set [S − T ] , namely:

The experimental setup for the simulated datasets has 
been detailed in an earlier publication [3].

Two levels of signal-to-noise ratio were considered for 
generating the simulated training sets: medium (−5 dB) , 
and large (−10 dB) . For each noise level, 50 independent 
runs were performed and the corresponding NMSE mean 
and standard deviation are reported. For the FWNN, we 
have used throughout the following polynomial degrees:

(18)
NMSE =

1

#[S − T ]

∑

xi ,ti∈[S−T ]

(
N(x i ;�̂) − ti

ti
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× 100
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Lw = 5 , for the polynomial contained in w(s)
L� = 1 , for each of the �(s) polynomials
L� = 1 , for the �(s) polynomial

As a consequence of the above settings, the total number 
of the FWNN adjustable parameters equals 2n + 8.

The results are listed in Tables 1 and 2 for the 1d and 2d 
datasets accordingly. Notice that for the MLP and RBF net-
works, as well as for the Gaussian process, only the results 
corresponding to the best performing case are listed. By 
inspection, FWNN’s generalization is superior, especially 
for large noise levels. This advantage becomes even more 
pronounced in the 2d case. While FWNN employs only 
ten and 12 parameters for the 1d and 2d datasets, MLP 
and RBF networks require a significantly larger number in 
the range [31 − 301] and [41 − 401] , respectively, in order 
to achieve a comparable test error. For these datasets, a 
plethora of experiments and related results may be found 
in [3].

Additional experiments were conducted in order to 
study the generalization performance of the FWNN as a 
function of the number of network parameters. We have 
examined a limited number of cases; hence, our results 
are only indicative, not conclusive. In doing so, we have 
retained first-degree polynomials for both �(s) and �(s) 
and varied only the degree of the polynomial in w(s). 

Accordingly, for the MLP and RBF networks, we have var-
ied the number of hidden nodes. Again 50 independent 
experiments were performed for each case, and the cor-
responding NMSE mean was calculated. We have selected 
two artificial datasets, generated by the functions plotted 
in Figs. 1b and 2b. We have observed that for the FWNN, 
the dependence of NMSE on the number of parameters 
was significantly weaker.

4.2 � Extrapolation in one dimension

Consider an 1d dataset with points x1, x2,… , xM 
arranged in ascending order, and corresponding targets 
y1, y2,… , yM . Let N(x, �) be a network trained over the 
above set. Estimating the target value as Y = N(X , �) at a 
point X ∈ (xj , xj+1) is called interpolation, while at a point 
X ∉ [x1, xM] is called extrapolation. It has been argued 
in [21] that artificial neural networks extrapolate rather 
poorly. To study the extrapolation potential of FWNN, 
the first two test functions of Fig. 1 have been employed, 
namely:

f (x) = 2x2 + exp(�∕x) sin(2�x) and

f (x) = x sin(x) cos(x),

Fig. 1   Generating functions 
used for creating the 1d data-
sets. In each case, 100 training 
and 1000 testing points were 
used
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for generating two datasets, each with 150 equidistant 
data points. The first 100 points were used for training, 
while the remaining 50 points labeled as z1,… , z50 were 

used for evaluating the quality of extrapolation. We base 
the assessment for the extrapolation capability on the rela-
tive deviation at an extrapolation point defined by:

Fig. 2   Generating functions used for creating the 2d datasets. In each case, 100 training and 1000 testing points were used

Table 1   Comparison of the 
NMSE mean over the test set, 
resulting from 50 independent 
experiments, for the 1d 
datasets related to Fig. 1a–d

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions; best values are depicted in bold

Method NMSE over the test set

Medium noise  High noise  Medium noise  High noise

Dataset 1(a) Dataset 1(b)
FWNN 0.63 1.43 �.�� �.��

MLP (best) 0.59 ( K = 30) 1.73 ( K = 30) 2.92 ( K = 100) 5.43 ( K = 100)
RBF (best) 1.17 ( K = 10) 1.78 ( K = 10) 1.19 ( K = 10) 3.05 ( K = 10)
GP (best) �.�� ( a = 0.1) �.�� ( a = 1) 1.17 ( a = 0.1) 2.22 ( a = 1)

Dataset 1(c) Dataset 1(d)
FWNN �.�� �.�� �.�� �.��

MLP (best) 3.67 ( K = 30) 5.71 ( K = 10) 23.96 ( K = 100) 48.19 ( K = 100)
RBF (best) 3.83 ( K = 20) 6.55 ( K = 50) 3.47 ( K = 80) 5.77 ( K = 80)
GP (best) 7.34 ( a = 0.1) 8.76 ( a = 1) 3.38 ( a = 0.1) 5.59 ( a = 1)
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By imposing an upper bound rb , for the acceptable rela-
tive deviation, we determine J, the number of consecutive 
extrapolation points satisfying:

Given a value for the upper bound rb , inside a reasonable 
range rb ∈ [0, 0.25] , the best method for extrapolation is 
the one with the highest value of J.

Table  3 contains the extrapolation results for three 
values of the upper bound, rb = {0.05, 0.15, 0.25} . In par-
ticular, we show the mean values of the J-index that have 
resulted from 50 independent experiments. By inspection, 
it is clear that the FWNN outperforms the rival MLP and 
RBF networks, as well as the Gaussian processes. Further 
details and extrapolation experiments have been pre-
sented earlier in [3].

4.3 � Experiments with real‑world benchmarks

Additional experiments were performed on a variety of 
established benchmarks.

(19)ri ≡ |f (zi) − N(zi , �̂)|
max{1, |f (zi)|}

(20)ri < rb, ∀ i ≤ J and rJ+1 > rb

4.3.1 � Experiments with UCI datasets

We have selected nine benchmarks from the UCI Machine 
Learning Repository1. which are briefly described in 
Table 4. Note that the last two datasets (pima, wine) are 
benchmarks used primarily for evaluating classification 
methods and contain data belonging to two and seven 
classes, respectively.

Table 2   Comparison of the NMSE mean over the test set, resulting from 50 independent experiments, for the 2d datasets related to Fig. 2a–c

The indication “best” denotes the result of the optimal performer among a handful of trial configurations; best values are depicted in bold

Method  NMSE over the test set

Medium noise High noise Medium noise High noise

Dataset 2(a) Dataset 2(b)
FWNN ��.�� ��.�� �.�� �.��

MLP  (best) 19.84 ( K = 10) 71.84 ( K = 10) 2.34 ( K = 100) 7.95 ( K = 100)
RBF  (best) 11.98 ( K = 50) 51.73 ( K = 50) 1.69 ( K = 50) 8.11 ( K = 30)
GP  (best) 30.18 ( a = 0.001) 53.09 ( a = 0.1) 2.41 ( a = 0.1) 7.52 ( a = 0.1)

Dataset 2(c)
FWNN ��.�� ��.��

MLP  (best) 110.71 ( K = 100) 84.97 ( K = 100)
RBF  (best) 86.18 ( K = 80) 80.42 ( K = 80)
GP  (best) 97.62 ( a = 0.1) 90.55 ( a = 0.1)

Table 3   Comparison of the 
extrapolation index J, for the 
two datasets related to Fig. 1a, 
b

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions. For the FWNN, only the standard configuration was used

 Method  Fig. 1a dataset  Fig. 1b dataset

r
b
= 0.05 r

b
= 0.15 r

b
= 0.25 r

b
= 0.05 r

b
= 0.15 r

b
= 0.25

FWNN 25 50 50 24 35 38
MLP (best) 11 26 50 1 2 5
RBF (best) 8 22 33 7 10 13
GP (best) 18 31 39 17 23 26

Table 4   Summary of the 
selected real-world datasets 
from the UCI repository

 Dataset n #T #[S − T ]

abalon 8 1000 3177
airfoil 5 500 1003
bodyfat 13 100 152
concrete 8 500 530
CPU 12 500 7692
housing 13 200 306
mg 6 385 1000
pima 8 384 384
wine 11 1066 533

1  These datasets are available at: http://mlr.cs.umass​.edu/ml/datas​
ets.html.

http://mlr.cs.umass.edu/ml/datasets.html
http://mlr.cs.umass.edu/ml/datasets.html


Vol:.(1234567890)

Research Article	 SN Applied Sciences          (2020) 2:1954  | https://doi.org/10.1007/s42452-020-03713-y

For each dataset and network architecture, 50 experi-
ments were carried out. For these experiments, we have 
used 5th degree polynomials ( Lw = L� = L� = 5 ) corre-
sponding to a number of 6(n + 2) model parameters. For 
the MLP, RBF and GPs, we have experimented with a host 
of different architectural and regularization parameters, 
and in Table 5, we quote, for each of them, the best per-
forming configuration. Observing these results, we note 
that FWNN outperforms all competitors in five (out of nine) 
datasets and in another dataset shares the top with GPs. 
MLP is top in one dataset and is tied at the top with GPs 
in another one. GPs is at the top in one dataset, while RBF 
failed to win the top in any of the UCI datasets.

Since the pima and wine datasets are classification 
benchmarks, the classification capability of FWNN has 
been tested. For this purpose, the classification accuracy 
is calculated as the percentage of the correctly classified 
test points within a tolerance (see [5]). The results are 
presented in Table 6 for four different tolerance values, 
namely: � = 0.10, 0.25, 0.5 and 1.0. In these experiments, 
FWNN together with GPs performs better than both 
the MLP and RBF networks. It is interesting to note the 

remarkable classification accuracy of the FWNN, particu-
larly for the low tolerance value of � = 0.10.

4.3.2 � Large‑scale experiments

To further test the approximation quality of the FWNN, 
experiments on extensively studied complex, large data-
sets were performed. The datasets are summarized in 
Table 7. The Sarcos dataset is a robotic real-world bench-
mark [28], representing the inverse dynamics of a robotic 
seven-joint arm2 related to rhythmic motions. The task is to 
map a 21-dimensional input space (seven joint positions, 
seven joint velocities, seven joint accelerations) to the cor-
responding seven joint torques.

The training in this case was performed using fifth-degree 
polynomials ( Lw = L� = L� = 5 ) corresponding to a total of 
138 (= 6n + 12) parameters. The FWNN results along with 
results published by different authors using GPs are listed in 

Table 5   Comparison of the 
NMSE mean over the test set, 
resulting from 50 independent 
experiments, for the nine UCI 
datasets

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions; best values are depicted in bold

Method UCI dataset

Train Test Train Test Train Test

Abalon n = 8 Airfoil n = 5 Bodyfat n = 13

FWNN 3.44 4.33 0.06 0.09 1.75 × 10−5 3.03 × 10−4

MLP 3.43 4.47 0.11 0.12 4.23 × 10−3 1.01 × 10−2

(best) (K = 100) (K = 100) (K = 10)
RBF 5.05 5.49 1.37 1.93 0.64 0.66
(best) (K = 30) (K = 30) (K = 10)
GP 3.95 4.52 0.05 0.09 1.48 × 10−3 4.32 × 10−4

(best) (a = 1e1 ) (a = 1e1 ) (a = 1e − 5 )
concrete n = 8 CPU n = 12 housing n = 13

FWNN  1.46 2.29 0.15 0.18 0.53 1.99

MLP 0.99 1.91 0.15 0.17 0.88 3.12
(best) (K = 100) (K = 100) (K = 10)
RBF 21.36 21.72 2.81 2.95 7.06 12.67
(best) (K = 20) (K = 10) (K = 30)
GP 0.71 2.46 0.11 0.17 0.93 3.21
(best) (a = 1e − 5 ) (a = 1e1 ) (a = 1e1 )

mg n = 6 pima n = 5 wine n = 11

FWNN 1.27 1.86 4.86 5.67 1.05 1.23

MLP 1.21 1.99 4.43 5.83 0.97 1.25
(best) (K = 10) (K = 30) (K = 100)
RBF 3.21 5.24 16.68 18.81 1.12 1.36
(best) (K = 50) (K = 30) (K = 80)
GP 2.05 2.52 4.74 5.48 1.24 1.32
(best) (a = 1e − 1 ) (a = 1e − 1 ) (a = 1 )

2  Sarcos dataset is available at http://www.gauss​ianpr​ocess​.org/
gpml/data/.

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
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Table 8 and compare favorably. In Fig. 3, the predicted versus 
the actual values are plotted, for all seven DOFs, rendering 
the model’s performance obvious. We observe that all points 
are scattered symmetrically around and near to the diagonal 
x = y line that represents the perfect match.

For the remaining (Elevators, Kin40k, Pole Telecomm, 
Pumadyn32-nm) datasets,3 the FWNN results are listed in 
Table 9 along with results provided by a state-of-the-art 
Gaussian process approach reported in [19]. In spite its 

simplicity, the FWNN’s performance is better or similar to 
that of a sophisticated, high-demanding, state-of-the-art 
method.

5 � Discussion and conclusions

In the present article, we have proposed a new type of 
neural network, the FWNN, in which the weights are func-
tions of a continuous variable. This may be interpreted 
as a neural network with an infinite number of hidden 
nodes. In the conducted numerical experiments, the 
FWNN exceeded in generalization performance the MLP 
and RBF networks, as well as the Gaussian processes. This is 
evidence of robustness, reliability and modeling potential.

The FWNN has a number of interesting properties. 
There is ample experimental evidence that the generali-
zation performance is superior. This may be related to the 
fact that the number of required parameters is limited, 
which in turn prevents serious overtraining.

Table 6   Classification accuracy for several tolerance values

 The indication “best” denotes the result of the optimal performer among a handful of trial configurations. In addition, we quote other pub-
lished results;  best values are depicted in bold

Dataset Classification accuracy ( %)

FWNN MLP RBF GPs Published

(best) (best) (best)

pima � = 0.10 ��.� 20.3 10.0 21.6
� = 0.25 ��.� 46.6 27.1 45.1
� = 0.50 ��.� 75.3 56.0 ��.� 77.7 ([8])
� = 1.00 ��.� 98.4 78.9 99.2
wine � = 0.10 ��.� 14.6 12.2 14.1
� = 0.25 38.6 35.4 30.8 33.4 43.2 ([5])
� = 0.50 62.3 61.1 58.9 59.8 62.4 ([5])
� = 1.00 89.0 89.3 87.4 88.7 89.0 ([5])

Table 7   Summary of the datasets used in our large-scale experi-
ments

Note that the Sarcos dataset output has seven components (DOF)

Dataset #features #training #testing

Sarcos 21 44484 4449
Elevators 17 8752 7847
Kin40k 8 10000 30000
Pole Telecomm 26 10000 5000
Pumadyn32-nm 32 7168 1024

Table 8   Mean and normalized 
mean squared errors for the 
SARCOS dataset

Each column relates to one of the seven torques; best values are depicted in bold

Method Degree of freedom (DOF)

First Second Third Fourth Fifth Sixth Seventh

Mean squared error (MSE)
FWNN ��.�� �.�� �.�� �.�� �.��� �.�� �.��

Ref. [36] 31.08 22.68 9.08 9.73 0.13 0.83 0.43
Normalized mean squared error (NMSE)

FWNN �.��� �.��� �.��� �.��� �.��� 0.067 �.���

Ref. [23] 0.036 0.042 0.034 0.011 0.038 �.��� 0.019

3  All data were downloaded from http://www.dcc.fc.up.pt/~ltorg​o/
Regre​ssion​/DataS​ets.html.

http://www.dcc.fc.up.pt/%7eltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/%7eltorgo/Regression/DataSets.html
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The positions of the Gaussian centers are determined 
by the �(s) and the corresponding widths by �(s) , with 
s ∈ [−1, 1] . In the case of studying simulated datasets, 
we have used an affine form; hence, the �(s) curve is a 
straight-line segment joining the two end points �(−1) 
and �(+1) in Rn . The widths are linearly increasing or 
decreasing with s, depending on the sign of �1 . In spite 
of that this might seem to be a severe constraint, it has 
not degraded the network’s performance. We credit this 
to the infinite number of nodes that render the approxi-
mation of any function feasible [6, 10]. In the case of real 
benchmarks, the affine model imposes an overly strict 
constraint, and thus it was replaced by a higher order 
polynomial, at the expense of some extra parameters. 
The Gaussian centers then may lie on a parabolic or a 
cubic locus, and the widths acquire higher adaptability.

The attractive features of the proposed FWNN may be 
briefly summarized as: 

1.	 Frugal model, incorporating a small number of adjust-
able parameters.

2.	 Resistant to overtraining.
3.	 Superior interpolation and extrapolation performance.

We consider that some issues need further investiga-
tion and will become part of our future research effort. 
In particular,

•	 The model behavior when using different density func-
tions.

•	 The effect caused by choosing different functional 
forms for the weights.

•	 The difference in using other than Gaussian kernels.
•	 The possibility of extending the shallow architecture to 

deep.

Furthermore, we would like to assess the effectiveness of 
FWNN in complex problems, such as solving partial and 
ordinary differential equations [15–17], modeling intera-
tomic potentials [26], forecasting time series [34]. This task 
is currently underway.

Compliance with ethical standards 
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Fig. 3   Plots of the predicted (y-axes) versus the actual (x-axes) values of the 4484 test cases, for each of the seven DOFs in the SARCOS data-
set. The diagonal line (thin) denotes the perfect match

Table 9   Comparison of the results (NMSE criterion) depicted with the proposed FFWN and those published in the literature

Method Experimental dataset

Elevators Kin40k Pole Telecomm Pumadyn-32nm

FWNN �.��� 0.022 �.��� �.���

Published [19] 0.115 �.���� 0.011 0.045

Best values are depicted in bold
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Appendix: Derivatives

Since the optimization methods used for the training 
need derivative information, we list the FWNN first order 
derivatives.

Let us define for convenience the following quantity:

The network (16), is then rewritten as:

and its partial first-order derivatives w.r.t. w,�, and � are 
given by:
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