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a b s t r a c t

This paper investigates the use of reinforcement learning for the path planning of an autonomous
triangular marine platform in unknown environments under various environmental disturbances. The
marine platform is over-actuated, i.e. it has more control inputs than degrees of freedom. The proposed
approach uses a high-level online least-squared policy iteration scheme for value function approximation
in order to estimate sub-optimal policy. The chosen action is considered as the desired input to a
fast and efficient low-level velocity controller. We evaluate our approach in a simulated environment,
including the dynamic model of the platform, the dynamics and limitations of the actuators, and the
presence of wind, wave, and sea current disturbances. Simulation results are presented that demonstrate
the performance of the proposed approach. Despite the model dynamics, the actuation dynamics and
constrains, and the environmental disturbances, the presented results are promising.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Marine vehiclemotion planning aims at finding a route through
obstacles and constructing a motion planner in terms of a feasible
sequence of actions that allow to move a marine vehicle from an
initial ‘‘configuration’’ to a goal ‘‘configuration’’. Ideally, such plan-
ner tries to optimize an objective function consisting of attributes
such as plan duration, energy consumption, etc.

There is a tremendous need for developing fast analytic algo-
rithms for predicting the collision probability due to model uncer-
tainty and random disturbances in the environment for a planar
vehicle such as amarine surface vessel [1,2]. These predictions lead
to a robust motion planning algorithm that discovers the (sub)-
optimal motion plan quickly and efficiently. Incorporating model
learning into the predictions exhibits emergent active learning
strategies to safely and effectively complete the mission.

A flexible framework for motion planning and autonomous
vehicle navigation is through Reinforcement Learning (RL) [3,4]. RL
aims at controlling an autonomous agent in unknown stochastic
environments. Typically, the environment is modeled as a Markov
Decision Process (MDP), where the agent receives a scalar reward
signal that evaluates every transition. The objective is to maximize
its long-term profit that is equivalent to maximizing the expected
total discounted reward. Value function is used for measuring the
quality of a policy, which associates to every state the expected
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discounted reward when starting from this state and all decisions
are made following the particular policy. A plethora of methods
have been proposed during the last two decades using a variety of
value-function estimation techniques [4,5].

The temporal difference algorithms provide a nice framework
for policy evaluation since they have the flexibility to handle large
or continuous state space of real world applications. More specif-
ically, least-squares temporal difference (LSTD) family of methods
is very popular mechanism for approximating the value function
that performs an iterative procedure for optimal policy estimation.
Finally, model-based approaches for value function approxima-
tion have been also proposed based on on-line schemes, through
Gaussian processes [6], clustering schemes [7], or regression tree
models [8,9].

In the literature there are some marine robotic applications,
mostly involving autonomous underwater vehicles (AUV), using
reinforcement learning, see for a survey in [1]. In [10] for example
a neural networks-based reinforcement learning scheme is pre-
sented for high-level control of AUV’s. In [11] another approach
is proposed for motion planning of under-actuated AUV in un-
known non-uniform sea flow. A recent work, presented in [12],
proposes a path planning algorithm for the kinematic model of
an under-actuated marine vehicle in the presence of sea current
disturbances, based on reinforcement learning.

In this paper, we focus on the development of an intelligent
autonomous navigation scheme based on reinforcement learning,
for a novel over-actuated autonomous triangular marine platform
shown in Fig. 1. The required forces and moment for the motion
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Fig. 1. The triangular marine platform during construction.
Source: http://www.inp.demokritos.gr/nestor/dberenike/
index.html.

of the platform are provided by three rotating pump jets, conse-
quently the system is over-actuated, i.e., it has more control inputs
than degrees of freedom (DOF). A proper control allocation scheme
is implemented, see [13], to allow for optimal allocation of the
effort without violating thruster capabilities. Controllers for the
problem of the autonomous dynamic positioning of the platform
have been proposed in [13], and [14]. The detailed description of
the platform can be found in [13]. Here, we examine the prob-
lem of the determination, and realization of a desired path in an
unknownenvironment under various environmental disturbances,
and actuation constraints. These include (i) sea current disturbance
forces/torque, (ii) wind disturbance forces/torque, (iii) wave dis-
turbance forces/torque, (iv) statemeasurement noise, (v) actuation
limits, and (vi) actuation delays.

The proposed scheme comprises two layers. The first layer is an
on-line reinforcement learning algorithm which is based on least
square policy iteration (LSPI) [15,16], and aims at the determina-
tion of a sub-optimal path in the presence of realistic environmen-
tal wind, wave and sea current disturbances. The output of the
reinforcement learning algorithm is the desired direction of the
velocity of the marine vehicle. This is fed, as desired input, to the
second layer, a low-level velocity PD controller that achieve and
maintain the desired velocity, against environmental, and other
disturbances.

Simulation results show that the generated path is tracked
successfully by the marine platform, despite the disturbances. The
dynamics of themarine platform, and the dynamics and limitations
of the actuation system are modeled into the simulation environ-
ment. One of themain advantages of this method is that it is model
free, meaning that in the design processwe did not use any explicit
knowledge about the systemmodel. Thismakes themethod robust
to model uncertainties and noise, as it is demonstrated in our
results. Another advantage is that it can be implemented as an
online learning algorithm which brings us a step further towards
fully autonomous marine platform.

In this paperwebuild uponour previousworkpresented in [17],
and [18], where initial results are reported. With respect to [17],
and [18], this work (i) implements amore comprehensive RL agent
suited to the task, (ii) proposes an enhanced low-level controller,
taking under consideration the disturbances acting on the plat-
form, to ensure that the desired velocity commanded by the RL
agent, is realized fast and efficiently, (iii) uses a more complex
model of environmental and measurement disturbances, and (iv)
makes a more comprehensive and extensive study of error toler-
ance and sensor failure scenarios of the system during navigation,
by presenting suitable solutions.

2. The marine platform

Themarine platform is designed to assist in the deployment of a
deep-sea cubic kilometer neutrino telescope, see http://www.inp.
demokritos.gr/nestor/. A comprehensive description of the plat-
form can be found in [13]. However, for the sake of completeness,
a brief description of the platform is given next.

It consists of an isosceles triangular structuremounted on three
hollow double-cylinders, one at each corner of the structure, see
Fig. 1. The plane of the triangle is parallel to the sea surface.
The cylinders provide the necessary buoyancy, as part of them is
immersed in the water. The platform actuation is realized using
three fully submerged pump-jets, located at the bottom of each
cylinder. Diesel engines drive the pumps, while electro-hydraulic
motors rotate the jets providing vectored thrust, [13]. Considering
only the platform’s planar motion, the kinematics equations are
described by:⎡⎣ ẋ

ẏ
ψ̇

⎤⎦ =

[cosψ − sinψ 0
sinψ cosψ 0
0 0 1

][u
v

r

]
⇒

I ẋ =
IRB

Bv (1)

where, x and y represent the platform inertial coordinates, and ψ
describes the orientation of the body-fixed frame {B}. u and v are
the surge and sway velocities, and r is the yaw angular velocity of
the platform.

We consider three types of forces acting on the center of mass
(CM) of the platform: (a) the control forces/torque from the jets, (b)
the hydrodynamic forces due to the motion of the cylinders with
respect to the moving water, and (c) the disturbance forces/torque
due to wind, wave, and sea current.

The vectored thrust from the jets, result in the control forces
acting on the CM of the platform, and a torque about the vertical
axis. They are generated according to:

Bqc = [Fx, Fy,Mz]
⊤

= BBfc (2)

B =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 −1 −dAG
1 0 −dDC
0 −1 dDG
1 0 dDC
0 −1 dDG

⎤⎥⎥⎥⎥⎥⎦
⊤

, Bfc =

⎡⎢⎢⎢⎢⎢⎣
JA sinφA
JA cosφA
JB sinφB
JB cosφB
JC sinφC
JC cosφC

⎤⎥⎥⎥⎥⎥⎦ (3)

where Bqc represents the control force/torque vector. B contains
dimensional parameters, where dij denote the distance between
points i, and j. A, B, C represent the three corners of the structure
while D, and G are the midpoint of the triangle base, and the CM
of the platform respectively. The JA, JB, and JC in (3) denote the
magnitudes of the thrusts while φA, φB, and φC denote the force
directions. The vector Bfc can be retrieved by the pseudoinversion
of B in (2). The desired jet thrust and direction are calculated
according to,

Ji =

√
(fi sinφi)2 + (fi cosφi)2 (4)

φi = arctan(fi sinφi, fi cosφi) (5)

where i = A, B, C . Note that the desired jet thrust and direction
cannot be applied immediately due to actuator dynamics and
limitations. Based on the hardware specifications, we modeled the
jet rotation dynamics as a first order lag with a time constant equal
to 1 s, and the rotation speed is limited by an upper bound of
0.84 rad/s. In addition, the thrust model includes the dynamics
of the diesel engine (diesel engine thrust time constant equal to
0.25 s), the diesel engine maximum torque (1323.00 Nm), and the
maximum shaft speed limit (1600.00 rpm). These limits result to
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Fig. 2. (a) Wind and sea current velocity and direction. (b) Resultant wind and wave disturbance forces.

a maximum magnitude of thrust for each jet equal to 20 kN. A de-
tailed description of the dynamics and limitations of the actuation
system of the platform can be found in [13].

The hydrodynamic force acting on each submerged cylinder is
the sum of the added mass force, and the drag force, see [19]. Each
force result in a force acting on the platform CM and a moment
about it. The terms that include the drag forces are collected in
vector Bq = [fx, fy, nz]

⊤ while the added mass is included in the
mass matrix,M, see [13] for a detailed description.

The disturbances acting on the platform are due to wind, wave
(depended on wind velocity and direction), and sea current. We
simulated the inertial wind, and sea current velocity magnitude
and direction, by integrating Gaussian white noise. Example time
series are shown in Fig. 2, together with the resultant wind and
wave disturbance forces acting on the marine platform. The wind
and sea current velocity upper bounds are equal to 7.9 m/s (≈
15 kN or 4 Beaufort), and 0.5 m/s (≈ 1 kN), respectively. The
resultant disturbance forces, and torque are collected in vector
Bqdist = [fdist,x, fdist,y, ndist,z]

⊤. A detailed description of the gen-
eration of wind, wind depended wave, and sea current signals, and
the calculation of the respected disturbance forces and torque can
be found in [20].

Accordingly, the planar equations of motion of the platform,
expressed in the body-fixed frame {B} is given by:

MBv̇ =
Bq +

Bqdist +
Bqc (6)

with

M =

[m − 3ma 0 0
0 m − 3ma 0
0 0 m33

]
, (7)

m33 = Izz − (d2AG + 2d2BD + 2d2DG)ma, (8)

where m is the mass of the platform, ma is its added mass, and Izz
is its mass moment of inertia about the zb axis.

Eq. (6) describes the model implemented in the simulated en-
vironment presented in Section 5. In addition, measurement noise
is superimposed to the position and orientation of the platform. To
this end, we extracted measurement noise from real GPS readings.
The used GPS receivers have an accuracy of ±1 m with an update
frequency of 5 Hz.

3. Reinforcement learning for autonomous marine vehicle
navigation

As mentioned in the introduction, the proposed scheme com-
prises two layers, and the first layer involves the Reinforcement
Learning (RL) agent, see Fig. 3. The main part of the proposed
decision system is based on a RL agent which receives the inertial
coordinates (x, y) of the floating platform and makes an action
related to the direction of its linear velocity. Note that the desired
magnitude of the platform’s velocity is constant and not affected
by the RL agent. In addition, the orientation of the platform, ψ , is
controlled by the low-level controller, see Section 4.

According to the RL framework, we consider that the environ-
ment where the marine platform acts can be modeled as aMarkov
decision process (MDP). An MDP can be described as a five-tuple
(S,A, P, R, γ ), where S is a set of states; A a set of actions; P :

S × A × S → [0, 1] is a Markovian transition model that specifies
the probability P(s′

|s, a) of transition from state s to a new state s′

after taking an action a. Finally R : S → R is the reward function
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Fig. 3. The control scheme.

for a state–action pair, and γ ∈ (0, 1) is the discount factor for
future rewards. A stationary policy π : S → A is a mapping from
states to actions and denotes amechanism for choosing actions. An
episode is a sequence of transitions: (s1, a1, r1, s2, . . .).

As noted before, in the proposed RL agent we have considered
that the state space consists of the platform inertial coordinates,
i.e. s = (x, y), while the action a is related to the direction of the
marine platformvelocity. In our casewehave divided this direction
into a set of five (5) discrete values: a ∈ {0, 45, 90, 135, 180}. The
size of the action set affects the complexity of the methodology. In
our application the chosen set is proven adequate. However, any
given set of actions can be used.

The Q -function Q : S × A → ℜ of the policy π gives for
every state–action pair (s, a) the expected return when starting
in s applying action a and following π thereafter. Q -values can be
evaluated by solving the following set of linear Bellman equations:

Q π (s, a) = R(s, a) + γ
∑
s′∈S

P(s′
|s, a)max

a
Q (s′, a). (9)

The objective of RL problems is to estimate an optimal policy π∗

by choosing actions that yield the appropriate action–state value
function

Q ∗
: π∗(s) = argmax

a
Q ∗(s, a).

For determining the Q function we can use a value func-
tion approximation scheme. A common choice is to consider a
linear model consisting of a set of k basis functions φ(s, a) =

[φ1(s, a), . . . , φk(s, a)]⊤:

Q (s, a) = φ(s, a)⊤w =

k∑
j=1

φj(s, a)wj, (10)

wherew = (w1, . . . , wk) is a vector ofweightswhich are unknown
and must be estimated so as to minimize the approximation error.
The selection of the basis functions is very important and must be
chosen to encode properties of the state and action relevant to the
proper determination of the Q values.

In our work we have considered RBF basis functions:

φj(s) = exp(−βj∥s − cj∥2), (11)

for a given collection of k centers cj and precision (inverse variance)
βj. Note thatwe have assumed commonprecision to all k functions,
i.e. βj = β . In order to obtain the parameters of these k basis
functionswe have adopted the tile coding scheme. In particular, we
have partitioned the state space on k non-overlapping and equally
in size (width 1/βj) regions. Then, their center (cj) were found and
used for constructing the feature space of the k kernels.

The proposed RL agent follows a policy iteration scheme for
learning. Policy iteration is a dynamic programming algorithm,
which starts with an arbitrary policy and steadily improves it. It
discovers the optimal policy by generating a sequence of mono-
tonically improving policies. The policy iteration algorithmmanip-
ulates the policy directly instead of finding it via the value function,

as happens in the case of value iteration. Policy iteration consists of
two successive, interactive phases: the policy evaluationwhere the
value function of policy π is computed and the policy improvement
where policy is updated. These two phases are executed iteratively
until policy π cannot be further improved. In this case, the policy
iteration algorithm converges to the optimal policy π∗.

Least-Squares Policy Iteration (LSPI) [15] is a known approxi-
mate policy iteration algorithm that uses a model-free version of
the least-squares temporal difference learning (LSTD). The action-
value function Q (s, a), is approximated instead of the state-value
function, while action selection and policy improvement are per-
mitted without the need of any prior knowledge of the environ-
ment dynamics. In its original form, the LSPI is an off-line algorithm
and requires a set of training examples: D = {si, ai, ri, s′i|i =

1, . . . , n}, which are used at each iteration in order to evaluate the
derived policies. During the policy evaluation step, the matrix A
(size k × k) and the vector b (size k × 1), are computed following
the previously learned policy π , as follows:

A =

n∑
i=1

φ(si, ai)(φ(si, ai) − γφ(s′i, π (s
′

i)))
⊤, (12)

b =

n∑
i=1

φ(si, ai)ri. (13)

At the policy improvement step, matrix A and vector b are used in
order to yield an improved policy. In this way, the least-squares
projection error for the state-value function Q , is minimized as:

w = A−1b. (14)

The whole procedure is implemented iteratively, until a conver-
gence criterion is satisfied. The model parameters are initialized
arbitrarily or are set to 0.

Since our goal is to achieve an online learning scheme of the
marine platform, in this work we employ an online variant of
LSPI where policy improvement is performed every few transi-
tions [16]. Based on (12) and (13) we can apply an incremental
update scheme for the model parameters:

At+1 = At + φ(st , at )(φ(st , at ) − γφ(st+1, π (st+1)))⊤, (15)

bt+1 = bt + φ(st , at )rt . (16)

Then, the current policy is evaluated according to the least-squares
estimation rule: w = A−1

t+1bt+1, and is applied to obtain new
transition samples. Thus a new learning cycle repeats. In our study
policy improvement was performed either every 10 transitions, or
at the end of each episode.

Balancing the ratio of exploration/exploitation is a great chal-
lenge in reinforcement learning, since it may have significant
impact on the quality of learned policy. A common choice is to
employ the ϵ-greedy exploration scheme. According to this, at
each learning step t an action is selected greedily, based on the
estimated action-value function with probability 1 − ϵt , while a
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random action is chosen with probability ϵt , (ϵt ∈ [0, 1]). Initially,
the parameter ϵ0 is set to a large value (e.g., ϵ0 = 0.7), while it
decays exponentially over timewith a decay rate ϵd ∈ (0, 1). In the
particular scheme, policy improvement can be implemented after
a number of consecutive transitions.

4. Low-level controller design

The second layer of the proposed scheme involves the low-level
controller. The goal of the low-level controller is (a) to ensure that
the desired linear velocity commanded by the RL-agent, is realized
fast and efficiently, (b) controls the orientation of the platform, and
(c) achieve (a) and (b) despite the presence of system and mea-
surement limits, and environmental disturbances. The following
list summarizes all limits and disturbances that are included into
the simulation environment.

• GPS error of ±1 m
• GPS update delay of 0.2 s (5 Hz update frequency)
• Jet rotation speed limit equal to 0.84 rad/s
• Jet rotation time constant equal to 1 s
• Diesel engine thrust time constant equal to 0.25 s
• Diesel engine torque limit equal to 1323 Nm
• Shaft speed limit equal to 1600 rpm
• Maximummagnitude of thrust for each jet equal to 20 kN
• Wind disturbance forces/torque
• Wave disturbance forces/torque
• Sea current disturbances.

To this end, the control of the motion of the triangular platform
is achieved using the system depicted in Fig. 3. In addition, in the
controller design we take under consideration (a) the environ-
mental disturbances, based on the knowledge of the wind speed,
and direction, and (b) the model uncertainty. According to this,
the desired forces/torque vector Bqc , is the output of a controller
scheme with two independent closed loops. The first closed loop
realize a velocity PD controller where the input is the desired
velocity of the floating platform (as commanded by the RL-agent),
and the output is the desired forces according to

[Fx, Fy]⊤ =
IRB

′
(Kp,f ([ẋdes ẏdes]′ − [ẋ ẏ]′)

− Kd,f [ẍ ÿ]′) − l[fdist,x fdist,y]′ (17)

where Kp,f and Kd,f are the controller gains related to the desired
forces calculation, and ẋdes and ẏdes are the desired inertial linear
velocities. fdist,x, and fdist,y are the disturbance forces expressed in
the body frame.

The second closed loop is a PD controller where the input is the
desired orientation of the floating platform, and the output is the
desired torque according to

Mz = Kp,m(ψw − ψ) − Kd,mr − l(ndist,z) (18)

where Kp,m, and Kd,m are the controller gains related to the desired
torque calculation, andψw denotes the direction of thewind. ndist,z
is the disturbance torque expressed in the body frame. As (18)
suggests, the desired orientation of the platform coincides with
the direction of thewind. This configuration results to reduced dis-
turbance forces/torque, due to the reduction of the projected area
of the platform to the wind. The desired inertial linear velocities,
ẋdes and ẏdes, are calculated using a constant velocity magnitude
defined by design, and a desired direction, which is the action of
the RL agent, presented in the previous section. The calculation
of the disturbance forces/torque are based on the knowledge of
the model parameters (dimensions of the platform), and on the
assumption that the wind speed and direction can be measured. A
detailed description of the calculation of the respected disturbance
forces and torque can be found in [20]. Moreover, we use the error

Fig. 4. A map of the Piraeus port used as the test environment in our experiments.

factor 0 ≤ l ≤ 1, which represents how accurately we calculate
the environmental disturbances based on the model parameters,
and the measurements of the wind speed and direction.

As stated there, in the proposed RL agent we have considered
that the state space consists of the platform inertial coordinates,
(x, y). However, including the orientation ψ of the body-fixed
frame to the set of state features in our RL-based framework
constitutes a subject for future research study.

5. Simulation results

We have studied the performance of the proposed scheme
using several simulated experiments. The simulation environment
has been implemented using the MATLAB software package. The
environment includes the kinematic and dynamic model of the
marine platform, and simulated wind, wave and sea current dis-
turbances, Moreover, the dynamics and limits of the actuators are
also implemented into the simulation environment.

During the simulation runs we have used a Map of the port
of Piraeus, as taken by the Google maps. Fig. 4 shows this test
environment as a binary image, where the darker area denotes
the sea. In this task, the objective of the marine vehicle is to find
a steady landmark (rectangular target) at a minimum number of
steps, starting from the entrance of the port (a wide box area). The
map was completely unknown to the platform and the study was
focused on the proposed method’s ability to generate a physically
realizable path at a reasonable computational cost under itsmotion
constraints and the external disturbances.

Several experiments were conducted in this simulated envi-
ronment considering a variety of wind conditions, in terms of the
following variables:

• wind velocity direction: three values {90◦, 180◦, 270◦
}

• wind velocity magnitude: three values {1, 4, 7} kN.

In all cases the integration time step was set to dt = 0.2 s, which
is the same as the GPS output delay (GPS frequency equal to 5 Hz).
It must be noted that the RL learning step, t , is fixed equal to 10
s, i.e. fifty times the default GPS output delay. Table 1 presents
the system data and parameter values used during the simulation
runs. At the learning process a new episode starts when (i) the
maximum allowed number of learning steps per episode is expired
(in our case was set to 1000), (ii) an obstacle is hit, or (iii) the
target is reached. The reward function follows the next rule: At
each learning step, t , the marine vehicle receives an immediate
reward of −0.1. In the case of failure, i.e. an obstacle is hit or being
out of grid, the received reward is −30, and when the target is
found a reward of +15 is returned. Finally, in all cases we have
used a number of k = 100 RBF kernel functions following the tile
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(a) Wind direction = 90◦ .

(b) Wind direction = 180◦ .

(c) Wind direction = 270◦ .

Fig. 5. The frequency of target found per episode in the case of the test environment with wind direction equals to (a) 90◦ , (b) 180◦ , (c) 270◦ , and variation of wind velocity.

coding scheme described above, while the discount factor γ was
set equal to 0.99.

Fig. 5 illustrates the simulation results of the proposed approach
for different environmental cases. In particular, we present the
learning curve of the RL agent in a variety of environmental condi-
tions, concerning wind velocity direction and velocity magnitude,
see Table 1. Every curve in Fig. 5 shows the relative frequency of
reaching the target in the last 100 episodes (mean success rate)
in the case of two different target positions, A and B, shown in
Fig. 4: target A (left column in Fig. 5) and target B (right column
in Fig. 5). According to these results, the capability of successfully
discovering targets is apparent. Even in difficult environmental
conditions: opposite wind direction (270◦) and large wind velocity
(7 kN) or wind direction 0◦ in the case of the target A (left column
in Fig. 5), the agent showed a remarkable behavior. On average, the
probability of reaching the target was constantly above 85% after a
short period of learning (250 episodes).

An advantage of the proposed scheme is that the application
of the low-level closed-loop controller enables the realization of

the action selected by the RL framework, despite the presence
of disturbance forces/torque and actuation limits. Various suc-
cessful navigation paths are illustrated in Fig. 6 in the case of
wind direction 180◦ and 0◦. Furthermore, we present in Fig. 7 the
learned policies (Q -values) of the agent, for the same navigation
paths, as obtained after 1000 episodes. As it can be observed, the
proposedmethod successfully found sub-optimumpolicies in both
test environments.

The performance of the low-level controller is depicted in Fig. 8.
The left column shows the forces exerted from the jets during a
successful rununder variouswind velocities. The exerted forces are
bounded from the maximum allowed force limit, which is equal to
20 kN for each jet. The right column shows the desired (red dashed
lines), and simulated (black solid lines) linear inertial platform
velocities, and platform orientation during the same successful run
under various wind velocities. In all cases the wind direction is
equal to 180◦. As shown, the velocities, and the orientation of the
platform successfully follow the desired values despite the distur-
bances, measurement noise, and actuators constraints, indicating
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(a) (b)

Fig. 6. The navigation path in the case of the (a) first, and the (b) second test environment.

(a) (b)

Fig. 7. The Q -function in the case of the (a) first, and the (b) second test environment.

Table 1
Parameter values during simulation.

Parameter Symbol Value

Total mass of the structure m 425,000.00 kg
Length of the triangular structure side LAB 45.00 m
Length of the triangular structure base LBC 35.00 m
Integration time step dt 0.2 s
Learning step t 10 s
error factor l 0.8
Wind velocity direction θw {90, 180, 270}◦
Wind velocity magnitude vw {1, 4, 7} kN
Platform’s desired velocity magnitude v 0.6 m/s
Velocity controller P gain Kp,f 500,000
Orientation controller P gain Kp,m 100
Orientation controller D gain Kd,m 10,000
Max steps per episode – 1000
Number of RBF kernel functions k 100
Discount factor γ 0.99
Found target reward – +15
Step reward – −0.1
Hit obstacle reward – −30

the disturbance cancellation capabilities of the proposed control
scheme. Finally, Fig. 9 shows the mean value of the velocity, and
the orientation of the platform during the last 100 episodes in the
case of the first test environment (Fig. 6(a)) with wind direction
equals to 90◦, 0◦, and 270◦. The desired values are indicated by
the red lines. Again, as shown in Fig. 9, the platform, under the
control of the low-level controller, obtain the desired velocity and

orientation values, despite the disturbances, measurement noise,
and actuators constraints.

5.1. Simulation results in cases of system/sensor failure

In order to test the robustness of the proposed control scheme
in cases of sensor and system failure, we implemented two more
simulated scenarios. In the first, we assume that one of the jets
of the platform is failing during the navigation, due to mechanical
malfunction or fuel limitations. In this case, the platform remains
anover-actuated systemwith four control inputs instead of six, and
the control allocation scheme described in (2) and (3) is adapted
to the new configuration, depending on which jet is failing. For
example, in the case of the failure of jet C the control forces acting
on the CM of the platform, and the torque about the vertical axis
are generated according to

Bqc = [Fx, Fy,Mz]
⊤

= BBfc (19)

B =

⎡⎢⎣1 0 0
0 −1 −dAG
1 0 −dDC
0 −1 dDG

⎤⎥⎦
⊤

, Bfc =

⎡⎢⎣JA sinφA
JA cosφA
JB sinφB
JB cosφB

⎤⎥⎦ . (20)

In this example, the performance of the low-level controller is
depicted in Fig. 10. The left figure shows the forces exerted from the
jets during a successful run, and the right figure shows the desired
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(a) Wind velocity = 1 kN.

(b) Wind velocity = 4 kN.

(c) Wind velocity = 7 kN.

Fig. 8. (left) forces exerted from each jet, and (right) desired, red dashed line, and simulated, black solid line, linear inertial platform velocities, and platform orientation
during a successful run under various wind velocities. In all cases the wind direction is equal to 180◦ .

(red dashed lines), and simulated (black solid lines) linear inertial
platform velocities, and platform orientation.

Apparently, the force exerted from each jet is now higher
(compare to Fig. 8), and this is to be expected, since the 1/3 of
the available thrust is now missing. However, the platform suc-
cessfully follows the desired velocity as commanded by the RL-
agent, and the desired orientation. We must note that the failing
of one engine, and consequently the loss of the 1/3 of the available
thrust, limits the ability of the platform to compensate for high
environmental disturbance forces. In case of the failure of two
engines the system in under-actuated and its control is beyond the
scope of this paper.

In the second scenario, we assume that the GPS sensor is tem-
porarily failing, and cannot feed the control system with the state
of the system in the default frequency (5 Hz). We compensate
for this problem by taking under consideration the delay of the
GPS sensor output into the RL-agent algorithm. For example, if the
delay of the GPS sensor output is five times the default (1 s), then
the RL-agent algorithm is modified on-the-fly to keep the learning
step, t , equal to 10 s, i.e. the learning step is now ten times the GPS
output delay. Assuming a reasonable GPS output delay (no more
than 5 s), we implemented several simulation runs with various
GPS output delays, and the results are virtually the same as in
Figs. 5–8.
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Fig. 9. The mean value of (left) the velocity and (right) the orientation of the platform during the last 100 episodes in the case of the first test environment (Fig. 6(a)) with
wind direction equals to 90◦ , 0◦ , and 270◦ .

Fig. 10. (a) forces exerted from each jet, and (b) desired, red dashed line, and simulated, black solid line, linear inertial platform velocities, and platform orientation during
a successful run, with only two jets functioning, for wind velocity equal to 1 kN, and wind direction equal to 270◦ .

6. Conclusion

In this study we presented an autonomous navigation frame-
work of a floating marine platform involving a reinforcement
learning agent, and a low-level velocity controller. Themarine plat-
form under control is over-actuated and allows efficient learning
mechanisms. It consists of a triangular structuremounted on three
hollow double-cylinders, one at each corner of the structure. The
platform actuation is realized using three fully submerged pump-
jets, located at the bottom of each cylinder. Each jet can rotate,
providing vectored thrust.

The proposed RL agent tries to learn the policy function and
estimate a target position according to a least-squares mechanism
that uses RBF kernel functions. It receives the inertial coordinates
of the platform, and makes an action related to the direction of the
platform’s velocity. The low-level velocity controller (a) ensures
that the desired velocity commanded by the RL agent, is realized
fast and efficiently, and (b) controls the orientation of the platform
so that it coincides with the direction of the wind resulting to
reduced disturbance forces/torque. The controller compensates for
the environmental disturbances, measurement noise, and actua-
tion delays and limitations. In addition, provide suitable solutions

to GPS sensor temporary failure, and jet failure due to mechanical
malfunction or fuel limitations.

Simulation results were presented to demonstrate the perfor-
mance of the proposed autonomous navigation framework. The
simulation environment includes the dynamicmodel of themarine
platform, the dynamics and limitations of the actuation system, a
broad model of environmental disturbances, and real GPS mea-
surement noise. According to the results, the system shows a
satisfactory behavior.

Our primitive aim is to address the marine vehicle navigation
problem under two aspects: It is true that the number and the
structure of the basis functions constitutes a significant issue to
the performance of the linearmodel for the value function approx-
imation scheme. According to the experiments, the proposed RL
scheme exhibits small sensitivity to the number of basis functions.
Evenwhen the number of themwas equal to 25, themethod gave a
satisfactory performance in the simulation environment. However,
the proper determination and adaptation of basis functions sug-
gests a future direction in our study. In addition, the application of
a model-based low-level controller to further improve the closed-
loop response of the system, and the possibility to model the
marine navigation task with partially observable Markov decision
processes (POMDPs), are also issues of future directions in our
study.
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The reinforcement learning scheme we followed in our ap-
proach is model-free, i.e. the optimal policy is derived without
explicitly learning the model and without having access to the
transition model of the MDP. In general, the RL has the ability to
find the optimal solution to such a stochastic MDP by averaging
over sufficient experiences. However, it is possible the learning
process of an RL agent to be affected by the presence of distur-
bances, especially large and infrequent ones which could be con-
sidered as outliers. The disturbances can occur in sensor readings,
timing or in the dynamics of the system or its environment. The
experimental study in our case shows that the RL agent and its
learning process are robust enough against any kind of outliers.
However, it is true that in real-time dynamic systems a special
treatment for disturbance rejection properties should be applied,
by including functions such as: detection, rejection and correction
of outliers, [21]. This study could be an excellent direction for
future work dealing with this platform in more realistic environ-
ments.

Moreover, an interesting research topic that we are currently
working on, is the RL-based autonomous navigation of the marine
platform, taking under consideration the energy consumption of
the diesel engines, aiming at its reduction. Finally, the implemen-
tation of experimental trials in a real environment with the real
platform is always our goal, but unfortunately and despite our
intentions, the platform is still under construction, so we are not
able in the foreseeable future to proceed with experiments in a
marine environment.
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