
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

Research Article

Functionally weighted neural networks: frugal models with high
accuracy

Konstantinos Blekas1  · Isaac E. Lagaris1

Received: 21 February 2020 / Accepted: 14 October 2020
© Springer Nature Switzerland AG 2020

Abstract
In this article, we introduce the “functionally weighted neural network,” a new addition to the rich collection of artificial
neural networks. Instead of a finite number of discrete nodes, we consider an infinite number of continuously distributed
nodes. The weights assume a functional form, and the sum over the nodes becomes an integral. The gain is a significant
reduction in the number of adjustable parameters, accompanied by an enhanced generalization performance. To quan-
titatively assess the quality of this new network, we have performed numerical experiments on a number of benchmark
datasets. Comparison with state-of-the-art techniques reveals the advantages of the proposed method and emphasizes
its modeling potential.

Keywords  Neural networks · Functional weights · Infinite number of nodes · Generalization · Function approximation

1  Introduction

Artificial neural networks (ANNs) have proved to be valu-
able tools in a host of different applications, such as func-
tion approximation and data fitting [2], solution of ordi-
nary and partial differential equations [15–17], time-series
prediction for the stock market [34], pattern recognition
[2, 29], classification [35] and clustering [7], to name a few.
ANNs are flexible modeling functions known for their
excellent approximation capabilities [6, 10–12, 14] and
have been termed “Universal Approximators.” ANNs may
be designed according to various architectures, the main
structural elements being the number of hidden layers, the
number of neurons and the type of activation functions.
Deep neural networks (DNNs) are ANNs with multiple hid-
den layers and can model complex mappings between the
input and output layers.

ANNs suffer from the issue of overfitting, i.e., produc-
ing a model that may be very accurate for a subset of
data while failing to account for the rest. In DNNs, the

overfitting issue is even more pronounced due to the extra
layers that enable the fitting of outliers. Several techniques
have been developed to combat overfitting known collec-
tively under the name “Regularization Methods.” Examples
are node pruning [31], weight decay (or L2 regularization)
[1], weight bounding [20], sparsity (or L1 regularization)
and more recently the “dropout” technique [32], determi-
nantal point processes (DPPs)[22], approximate empirical
Bayes methods[37] that may be roughly described as ran-
dom pruning. ANNs are trained using a so-called training
set, and their performance is evaluated using a “test set.”
Networks that perform well are said to generalize. An over-
fit/overtrained network obviously does not generalize and
therefore cannot be trusted for further use.

In the present article, we introduce a new type of ANN,
the “functionally weighted neural network” (FWNN).
Single-hidden-layer ANNs may be expressed as a linear
combination of a number of parametric basis functions.
Common forms are based on the logistic and Gaussian
activation functions, namely:

 *  Konstantinos Blekas, kblekas@cs.uoi.gr; Isaac E. Lagaris, lagaris@cs.uoi.gr | 1Department of Computer Science and Engineering,
University of Ioannina, 45110 Ioannina, Greece.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-03713-y&domain=pdf
http://orcid.org/0000-0003-1085-8177

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

where � , in both cases, stands collectively for the adjust-
able parameters and K is the number of neural nodes.

Our proposal introduces a neural network that employs a
continuous nodal distribution �(s), instead of a countable set
of discrete nodes. The corresponding functionally weighted
expressions for logistic and Gaussian activation functions
may be cast as:

Preliminary results assessing the performance of FWNNs
have been reported earlier [3] and have been presented
at the Sofianos-2017 international symposium. The sub-
stitution of discrete weights by continuous functions has
been also considered in [30], where, however, the activa-
tion is restricted to be an odd function, and the weights
are either piecewise constant or piecewise affine functions.
Polynomials have not been considered there, because the
integrals involved cannot be expressed in a closed analytic
form. To the best of our knowledge, this work has not been
followed up.

In Sect. 2, we introduce the proposed neural network
with continuous weight functions, by associating it with an
ordinary radial basis function (RBF) network and present-
ing the process of the transition to the continuum. Technical
details are given in Sect. 3, about the numerical quadrature,
the training optimization methods and the software plat-
forms used. In Sect. 4, we report the results of numerical
experiments conducted on simulated homemade datasets
as well as on established benchmarks from the literature.
Finally, in Sect. 5, we summarize the strengths of the method
and pose a few questions that may become the subject of
future research.

(1)
Nl(x ; �) = w0 +

K∑

k=1

wk

1 + exp
(
−(cT

k
x + bk)

)

(Logistic MLP)

(2)
NG(x ; �) = w0 +

K∑

k=1

wk exp

(
−
1

2

||||
x − �k

�k

||||

2
)

(Gaussian RBF)

(3)NFl(x ;�) = ∫
w(s)

1 + exp
(
−(c(s)Tx + b(s))

)�(s)ds

(4)NFG(;, �) = ∫ w(s) exp

(
−
1

2

||||
x − �(s)

�(s)

||||

2)
�(s)ds

2 � Neural networks with infinite number
of hidden units

Radial basis functions are known to be suitable for func-
tion approximation and multivariate interpolation [4,
27]. Assuming an n-dimensional input space, x ∈ Rn , an
RBF neural network consisting of K Gaussian nodes with
parameters �k ∈ Rn and �k ∈ R is given by Eq. (2).

The set � = {w0,
(
wk ,�k , �k

)K
k=1

} denotes collectively
the network parameters to be determined via the train-
ing procedure. The total number of adjustable parameters
is given by the expression

which grows linearly with the number of network nodes.
Consider a dataset S = {x i , ti} , where ti is the desired out-
put (target) for the corresponding input x i . Let also T ⊂ S
be a subset of S with cardinality #T  . The approximating
RBF network is then determined by minimizing the mean
squared deviation over T:

Let ̂� = {ŵ0,
(
ŵk , �̂k , �̂k

)K
k=1

} be the minimizer of E[T](�) , i.e.,

The network’s generalization performance is measured
by the mean squared deviation, E[S−T](�̂) , over the relative
complement set S − T  . In the neural network literature, T
is usually referred to as the “training” set, while S − T as the
“test” set. A well-studied issue is the proper choice for K,
which denotes the number of nodes in the neural network
architecture.

The training “error” E[T](�̂) is a monotonically decreasing
function of K, while the test “error” E[S−T](�̂) is not. Hence,
we may encounter a situation where adding nodes, in an
effort to reduce the training error, will result in an increase
in the test error, spoiling therefore the network’s gener-
alization ability. This behavior is known as “overfitting” or
“overtraining” and is clearly undesirable. An early analysis
of this phenomenon coined under the name “bias–vari-
ance dilemma” may be found in [9]. Overfitting is a seri-
ous problem, and considerable research effort has been
invested to find ways to deter it, leading to the develop-
ment of several techniques such as model selection, cross-
validation, early stopping, regularization and weight prun-
ing [2, 9, 13, 24, 25].

(5)NRBF
var

= K (2 + n) + 1

(6)E[T](�)
def

=
1

#T

∑

x i ,tl∈T

(
NG(x i ;�) − ti

)2

(7)�̂ = argmin
�
{E[T](�)}.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y	 Research Article

2.1 � Functionally weighted neural network

We define the “functionally weighted neural network”
(FWNN) to be the limit of the conventional ANN, as
the number of nodes K → ∞ . The set of discrete nodes
indexed by an integer (k) is replaced by a nodal distri-
bution �(s) that depends on a continuous variable (s).
The FWNN may then be cast, in correspondence with
Eq. (2), as:

by applying the following transitions:

The density function �(s) should lead to an infinite
number of nodes, i.e.

For the density function, we have chosen the following
form that satisfies (10):

The weight functions w̃(s),�(s) and 𝜎(s) are parametrized,
and these parameters are collectively denoted by � . In this
article, we have examined the following functional forms:

 Note that �(s) and �j =
(
�jl

)n
l=1

, j = 0,… , L� are vectors
in Rn.

The set of adjustable parameters is then represented by:

(8)NFG(x ;𝜃) = ∫
1

−1

ds 𝜌(s) w̃(s) exp

(
−
|x − �(s)|2

2𝜎2(s)

)
,

(9a)wk ⟶ w̃(s)

(9b)�k ⟶ �(s)

(9c)�k ⟶ �(s)

(9d)
K∑

k=1

⟶ ∫
1

−1

ds �(s)

(10)∫
+1

−1

�(s) ds → ∞.

(11)�(s) =
1

1 − s2

(12a)w̃(s) ≡ √
1 − s2w(s) =

√
1 − s2

Lw�

j=0

wjs
j

(12b)�(s) =

L�∑

j=0

�js
j

(12c)�(s) =

L�∑

j=0

�js
j

with a total parameter number given by:

The “cost” function C(�) , is formed by adding a regulariza-
tion term R(�) to the mean squared deviation of Eq. (6),

C(�) serves as the objective function for the opti-
mization task, and from now on, we redefine �̂ as
�̂ = argmin�{C(�)} . For the regularization term R(�) , the
squared Euclidean (L2) norm multiplied by a penalty factor
has been adopted.

3 � Technical details

In this section, we present the numerical methods used
in our calculations. Namely, we describe the employed
integration technique, the optimization procedure, and
we also refer to the relevant software.

Substituting the nodal density from Eq. (11) in Eq. (8)
and using Eq. (12a), the FWNN may be rewritten as:

3.1 � Approximating integrals

Integrals were estimated by the accurate Gauss–Cheby-
shev quadrature:

where

The above explains our choice for the functional form
of w̃(s) in Eq. (12a). In our experiments, we have used
M = 100 . The number of integration points has been
increased up to M = 200 , without noticing any appreci-
able difference.

(13)� = {
(
wj

)Lw
j=0

,
(
�jl

) L� , n

j=0,l=1
,
(
�j
)L�
j=0

}

(14)
NFW
var

= (1 + Lw) + n(L� + 1) + (L� + 1) =

= Lw + nL� + L� + n + 2

(15)C(�)
def

= E[T](�) + R(�)

(16)NFG(x ;�) = ∫
1

−1

ds
√
1 − s2

w(s) exp

�
−
�x − �(s)�2

2�2(s)

�
.

(17)∫
1

−1

ds
√
1 − s2

g(s) ≈
�

M

M�

i=1

g(si),

si = cos
(
2i − 1

2M
�
)
.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

3.2 � Learning procedure and software platforms

Determination of the FWNN parameters is accomplished
by minimizing the cost function given in Eq. (15). Since
objectives of this kind are known to be multimodal, global
optimization should be considered. We have employed a
simple stochastic global optimization technique known
as “Multistart” [33]. This is a two-phase method, consist-
ing of an exploratory global phase and a subsequent local
minimum-seeking phase.

In Multistart, a point � is sampled uniformly from within
the feasible region, � ∈ S , and subsequently a local search
L , is started from it leading to a local minimum �̂ = L(�) . If
�̂ is a minimum found for the first time, it is stored; other-
wise, it is rejected. The cycle goes on until a stopping rule
[18] instructs termination. An algorithmic presentation of
Multistart is given below:

Simple Multistart Algorithm

1.	 Initialize: Set k = 1 , sample � ∈ S and set �̂k = L(�)

2.	 If a termination rule applies, set �̂ = �̂m and stop (note
that m i s the index with the proper t y :
C(�̂m) = min

i
{C(�̂i)})

3.	 M a i n i te rat i o n : S a m p l e � ∈ S �̂ = L(�) I f
�̂ ∉ {�̂1, �̂2,… , �̂k} , then k ← k + 1 and �̂k ← �̂ Endif

4.	 Repeat from step 2.

The computer code was written in Python. For the local
phase, we have relied on the quasi-Newton framework
with the BFGS update, using the weak Wolfe–Powell condi-
tions for the line search, that is contained in Pythons scipy.
optimize library.

4 � Numerical experiments, comparative
analysis and extrapolation performance

A series of numerical experiments was devised for testing
the performance of the proposed FWNN, by comparing its
outcomes against those obtained by a number of estab-
lished alternatives. We have considered both homemade
simulated datasets and benchmarks that are widely used
in the relevant scientific literature.

In our experiments, we have compared FWNN with
MLP and RBF networks, as well as with Gaussian pro-
cesses (GPs). For the neural networks, a host of archi-
tectural configurations (created by varying the number
of the hidden nodes K ∈ [5, 100] ) have been consid-
ered. MLPs were trained by the “Limited Memory BFGS”
(L-BFGS) method that requires low memory computa-
tional resources and has proved to be quite efficient. For

the RBFs, the exponential parameters were determined
by K-means clustering, while the amplitudes were deter-
mined by linear regression. For the Gaussian processes,
we have considered RBF kernels with automatic determi-
nation of its scalar parameter in the range [10−5, 105] . For
the experiments in all cases (MLP, RBF, GPs), the following
values for the regularization parameter have been used:
� = {10−10, 10−5, 10−3, 10−2, 10−1, 1, 0, 10, 102, 103, 105} . We
have noticed that in some cases the regularization param-
eter had a significant effect. For every experiment, only the
best result of each approach is reported for comparison
with the corresponding FWNN outcome. The reason for
choosing Gaussian processes in our experimental study
is first its modeling potential and second some neural
networks become identical to a Gaussian process with a
specific type of covariance function in the limit of infinite
hidden units [25, 28]. Finally, we have used Python’s Scikit-
learn library for the implementation of the above three
regression methodologies.

4.1 � Experiments with simulated datasets

Several datasets were constructed by evaluating a num-
ber of selected test functions at preset sets of equidistant
points. Four and three test functions have been employed
for the 1d and for the 2d experiments, respectively, with
their plots and formulas depicted in Figs. 1a–d and 2a–c.

Each dataset was divided into a training set and a
test set. The target values of the training sets have been
deliberately “contaminated” by addition of noise. On the
other hand, the test sets have been left “clean,” i.e., with no
noise addition, so that one can make an assessment on the
capability of the tested methods to filter out the noise and
reveal the underlying function.

In our experiments, we compare the FWNN to the
logistic MLP and Gaussian RBF networks with “weight
decay”(L2) regularization. For the evaluation, we use
the almost insensitive to data scaling “Normalized Mean
Squared Error” (NMSE) over the test set [S − T] , namely:

The experimental setup for the simulated datasets has
been detailed in an earlier publication [3].

Two levels of signal-to-noise ratio were considered for
generating the simulated training sets: medium (−5 dB) ,
and large (−10 dB) . For each noise level, 50 independent
runs were performed and the corresponding NMSE mean
and standard deviation are reported. For the FWNN, we
have used throughout the following polynomial degrees:

(18)
NMSE =

1

#[S − T]

∑

xi ,ti∈[S−T]

(
N(x i ;�̂) − ti

ti

)2

× 100

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y	 Research Article

Lw = 5 , for the polynomial contained in w(s)
L� = 1 , for each of the �(s) polynomials
L� = 1 , for the �(s) polynomial

As a consequence of the above settings, the total number
of the FWNN adjustable parameters equals 2n + 8.

The results are listed in Tables 1 and 2 for the 1d and 2d
datasets accordingly. Notice that for the MLP and RBF net-
works, as well as for the Gaussian process, only the results
corresponding to the best performing case are listed. By
inspection, FWNN’s generalization is superior, especially
for large noise levels. This advantage becomes even more
pronounced in the 2d case. While FWNN employs only
ten and 12 parameters for the 1d and 2d datasets, MLP
and RBF networks require a significantly larger number in
the range [31 − 301] and [41 − 401] , respectively, in order
to achieve a comparable test error. For these datasets, a
plethora of experiments and related results may be found
in [3].

Additional experiments were conducted in order to
study the generalization performance of the FWNN as a
function of the number of network parameters. We have
examined a limited number of cases; hence, our results
are only indicative, not conclusive. In doing so, we have
retained first-degree polynomials for both �(s) and �(s)
and varied only the degree of the polynomial in w(s).

Accordingly, for the MLP and RBF networks, we have var-
ied the number of hidden nodes. Again 50 independent
experiments were performed for each case, and the cor-
responding NMSE mean was calculated. We have selected
two artificial datasets, generated by the functions plotted
in Figs. 1b and 2b. We have observed that for the FWNN,
the dependence of NMSE on the number of parameters
was significantly weaker.

4.2 � Extrapolation in one dimension

Consider an 1d dataset with points x1, x2,… , xM
arranged in ascending order, and corresponding targets
y1, y2,… , yM . Let N(x, �) be a network trained over the
above set. Estimating the target value as Y = N(X , �) at a
point X ∈ (xj , xj+1) is called interpolation, while at a point
X ∉ [x1, xM] is called extrapolation. It has been argued
in [21] that artificial neural networks extrapolate rather
poorly. To study the extrapolation potential of FWNN,
the first two test functions of Fig. 1 have been employed,
namely:

f (x) = 2x2 + exp(�∕x) sin(2�x) and

f (x) = x sin(x) cos(x),

Fig. 1   Generating functions
used for creating the 1d data-
sets. In each case, 100 training
and 1000 testing points were
used

1 1.5 2 2.5 3
−2

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) f = 2x2 + exp(π/x) sin(2πx) (b) f = x sin(x) cos(x)

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(c) f = sin(x2)− 0.25x (d) f = x sin(x2)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

for generating two datasets, each with 150 equidistant
data points. The first 100 points were used for training,
while the remaining 50 points labeled as z1,… , z50 were

used for evaluating the quality of extrapolation. We base
the assessment for the extrapolation capability on the rela-
tive deviation at an extrapolation point defined by:

Fig. 2   Generating functions used for creating the 2d datasets. In each case, 100 training and 1000 testing points were used

Table 1   Comparison of the
NMSE mean over the test set,
resulting from 50 independent
experiments, for the 1d
datasets related to Fig. 1a–d

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions; best values are depicted in bold

Method NMSE over the test set

Medium noise High noise Medium noise High noise

Dataset 1(a) Dataset 1(b)
FWNN 0.63 1.43 �.�� �.��

MLP (best) 0.59 ( K = 30) 1.73 ( K = 30) 2.92 ( K = 100) 5.43 ( K = 100)
RBF (best) 1.17 ( K = 10) 1.78 ( K = 10) 1.19 ( K = 10) 3.05 ( K = 10)
GP (best) �.�� ( a = 0.1) �.�� ( a = 1) 1.17 ( a = 0.1) 2.22 ( a = 1)

Dataset 1(c) Dataset 1(d)
FWNN �.�� �.�� �.�� �.��

MLP (best) 3.67 ( K = 30) 5.71 ( K = 10) 23.96 ( K = 100) 48.19 ( K = 100)
RBF (best) 3.83 ( K = 20) 6.55 ( K = 50) 3.47 ( K = 80) 5.77 ( K = 80)
GP (best) 7.34 ( a = 0.1) 8.76 ( a = 1) 3.38 ( a = 0.1) 5.59 ( a = 1)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y	 Research Article

By imposing an upper bound rb , for the acceptable rela-
tive deviation, we determine J, the number of consecutive
extrapolation points satisfying:

Given a value for the upper bound rb , inside a reasonable
range rb ∈ [0, 0.25] , the best method for extrapolation is
the one with the highest value of J.

Table 3 contains the extrapolation results for three
values of the upper bound, rb = {0.05, 0.15, 0.25} . In par-
ticular, we show the mean values of the J-index that have
resulted from 50 independent experiments. By inspection,
it is clear that the FWNN outperforms the rival MLP and
RBF networks, as well as the Gaussian processes. Further
details and extrapolation experiments have been pre-
sented earlier in [3].

4.3 � Experiments with real‑world benchmarks

Additional experiments were performed on a variety of
established benchmarks.

(19)ri ≡ |f (zi) − N(zi , �̂)|
max{1, |f (zi)|}

(20)ri < rb, ∀ i ≤ J and rJ+1 > rb

4.3.1 � Experiments with UCI datasets

We have selected nine benchmarks from the UCI Machine
Learning Repository1. which are briefly described in
Table 4. Note that the last two datasets (pima, wine) are
benchmarks used primarily for evaluating classification
methods and contain data belonging to two and seven
classes, respectively.

Table 2   Comparison of the NMSE mean over the test set, resulting from 50 independent experiments, for the 2d datasets related to Fig. 2a–c

The indication “best” denotes the result of the optimal performer among a handful of trial configurations; best values are depicted in bold

Method NMSE over the test set

Medium noise High noise Medium noise High noise

Dataset 2(a) Dataset 2(b)
FWNN ��.�� ��.�� �.�� �.��

MLP (best) 19.84 ( K = 10) 71.84 ( K = 10) 2.34 ( K = 100) 7.95 ( K = 100)
RBF (best) 11.98 ( K = 50) 51.73 ( K = 50) 1.69 ( K = 50) 8.11 ( K = 30)
GP (best) 30.18 ( a = 0.001) 53.09 ( a = 0.1) 2.41 ( a = 0.1) 7.52 ( a = 0.1)

Dataset 2(c)
FWNN ��.�� ��.��

MLP (best) 110.71 ( K = 100) 84.97 ( K = 100)
RBF (best) 86.18 ( K = 80) 80.42 ( K = 80)
GP (best) 97.62 ( a = 0.1) 90.55 ( a = 0.1)

Table 3   Comparison of the
extrapolation index J, for the
two datasets related to Fig. 1a,
b

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions. For the FWNN, only the standard configuration was used

 Method Fig. 1a dataset Fig. 1b dataset

r
b
= 0.05 r

b
= 0.15 r

b
= 0.25 r

b
= 0.05 r

b
= 0.15 r

b
= 0.25

FWNN 25 50 50 24 35 38
MLP (best) 11 26 50 1 2 5
RBF (best) 8 22 33 7 10 13
GP (best) 18 31 39 17 23 26

Table 4   Summary of the
selected real-world datasets
from the UCI repository

 Dataset n #T #[S − T]

abalon 8 1000 3177
airfoil 5 500 1003
bodyfat 13 100 152
concrete 8 500 530
CPU 12 500 7692
housing 13 200 306
mg 6 385 1000
pima 8 384 384
wine 11 1066 533

1  These datasets are available at: http://mlr.cs.umass​.edu/ml/datas​
ets.html.

http://mlr.cs.umass.edu/ml/datasets.html
http://mlr.cs.umass.edu/ml/datasets.html

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

For each dataset and network architecture, 50 experi-
ments were carried out. For these experiments, we have
used 5th degree polynomials ( Lw = L� = L� = 5 ) corre-
sponding to a number of 6(n + 2) model parameters. For
the MLP, RBF and GPs, we have experimented with a host
of different architectural and regularization parameters,
and in Table 5, we quote, for each of them, the best per-
forming configuration. Observing these results, we note
that FWNN outperforms all competitors in five (out of nine)
datasets and in another dataset shares the top with GPs.
MLP is top in one dataset and is tied at the top with GPs
in another one. GPs is at the top in one dataset, while RBF
failed to win the top in any of the UCI datasets.

Since the pima and wine datasets are classification
benchmarks, the classification capability of FWNN has
been tested. For this purpose, the classification accuracy
is calculated as the percentage of the correctly classified
test points within a tolerance (see [5]). The results are
presented in Table 6 for four different tolerance values,
namely: � = 0.10, 0.25, 0.5 and 1.0. In these experiments,
FWNN together with GPs performs better than both
the MLP and RBF networks. It is interesting to note the

remarkable classification accuracy of the FWNN, particu-
larly for the low tolerance value of � = 0.10.

4.3.2 � Large‑scale experiments

To further test the approximation quality of the FWNN,
experiments on extensively studied complex, large data-
sets were performed. The datasets are summarized in
Table 7. The Sarcos dataset is a robotic real-world bench-
mark [28], representing the inverse dynamics of a robotic
seven-joint arm2 related to rhythmic motions. The task is to
map a 21-dimensional input space (seven joint positions,
seven joint velocities, seven joint accelerations) to the cor-
responding seven joint torques.

The training in this case was performed using fifth-degree
polynomials ( Lw = L� = L� = 5 ) corresponding to a total of
138 (= 6n + 12) parameters. The FWNN results along with
results published by different authors using GPs are listed in

Table 5   Comparison of the
NMSE mean over the test set,
resulting from 50 independent
experiments, for the nine UCI
datasets

The indication “best” denotes the result of the optimal performer among a handful of trial configura-
tions; best values are depicted in bold

Method UCI dataset

Train Test Train Test Train Test

Abalon n = 8 Airfoil n = 5 Bodyfat n = 13

FWNN 3.44 4.33 0.06 0.09 1.75 × 10−5 3.03 × 10−4

MLP 3.43 4.47 0.11 0.12 4.23 × 10−3 1.01 × 10−2

(best) (K = 100) (K = 100) (K = 10)
RBF 5.05 5.49 1.37 1.93 0.64 0.66
(best) (K = 30) (K = 30) (K = 10)
GP 3.95 4.52 0.05 0.09 1.48 × 10−3 4.32 × 10−4

(best) (a = 1e1) (a = 1e1) (a = 1e − 5)
concrete n = 8 CPU n = 12 housing n = 13

FWNN 1.46 2.29 0.15 0.18 0.53 1.99

MLP 0.99 1.91 0.15 0.17 0.88 3.12
(best) (K = 100) (K = 100) (K = 10)
RBF 21.36 21.72 2.81 2.95 7.06 12.67
(best) (K = 20) (K = 10) (K = 30)
GP 0.71 2.46 0.11 0.17 0.93 3.21
(best) (a = 1e − 5) (a = 1e1) (a = 1e1)

mg n = 6 pima n = 5 wine n = 11

FWNN 1.27 1.86 4.86 5.67 1.05 1.23

MLP 1.21 1.99 4.43 5.83 0.97 1.25
(best) (K = 10) (K = 30) (K = 100)
RBF 3.21 5.24 16.68 18.81 1.12 1.36
(best) (K = 50) (K = 30) (K = 80)
GP 2.05 2.52 4.74 5.48 1.24 1.32
(best) (a = 1e − 1) (a = 1e − 1) (a = 1)

2  Sarcos dataset is available at http://www.gauss​ianpr​ocess​.org/
gpml/data/.

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y	 Research Article

Table 8 and compare favorably. In Fig. 3, the predicted versus
the actual values are plotted, for all seven DOFs, rendering
the model’s performance obvious. We observe that all points
are scattered symmetrically around and near to the diagonal
x = y line that represents the perfect match.

For the remaining (Elevators, Kin40k, Pole Telecomm,
Pumadyn32-nm) datasets,3 the FWNN results are listed in
Table 9 along with results provided by a state-of-the-art
Gaussian process approach reported in [19]. In spite its

simplicity, the FWNN’s performance is better or similar to
that of a sophisticated, high-demanding, state-of-the-art
method.

5 � Discussion and conclusions

In the present article, we have proposed a new type of
neural network, the FWNN, in which the weights are func-
tions of a continuous variable. This may be interpreted
as a neural network with an infinite number of hidden
nodes. In the conducted numerical experiments, the
FWNN exceeded in generalization performance the MLP
and RBF networks, as well as the Gaussian processes. This is
evidence of robustness, reliability and modeling potential.

The FWNN has a number of interesting properties.
There is ample experimental evidence that the generali-
zation performance is superior. This may be related to the
fact that the number of required parameters is limited,
which in turn prevents serious overtraining.

Table 6   Classification accuracy for several tolerance values

 The indication “best” denotes the result of the optimal performer among a handful of trial configurations. In addition, we quote other pub-
lished results; best values are depicted in bold

Dataset Classification accuracy ( %)

FWNN MLP RBF GPs Published

(best) (best) (best)

pima � = 0.10 ��.� 20.3 10.0 21.6
� = 0.25 ��.� 46.6 27.1 45.1
� = 0.50 ��.� 75.3 56.0 ��.� 77.7 ([8])
� = 1.00 ��.� 98.4 78.9 99.2
wine � = 0.10 ��.� 14.6 12.2 14.1
� = 0.25 38.6 35.4 30.8 33.4 43.2 ([5])
� = 0.50 62.3 61.1 58.9 59.8 62.4 ([5])
� = 1.00 89.0 89.3 87.4 88.7 89.0 ([5])

Table 7   Summary of the datasets used in our large-scale experi-
ments

Note that the Sarcos dataset output has seven components (DOF)

Dataset #features #training #testing

Sarcos 21 44484 4449
Elevators 17 8752 7847
Kin40k 8 10000 30000
Pole Telecomm 26 10000 5000
Pumadyn32-nm 32 7168 1024

Table 8   Mean and normalized
mean squared errors for the
SARCOS dataset

Each column relates to one of the seven torques; best values are depicted in bold

Method Degree of freedom (DOF)

First Second Third Fourth Fifth Sixth Seventh

Mean squared error (MSE)
FWNN ��.�� �.�� �.�� �.�� �.��� �.�� �.��

Ref. [36] 31.08 22.68 9.08 9.73 0.13 0.83 0.43
Normalized mean squared error (NMSE)

FWNN �.��� �.��� �.��� �.��� �.��� 0.067 �.���

Ref. [23] 0.036 0.042 0.034 0.011 0.038 �.��� 0.019

3  All data were downloaded from http://www.dcc.fc.up.pt/~ltorg​o/
Regre​ssion​/DataS​ets.html.

http://www.dcc.fc.up.pt/%7eltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/%7eltorgo/Regression/DataSets.html

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

The positions of the Gaussian centers are determined
by the �(s) and the corresponding widths by �(s) , with
s ∈ [−1, 1] . In the case of studying simulated datasets,
we have used an affine form; hence, the �(s) curve is a
straight-line segment joining the two end points �(−1)
and �(+1) in Rn . The widths are linearly increasing or
decreasing with s, depending on the sign of �1 . In spite
of that this might seem to be a severe constraint, it has
not degraded the network’s performance. We credit this
to the infinite number of nodes that render the approxi-
mation of any function feasible [6, 10]. In the case of real
benchmarks, the affine model imposes an overly strict
constraint, and thus it was replaced by a higher order
polynomial, at the expense of some extra parameters.
The Gaussian centers then may lie on a parabolic or a
cubic locus, and the widths acquire higher adaptability.

The attractive features of the proposed FWNN may be
briefly summarized as:

1.	 Frugal model, incorporating a small number of adjust-
able parameters.

2.	 Resistant to overtraining.
3.	 Superior interpolation and extrapolation performance.

We consider that some issues need further investiga-
tion and will become part of our future research effort.
In particular,

•	 The model behavior when using different density func-
tions.

•	 The effect caused by choosing different functional
forms for the weights.

•	 The difference in using other than Gaussian kernels.
•	 The possibility of extending the shallow architecture to

deep.

Furthermore, we would like to assess the effectiveness of
FWNN in complex problems, such as solving partial and
ordinary differential equations [15–17], modeling intera-
tomic potentials [26], forecasting time series [34]. This task
is currently underway.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of
interest

-100 -50 0 50 100 150

real

-100

-50

0

50

100

150

es
ti

m
at

io
n

1st DOF

-100 -80 -60 -40 -20 0 20 40

real

-100

-80

-60

-40

-20

0

20

40

es
ti

m
at

io
n

2nd DOF

-20 -10 0 10 20 30 40 50 60

real

-20

-10

0

10

20

30

40

50

60

es
ti

m
at

io
n

3rd DOF

-10 0 10 20 30 40 50 60 70 80

real

-10

0

10

20

30

40

50

60

70

80

es
ti

m
at

io
n

4th DOF

-4 -3 -2 -1 0 1 2 3 4 5

real

-4

-3

-2

-1

0

1

2

3

4

5

es
ti

m
at

io
n

5th DOF

-8 -6 -4 -2 0 2 4 6

real

-8

-6

-4

-2

0

2

4

6

es
ti

m
at

io
n

6th DOF

-4 -2 0 2 4 6 8 10 12

real

-4

-2

0

2

4

6

8

10

12

es
ti

m
at

io
n

7th DOF

Fig. 3   Plots of the predicted (y-axes) versus the actual (x-axes) values of the 4484 test cases, for each of the seven DOFs in the SARCOS data-
set. The diagonal line (thin) denotes the perfect match

Table 9   Comparison of the results (NMSE criterion) depicted with the proposed FFWN and those published in the literature

Method Experimental dataset

Elevators Kin40k Pole Telecomm Pumadyn-32nm

FWNN �.��� 0.022 �.��� �.���

Published [19] 0.115 �.���� 0.011 0.045

Best values are depicted in bold

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y	 Research Article

Appendix: Derivatives

Since the optimization methods used for the training
need derivative information, we list the FWNN first order
derivatives.

Let us define for convenience the following quantity:

The network (16), is then rewritten as:

and its partial first-order derivatives w.r.t. w,�, and � are
given by:

References

	 1.	 Bartlett P (1998) The sample complexity of pattern classification
with neural networks: the size of the weights is more important
than the size of the network. IEEE Trans Inf Theory 44:525–536

	 2.	 Bishop C (2006) Pattern recognition and machine learning.
Springer, Berlin

	 3.	 Blekas K, Lagaris I (2017) Artificial neural networks with an infi-
nite number of nodes. J Phys Conf Ser 915(1):012006

	 4.	 Broomhead D, Lowe D (1988) Multivariable functional interpola-
tion and adaptive networks. Complex Syst 2:321–355

(21)y(x ,�, �) =
|x − �(s)|2

�2(s)
=

n∑

i=1

(
xi − �i(s)

�(s)

)2

(22)
NFW (x ;�) = ∫

1

−1

ds
√
1 − s2

w(s)

× exp
�
−
1

2
y(x ,�, �)

�

(23)

∀ r = 0, 1,… , Lw

�NFG(x ;�)

�wr

= ∫
1

−1

ds
√
1 − s2

sr exp
�
−
1

2
y(x ,�, �)

�

∀ k = 1,… , n and r = 0, 1,… , L�

(24)

�NFG(x ;�)

��kr

= ∫
1

−1

ds
√
1 − s2

w(s) exp
�
−
1

2
y(x ,�, �)

�

×
xk − �k(s)

�2(s)
sr

∀ r = 0, 1,… , L�

(25)

�NFG(x ;�)

��r
= ∫

1

−1

ds
√
1 − s2

w(s) exp
�
−
1

2
y(x ,�, �)

�

×
�x − �(s)�2

�3(s)
sr

	 5.	 Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling
wine preferences by data mining from physicochemical proper-
ties. Decis Support Syst 47(4):547–553

	 6.	 Cybenko G (1989) Approximations by superposition of sigmoi-
dal functions. Mathe Control Signals Syst 2:303–314

	 7.	 Du KL (2010) Clustering: a neural network approach. Neu-
ral Netw 23(1):89–107. https​://doi.org/10.1016/j.neune​
t.2009.08.007

	 8.	 Duch W (2010) Datasets used for classification: comparison of
results. http://fizyk​a.umk.pl/kis-old/proje​cts/datas​ets.html

	 9.	 Geman S, Bienenstock E, Doursat R (1992) Neural networks and
the bias/variance dilemma. Neural Comput 4(1):1–58

	10.	 Hornik K (1991) Approximation capabilities of multilayer feed-
forward networks. Neural Netw 4:251–257

	11.	 Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359–366

	12.	 Ismailov VE (2014) On the approximation by neural networks
with bounded number of neurons in hidden layers. J Math Anal
Appl 417(2):963–969

	13.	 Krogh A, Hertz J (1992) A simple weight decay can improve gen-
eralization. Adv Neural Inf Process Syst 4:950–957

	14.	 Kůrková V (1992) Kolmogorov’s theorem and multilayer neural
networks. Neural Netw 5(3):501–506

	15.	 Lagaris I, Likas A, Fotiadis D (1997) Artificial neural network
methods in quantum mechanics. Comput Phys Commun
104:1–14

	16.	 Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks
for solving ordinary and partial differential equations. IEEE Trans
Neural Netw 9:987–1000

	17.	 Lagaris IE, Likas A, Papageorgiou DG (2000) Neural network
methods for boundary value problems with irregular bounda-
ries. IEEE Trans Neural Netw 11:1041–1049

	18.	 Lagaris IE, Tsoulos IG (2008) Stopping rules for box-constrained
stochastic global optimization. Appl Math Comput 197:622–632

	19.	 Lazaro-Gredilla M, Quinonero-Candela J, Rasmussen C, Figuei-
ras-Vidal A (2010) Sparse spectrum Gaussian process regression.
J Mach Learn Res 11:1865–1881

	20.	 MacKay D (1992) Bayesian interpolation. Neural Comput
4(3):415–447

	21.	 Marcus GF (1998) Rethinking eliminative connectionism. Cogn
Psychol 37:243–282

	22.	 Marier Z, Sra S (2016) Diversity networks: neural network com-
pression using determinantal point processes. In: International
conference on learning representations (ICLR)

	23.	 Meier F, Schaal S (2016) Drifting Gaussian processes with vary-
ing neighborhood sizes for online model learning. In: IEEE
international conference on robotics and automation (ICRA),
pp 264–269

	24.	 Murphy K (2012) Machine learning: a probabilistic perspective.
MIT Press, Cambridge

	25.	 Neal RM (1996) Bayesian learning for neural networks, vol 118.
Lecture notes in statistics. Springer, Berlin

	26.	 Onat B, Cubuk ED, Malone BD, Kaxiras E (2018) Implanted neu-
ral network potentials: application to Li–Si alloys. Phys Rev B
97:094106

	27.	 Powell M (1985) Radial basis functions for multivariable inter-
polation: a review. In: IMA conference on “Algorithms for the
Approximation of Functions and Data”. RMCS Shrivenham

	28.	 Rasmussen C, Williams CI (2006) Gaussian processes for machine
learning. MIT Press, Cambridge

	29.	 Ripley BD (1996) Pattern recognition and neural networks. Cam-
bridge University Press, Cambridge

	30.	 Roux N, Bengio Y (2007) Continuous neural networks. In: Elev-
enth international conference on artificial intelligence and sta-
tistics (AISTATS), pp 404–411

https://doi.org/10.1016/j.neunet.2009.08.007
https://doi.org/10.1016/j.neunet.2009.08.007
http://fizyka.umk.pl/kis-old/projects/datasets.html

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1954 | https://doi.org/10.1007/s42452-020-03713-y

	31.	 Sietsma J, Dow R (1991) Creating artificial neural networks that
generalize. Neural Netw 4:67–79

	32.	 Srivastav N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R
(2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15:1929–1958

	33.	 Voglis C, Lagaris I (2006) A global optimization approach to neu-
ral network training. Neural Parallel Sci Comput 14:231–240

	34.	 Wang JZ, Wang JJ, Zhang ZG, Guo SP (2011) Forecasting stock
indices with back propagation neural network. Expert Syst Appl
38:14346–14355

	35.	 Zhang GP (2000) Neural networks for classification: a survey.
IEEE Trans Syst Man Cybern Part C (Appl Rev) 30(4):451–462

	36.	 Zhao H, Stretcu O, Negrinho R, Smola A, Gordon G (2017)
Efficient multi-task feature and relationship learning. arXiv​
:1702.04423​

	37.	 Zhao H, Tsai YH, Salakhutdinov R, Gordon G (2019) Learning
from the experience of others: approximate empirical Bayes in
neural networks. In: International conference on learning rep-
resentations (ICLR)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1702.04423
http://arxiv.org/abs/1702.04423

	Functionally weighted neural networks: frugal models with high accuracy
	Abstract
	1 Introduction
	2 Neural networks with infinite number of hidden units
	2.1 Functionally weighted neural network

	3 Technical details
	3.1 Approximating integrals
	3.2 Learning procedure and software platforms

	4 Numerical experiments, comparative analysis and extrapolation performance
	4.1 Experiments with simulated datasets
	4.2 Extrapolation in one dimension
	4.3 Experiments with real-world benchmarks
	4.3.1 Experiments with UCI datasets
	4.3.2 Large-scale experiments

	5 Discussion and conclusions
	References

