
State Skip LFSRs: Bridging the Gap between Test Data Compression and  
Test Set Embedding for IP Cores* 

 
V. Tenentes1, X. Kavousianos1 and  E. Kalligeros2 

1Computer Science Department, University of Ioannina, Greece 
2 Information & Communication Systems Engineering Dept., University of the Aegean, Greece 

tenentes@uoi.gr, kabousia@cs.uoi.gr, kalliger@aegean.gr 
 

Abstract1 
We present a new type of Linear Feedback Shift Registers, 

State Skip LFSRs. State Skip LFSRs are normal LFSRs with 
the addition of a small linear circuit, the State Skip circuit, 
which can be used, instead of the characteristic-polynomial 
feedback structure, for advancing the state of the LFSR. In 
such a case, the LFSR performs successive jumps of constant 
length in its state sequence, since the State Skip circuit omits a 
predetermined number of states by calculating directly the 
state after them. By using State Skip LFSRs we get the well-
known high compression efficiency of test set embedding with 
substantially reduced test sequences, since the useless parts 
of the test sequences are dramatically shortened by traversing 
them in State Skip mode. The length of the shortened test se-
quences approaches that of test data compression methods. A 
systematic method for minimizing the test sequences of re-
seeding-based test set embedding methods, and a low over-
head decompression architecture are also presented.   

 
1. Introduction 

The extensive use of pre-designed and pre-verified cores 
in contemporary Systems-on-a-Chip (SoCs) and the limited 
channel capacity, memory and speed of Automatic Test 
Equipments (ATEs) render testing the bottleneck of SoCs 
production cycle. Embedded test eases the burden of testing 
on ATEs by combining the ATE capabilities with on-chip 
integrated structures. The test set is stored compressed in the 
ATE memory, and, during testing, it is downloaded on-chip 
where it is decompressed by an embedded decoder and then 
applied to the core under test (CUT). 

Many embedded testing techniques maximize compres-
sion by utilizing structural information of the CUT and by 
exploiting the advantages offered by the use of Automatic 
Test Pattern Generation (ATPG) and/or fault simulation tools. 
Most of these methods utilize linear decompressors due to 
their high efficiency and simplicity [3], [6], [10], [16], [19], 
[24], [25], [28], [35], [36]. Commercial tools have been also 
developed [2], [15], [27]. Often, the structure of the cores is 
unavailable to the system integrator and a pre-computed test 

                                                           
This work was co-funded by the European Union in the framework of the 
project “Support of Computer Science Studies in the Univ. of Ioannina” of 
the “Operational Program for Education and Initial Vocational Training” 
of the 3rd Community Support Framework of the Hellenic Ministry of Edu-
cation, funded by national sources and by the European Social Fund (ESF). 

set is the only test information provided by the core vendors. 
For such cores, which are called Intellectual Property (IP) 
cores, neither ATPG, nor fault simulation can be performed 
and thus the only option is to directly compress the pre-
computed test set. Linear decompressors have been exten-
sively used in this case as well [1], [17], [18], [21], [30], [33], 
[34]. Other techniques utilize various compression codes [4], 
[5], [7], [12], [13], [26], [32], and are suitable for cores with a 
single scan chain. Of course, there are also methods that do 
not belong in either of the above categories, e.g., [23], [29].  

Test set embedding is another option for cores of un-
known structure. Test set embedding techniques require less 
test data storage than test data compression methods, since 
they encode the pre-computed test vectors in long pseudo-
random sequences generated on-chip. In [8] and [31] the 
pseudorandom sequences are generated by counters. In [22] 
an area-demanding reconfigurable interconnection network 
is presented that achieves a vast reduction of the test data 
stored on ATE. The main drawback of these techniques is 
their prohibitively long test application time. The multiphase 
method proposed in [9] has small hardware overhead and 
generates shorter test sequences than [8], [22] and [31]. An 
even higher reduction of the test sequence length is achieved 
in [11] at the expense of a slight increase in test data volume. 
However, [9] and [11] still require long test sequences.  

In this paper a new type of Linear Feedback Shift Regis-
ters (LFSRs), called State Skip LFSRs, is presented. Apart 
from their linear feedback structure that corresponds to their 
characteristic polynomial, State Skip LFSRs also incorporate 
a small linear circuit called State Skip circuit. The state of a 
State Skip LFSR can be advanced by using either the poly-
nomial feedback structure (Normal mode) or the State Skip 
Circuit (State Skip Mode). In State Skip mode, the LFSR 
performs successive jumps of constant length in its state 
sequence, since the State Skip circuit omits a predetermined 
number of states by calculating directly the state after them. 
State Skip LFSRs drastically shorten the test sequences of 
LFSR-reseeding-based test set embedding methods, since 
they can operate in State Skip mode in the useless parts of 
the test sequence. By offering the well-known high compres-
sion efficiency of test set embedding with substantially re-
duced test sequences, State Skip LFSRs bridge the test-
sequence-length gap between test data compression and test 
set embedding techniques, and render the latter a very attrac-
tive testing approach for IP cores.  

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



LF
SRn

Ph
as

e 
Sh

ift
er

Test R
esponse

C
om

pactor

ATE

0  1  2             ...                  r-1

Scan Chain 0

Scan Chain 1

Scan Chain 2

Scan Chain m-1 CUT

 
Fig. 1. Classical LFSR Reseeding Architecture 

2. Motivation 
Fig. 1 shows the classical LFSR reseeding architecture. 

Every n-bit seed (n is the LFSR size) is transferred from the 
ATE to the LFSR, where it is expanded into a test vector of 
m·r bits (m is the scan-chain volume and r the scan-chain 
length). A phase shifter is also needed for reducing the linear 
dependencies of the LFSR-generated bit sequences. Each n-
bit seed is the compressed version of an m·r-bit test cube (test 
vectors with x bits are called test cubes) and is calculated by 
solving a system of linear equations, which is formed accord-
ing to the specified bits of the test cube [14] (the x bits are 
filled with pseudorandom data during decompression). Spe-
cifically, the initial state of the LFSR is considered as a set of 
binary variables a0, ..., an-1. At every clock cycle, m linear 
expressions of these variables are generated at the m outputs 
of the phase shifter. Thus, each bit of a test cube corresponds 
to one linear expression. Every linear expression correspond-
ing to a specified bit of a test cube is set equal to that bit, and 
in this way the system of linear equations is formed. The so-
lution of this system is the seed of the LFSR. The system 
with the maximum number of linear equations corresponds to 
the test cube with the maximum number of specified bits, smax, 
and determines the minimum required LFSR size. 

If each seed is used for encoding a single test cube, the 
achieved compression is moderate, since usually in a test set 
there are many test cubes with fewer specified bits than smax. 
As a result, a lot of variables remain unspecified when the 
corresponding systems are solved, and therefore much of the 
potential of LFSR encoding is wasted. Various methods 
tackle this problem [6], [16], [27], [33]. A very attractive one 
is to utilize the same seed for encoding more than one test 
cube in a sequence of L pseudorandom vectors. In other 
words, each seed is expanded into a window of L vectors, 
instead of one. The number of test cubes encoded in the 
window is usually much smaller than L, which means that 
useless vectors are also applied to the CUT. This approach is 
very effective since for every test cube, L (and not just one) 
systems of equations are constructed, and among the solv-
able systems, the one resulting in the highest compression is 
selected. In other words, each test cube is encoded in such a 
way so as to maximize the overall encoding efficiency. 

There are many ways to encode multiple test cubes in an 
L-vector window. One very effective algorithm for minimiz-
ing the number of seeds is the  following  [11]:  initially,  the  

Table 1. Classical vs. Window-based LFSR Reseeding 
  Window Based Reseeding (L>1) 
 LFSR

Classical Re-
seeding (L=1) L=50 L=200 L=500 

Circuit Size TDV TSL TDV TSL TDV TSL TDV TSL 
s9234 44 10692 243 8008 9100 7128 32400 6688 76000

s13207 24 8856 369 5328 11100 3816 31800 2688 56000
s15850 39 11622 298 7410 9500 6669 34200 6201 79500
s38417 85 58225 685 50660 29800 48110 113200 47005 276500
s38584 56 22680 405 10584 9450 7056 25200 5152 46000

 

test cube with the highest number of specified bits is selected 
and the system corresponding to the first vector of the win-
dow is solved. The rest test cubes are selected iteratively 
according to the following criteria: Among the solvable sys-
tems that correspond to the test cubes containing the maxi-
mum number of specified bits, we identify those that their 
solution leads to the replacement of the fewest variables in 
the L-vector window. Among them, we find those corre-
sponding to the cube that can be encoded the fewest times in 
the window, and we finally select the system nearest to the 
first vector of the window. After solving the selected system, 
some of the variables are replaced by logic values, whereas 
the rest remain unspecified and they are utilized for encod-
ing additional test cubes. The construction of a seed is com-
pleted when no system for any of the unencoded test cubes 
can be solved in the L-vector window. 

In order to illustrate the compression superiority of the 
method which expands seeds into windows of L >1 vectors, 
over the classical encoding where each seed is expanded into 
a single vector (L=1), we conducted the following experiment: 
Uncompacted test sets generated by Atalanta [20] for the 
largest ISCAS 89 benchmark circuits were compressed using 
the classical LFSR encoding (L=1) as well as the window-
based encoding with window sizes L=50, 200 and 500. 32 
scan chains were assumed for each circuit. For providing a 
fair comparison, the algorithm of the previous paragraph was 
applied for all examined window sizes. Hence, even for L=1, 
each seed was let encode as many test cubes as possible (i.e., 
all compatible cubes that can be compressed into a single seed, 
which will be then expanded to just one test vector). Table 1 
presents the size of the LFSR, the test data volume-TDV (# 
bits) and test sequence length-TSL (# test vectors applied) for 
each core. It is obvious that as window size L increases, the 
encoding improves a lot, but, on the other hand, the test se-
quences grow rapidly and become prohibitively long. 

 

3. Proposed Method 
3.1. State Skip LFSRs 

Consider the LFSR shown in Fig. 2 without the State Skip 
circuit (i.e., assume that Input 1 of each multiplexer is se-
lected, which means that the LFSR operates normally ac-
cording to its feedback polynomial). The symbolic contents 
of the LFSR during cycles t0...t3, assuming that the initial 
state is (c0, c1, c2, c3) = (a0, a1, a2, a3), are shown in the table 
of Fig. 2. Let us focus on the contents of the LFSR cells dur-
ing clock cycles t0 and t2. Observe that the value of cell c0 at 
cycle t2 is equal to the XOR of the values of cells c2, c3 at cy-
cle t0, i.e., c0(t2) = c2(t0)⊕c3(t0), where ci(tj) is the value of  cell  



c3

c2

c1

c0

Phase ShifterLFSR

10

10

10

10

N
or

m
al

 /S
ta

te
 S

ki
p

0 1 0 0 1 0 0 1 ...

1 0 1 1 0 1 1 0 ...

Normal
State Skip

State Skip
Circuit t0 t1 t2  t3 t4 t5 t6 t7 ...

t0     t1    t2     t3  ...
State Skip

t0 t1 t2  t3 t4 t5 t6 t7 ...

c0

a0

a3

a2 ⊕ a3

a1⊕ a2⊕ a3

c1

a1

a0⊕ a3

a2

a1

c2

a2

a1

a0 ⊕ a3

a2

c3

a3

a2 ⊕ a3

a1 ⊕ a2 ⊕ a3

a0 ⊕ a1 ⊕ a2

t0
t1
t2
t3

Symbolic states of normal LFSR

 
Fig. 2. Example of State Skip LFSR 

ci during cycle tj. For the rest cells we derive similar relations: 
c1(t2)=c2(t0), c2(t2)=c0(t0)⊕c3(t0), c3(t2)=c1(t0)⊕c2(t0)⊕c3(t0). 
These relations depend solely on the characteristic polyno-
mial and the distance between the clock cycles of interest (2 
cycles in the above example) and not on the LFSR state. 
Hence, they are satisfied for every pair of cycles ti+2, ti, i.e.: 
c0(ti+2)=c2(ti)⊕c3(ti), c1(ti+2)=c2(ti), c2(ti+2)=c0(ti)⊕c3(ti), and 
c3(ti+2)=c1(ti)⊕c2(ti)⊕c3(ti). Generally, for an LFSR of size n 

and for every k≥1, n linear expressions 0 1−
k k

nF ,...,F exist that 
satisfy the following relations, for every value of i: 

( ) ( ) ( )( ) ( ) ( ) ( )( )0 0 0 1 1 1 0 1
k k

i k i n i n i k n i n ic t F c t ,...,c t c t F c t ,...,c t+ − − + − −= =,   . . . ,    (1)  
When k=1, the above expressions represent the LFSR opera-
tion according to the characteristic polynomial. 0 1−

k k
nF ,...,F  

are easily calculated by setting i=0 and simulating the LFSR 
symbolically [equations (1) are satisfied for every value of i]. 
Specifically, the LFSR is initialized with symbolic state 
(c0(t0), ..., cn-1(t0))=(a0, ..., an-1) and is clocked k times. After 
the k-th clock cycle, the LFSR contents c0(tk), ..., cn-1(tk), 
which are linear expressions of the initial contents c0(t0), ..., 
cn-1(t0), constitute the required linear expressions 0 1−

k k
nF ,...,F . 

The basic idea proposed in this paper is to integrate 

0 1−
k k

nF ,...,F  in the LFSR structure. The modified LFSR, which 

is called hereafter State Skip LFSR, operates in two different 
modes, Normal and State Skip. In Normal mode, the sequence 
of the LFSR states is generated according to the characteristic 
polynomial, while, in State Skip mode, the state sequence is 
generated by the integrated linear circuit implementing 

0 1−
k k

nF ,...,F . When the LFSR operates in State Skip mode, it 
performs a jump of k states ahead at every cycle, skipping in 
this way the k-1 intermediate states which would have been 
generated if the LFSR had operated in the Normal mode. 
Therefore, in State Skip mode, the generated vector sequence 
is shortened by a factor k, which is called hereafter speedup 
factor. We will see that the hardware overhead of the linear 

logic implementing the expressions 0 1−
k k

nF ,...,F  is small when 

k is not very high, and that a value of k up to 24 is sufficient 
for a vast reduction of the test sequence length.  
Example. Fig. 2 presents the State Skip version of the previ-
ously mentioned LFSR, for k=2. At the input of every LFSR 
cell, a 2:1 multiplexer selects either the logic value generated 
by the characteristic polynomial (Normal mode) or the value 
generated by the State Skip circuit (State Skip mode). As-
suming that the initial state of the LFSR is (c0, c1, c2, c3) = 
1011, the logic values generated at the outputs of the phase 
shifter are shown in the upper right part of Fig. 2, for opera-
tion either in Normal mode (all logic values inside the grey 
horizontal bars) or in State Skip mode (boldfaced and high-
lighted by the vertical bars). As we can see, in State Skip 
mode, only half of the logic values are generated and thus 
the test sequence is reduced by a factor 2 (= k).  ■ 
 

3.2. Test Sequence Reduction Method 
By using State Skip LFSRs we can minimize the length 

of the test sequence generated when each LFSR seed is ex-
panded into a window of L vectors. At first, every window is 
partitioned into L/S segments of S vectors (S is a designer-
defined parameter in the range [1, L]). Every segment is la-
beled either as useful, if it embeds at least one test cube, or 
as useless, if it does not embed any test cubes. Useful seg-
ments are generated using Normal mode, whereas useless 
segments are shortened by a factor k using State Skip mode.  

Many test cubes consist of a small number of specified 
bits and thus they are fortuitously embedded in more than 
one segment. We exploit this property in order to minimize 
the number of useful segments and consequently the test 
sequence length. Specifically, we partition the test cubes into 
two sets, A and B. Set A consists of the test cubes that are 
embedded in only one segment of all windows, whereas set 
B consists of the test cubes that are embedded in more than 
one segments. All segments embedding test cubes of set A 
are selected and labeled as useful. All test cubes of set B 
embedded in those segments are removed from set B. For 
the remaining test cubes in set B, we apply the following 
greedy useful-segment-selection procedure: 
a. Select the segment embedding most of the remaining test 

cubes. If more than one such segment exists, select the 
one that is closest to the beginning of the window.  

b. Drop the test cubes embedded in the selected segment. 
c. If there are any remaining test cubes go to step a. 

After useful-segment selection, the seeds are grouped ac-
cording to the number of useful segments that their windows 
contain, and the groups are sorted in ascending order: group 1 
contains all seeds with 1 useful segment, group 2 contains all 
seeds with 2 useful segments and so on. This grouping enable 
us to terminate the generation of the vector-window of each 
seed right after the generation of the last useful segment, 
shortening in this way the test sequences even more.  

The efficiency of the described test-sequence-reduction 
process strongly depends on the segment size (S). As it will 
be shown in Section 4, small segments lead to higher test-
sequence-length reductions compared to large segments, but 
impose a little higher hardware overhead than the large ones.  



St
at

e 
Sk

ip
LF

SR
 a

nd
Ph

as
e 

Sh
ift

er

Scan Chains

Bit
Counter

Vector
Counter

Segment
Counter

Seed
Counter

Group
Counter

Useful
Segment
Counter Mode

Select

Mode

Scan Enable

Decoder

 
Fig. 3. Proposed Decompression Architecture 

3.3. Decompression Architecture 
The proposed decompression architecture is shown in Fig. 

3. The Bit and Vector Counters control the loading of the 
test vectors in the scan chains, while the Segment and Useful 
Segment Counters count respectively the total number of 
segments and the number of useful segments generated for 
each seed. Seed Counter counts the seeds of every seed-
group, and Group Counter counts the seed-groups. Every 
time a new seed is loaded in the LFSR, Useful Segment 
Counter is also loaded with Group Counter's value, which is 
equal to the number of useful segments of every seed be-
longing in a seed-group. Then, after the generation of a use-
ful segment, Useful Segment Counter decreases by one and 
when it reaches 0, Seed Counter increases and the next seed 
is loaded in the LFSR. When all seeds of a group have been 
generated, Group Counter increases by one in order to con-
tinue with the next group. 

The Mode Select unit is a combinational circuit that de-
termines if the next segment is a useful one or not. It receives 
the decoded outputs of the Segment, Seed and Group counters 
and generates the Mode signal that is driven to the State Skip 
LFSR (the decoding of the outputs of the aforementioned 
counters leads to significantly smaller Mode Select units 
when testing multiple cores of a SoC). Mode signal is equal to 
1 only if the segment is a useful one. The overhead of this 
combinational circuit depends mainly on the total number of 
useful segments which are only a very small portion of the 
total segments. Moreover, according to the seed-selection 
process, the first segment of every seed is always a useful one, 
since the first vector generated by each seed embeds at least 
one test cube (see section 2). Consequently, the first segment 
of each seed needs minimum decoding logic and therefore the 
implementation overhead of Mode Select unit is significantly 
reduced. Additionally, in a multi-core environment, only the 
Mode Select unit has to be re-implemented for every core, 
whereas the rest of the units are common for all cores. 

 

4. Evaluation and Comparisons 
The proposed method was implemented in C program-

ming language and experiments were conducted on a Pen-
tium PC for the largest ISCAS 89 benchmark circuits, as-
suming 32 scan chains for each one of them. We used un-
compacted test sets for stuck-at  faults  (offering  100%  non- 

60%

65%

70%

75%

80%

85%

90%

95%

100%

3 6 9 12 15 18 21 24
Speedup Factor k

TS
L 

Im
pr

ov
em

en
t (

%
) S=4

S=10
S=12
S=20
L=50
L=100
L=300
L=500

 
Fig. 4. TSL Impr. for Various Values of k, S and L 

redundant fault coverage) generated by Atalanta [20]. The 
run-time of the proposed method is only a few minutes. 

Initially, we study the influence of speedup factor k, seg-
ment size S and window size L on the test sequence length 
(TSL) improvement achieved by the proposed method. The 
TSL improvement is calculated by the following formula: 

of prop.methodImprovement (%) 1 100
of orig.window-based method

TSLTSL
TSL

⎛ ⎞
= − ⋅⎜ ⎟

⎝ ⎠
 (2)  

Due to the high volume of the experiments, we focus on 
s13207 (the rest circuits exhibit similar behavior). In the 
sequel, the test sequence length is reported as the number of 
test vectors applied to the CUT and the test data volume as 
the number of bits stored in the tester. 

The first set of experiments (the bars in Fig. 4) demon-
strates the influence of speedup factor k on the TSL im-
provement for various segment sizes (S). We present results 
for 3≤k≤24, and S = 4, 10, 12 and 20, assuming windows of 
L=300 vectors. It is obvious that the TSL improvement is 
significant (from 69-78% for k=3, to 80-93% for k=24) for all 
segment sizes. The improvement increases when speedup 
factor k increases and/or segment size S decreases. When k 
increases, the number of cycles required for the generation of 
useless segments reduces, and thus TSL reduces too. When S 
decreases, the segmentation becomes finer, i.e. the total size 
of useful segments decreases while the total size of useless 
segments increases (their sum though remains constant). This 
is explained by the fact that each useful segment may also 
contain some useless pseudorandom vectors, the number of 
which depends on size S. By decreasing S, fewer useless vec-
tors remain in the useful segments, and since a useless seg-
ment is generated faster than a useful one (its major portion is 
skipped), the overall test sequence length decreases.  

We next study the influence of speedup factor k on the 
TSL improvement for various window sizes (L). The curves 
in Fig. 4 present the TSL improvement for 3 ≤ k ≤ 24 and 
L=50, 100, 300 and 500 (S was equal to 5 in all experiments). 
We observe that as L increases, the TSL improvement in-
creases too. This is explained by the fact that large windows 
contain more useless segments than the small ones, and the 
length of useless segments is drastically shortened by the 
proposed technique.  

In Table 2 we present the test sequence length reduction 
achieved by the proposed method for L=50, 200, 500, S=2, 5, 
10, and 5≤k≤24 (the best results for the various values of S, k 
are reported). Columns labeled "Orig." present the test sequence 



Table 4. TSL and TDV Results of LFSR-Reseeding-based Methods for IP Cores with Multiple Scan Chains 
 [1]  [17] [21] [34]  [23] [29] [18] [30] Classical LFSR  

Reseeding L=1 Prop. L=200

Circuit TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV 
s9234 170 15092 205 12445 10302 - 159 30144 - - - 161 17198 243 10692 1784 7128 

s13207 229 12798 266 11859 10484 10810 236 20988 74423 266 14307 242 26004 369 8856 1756 3816 
s15850 244 15480 269 12663 11411 12405 126 25140 26021 226 15067 306 32226 298 11622 1740 6669 
s38417 376 37020 376 36430 32152 32154 99 85225 45003 376 49001 854 89132 685 58225 13113 48110
s38584 296 31574 296 30355 31152 31000 136 57120 73464 296 28994 599 63232 405 22680 6639 7056 

 

Table 2. Test Sequence Length Improvements 
 L=50 L=200 L=500 

Circuit Orig. Prop.  Impr. Orig. Prop. Impr. Orig. Prop. Impr.
s9234 9100 1082 88% 32400 1784 94% 76000 3055 96%

s13207 11100 1309 88% 31800 1756 94% 56000 2701 95%
s15850 9500 1129 88% 34200 1740 95% 79500 2791 96%
s38417 29800 7626 74% 113200 13113 88% 276500 21865 92%
s38584 9450 3805 60% 25200 6639 74% 46000 9054 80%

 
length (# vectors) of the window-based approach with normal 
LFSRs, whereas the columns with label "Prop." present the 
test sequence length of the window-based approach with State 
Skip LFSRs. Columns labeled "Impr." present the reduction 
percentage for each case. Note that both approaches (the 
original and the proposed one) have the same test data vol-
umes (the TDVs in Table 1). It can be seen that the reduction 
achieved by the proposed method is very high (60%-96%).  

We will now compare the proposed method against the 
most efficient test set embedding and test data compression 
methods, which are suitable for IP cores of unknown struc-
ture with multiple scan chains. No comparisons are provided 
against approaches that need structural information of the 
CUT or require ATPG synergy. Such methods target cores 
of known structure and thus employ fault simulation, and, 
most of the times, specially constrained ATPG processes, 
which reduce significantly and tailor to the encoding method 
the data that need to be compressed. Note that for cores of 
unknown structure neither ATPG nor fault simulation can be 
performed. The TSL improvements  are  calculated  accord-
ing to relation (2), by replacing the "TSL of the orig. win-
dow-based method" with the "TSL of the compared method". 

In Table 3, the TDV-TSL comparisons of the test set em-
bedding approaches of [11] and [22] with the proposed one, 
for L=300, are presented (comparisons against [9] are omitted, 
since [11] reports much shorter test sequences than [9] with 
comparable TDVs). As can be seen from Table 3, the pro-
posed approach exhibits very short test sequences as com-
pared to both [11] and [22]. The approach of [22] has very 
small TDV requirements, but its test sequences are extremely 
long. Moreover, as shown in [11], the hardware overhead 
required for implementing this method is prohibitively large 
(estimated between 1300-9800 gate equivalents for 32 scan 
chains - a gate equivalent corresponds to a 2-input nand gate). 

In Table 4 we compare the proposed approach against 
various test data compression methods which are suitable for 
IP cores with multiple scan chains ([1], [17], [18], [21], [23], 
[29], [30] and [34]), as well as with the classical LFSR re-
seeding approach (L=1).  Note  that  [17],  [21]  and  [34],  as  

Table 3. Comparisons against Test Set Emb. Methods 
 Test Data Volume Test Sequence Length TSL Impr. 

Circuit [11] [22] Prop. [11] [22] Prop. [11] [22] 
s9234 7020 648 6864 24592 135765 2163 91.2% 98.4% 

s13207 3475 162 3336 24724 152596 2072 91.6% 98.6% 
s15850 6520 396 6357 27630 222336 2138 92.3% 99.0% 
s38417 48418 5440 47855 85885 625273 18512 78.4% 97.0% 
s38584 6384 228 6272 29358 383009 7489 74.5% 98.0% 

 
well as [23] and [29] have the same TSLs, and for that reason 
they have been reported under one common column. We can 
see that in all but one case (s38417) the proposed method 
outperforms the other ones in terms of test data volume. The 
reduced performance in the case of s38417 is due to the high 
volume of specified bits in the test set used in our experi-
ments (93123 specified bits). The test sequence length of the 
proposed method is higher than that of the rest methods. 
However, the speedup factor k in the presented experiments 
is relatively small (k≤24), and therefore by increasing k 
much shorter sequences can be achieved. 

Table 4 demonstrates the two options for testing IP cores 
of unknown structure: test data compression (many data, 
small test sequences) and test set embedding (few data, 
greater test sequences). Until now, the test sequences of the 
latter category of techniques were prohibitively long. State 
Skip LFSRs bridge this gap by offering the well-known high 
compression efficiency of test set embedding with very 
small test sequences. Taking also into account the high vol-
ume of scan chains (a few, fast, internal-clock cycles are 
required for loading each vector) and the fact that, compared 
to test data compression, significantly fewer data need to be 
transferred through the slow ATE-SoC connections in test 
set embedding, we conclude that the actual test application 
time of State-Skip-LFSR-based test set embedding, renders 
the latter a very attractive testing approach.  

Finally, we present hardware overhead results of the pro-
posed method. We will again focus on s13207 (the results 
for the rest circuits are similar, since apart from the LFSR 
and the Mode Select unit, the hardware overhead of the rest 
decompressor does not depend on the test set). The overhead 
of the State Skip circuit is very low for the speedup factors 
of interest (k≤24). For example, in the case of s13207, as k 
increases from 12 to 32, the overhead of the State Skip cir-
cuit increases from 52 to 119 gate equivalents. For the same 
circuit and for various values of L and S, the average total 
overhead of the rest of the decompressor (LFSR, phase 
shifter, counters, control and decoding logic), excluding the 
Mode Select unit, was around 320 gate equivalents. This 



overhead is very small and similar to that of most test data 
compression and test set embedding techniques in the litera-
ture. Moreover, the aforementioned decompressor units, as 
well as the State Skip circuit have to be implemented only 
once in a SoC and reused for all cores. On the other hand, 
the hardware overhead of the Mode Select unit, which has to 
be implemented for every core separately, was between 44 
and 262 gate equivalents, for 50 ≤ L ≤ 500 and 2 ≤ S ≤ 50. 

In order to assess the overall cost of the proposed scheme, 
we synthesized the decompressor of a hypothetical multi-core 
SoC comprising all five examined ISCAS'89 circuits. For 
each circuit we set L=200, S=10 and k=10. The Mode Select 
unit was implemented separately for every core and its over-
head was between 107 and 373 gate equivalents. The rest 
parts were shared among all cores. The overall area of the 
decompressor was only 6.6% of the area occupied by the SoC. 
 
5. Conclusions 

A new type of LFSR which drastically shortens the test se-
quence of LFSR-reseeding-based test set embedding methods 
was introduced. State Skip LFSRs incorporate a small linear 
circuit, which calculates at each clock cycle the LFSR state k 
cycles after the current state, shortening in this way the use-
less parts of the test sequence by a factor k. State Skip LFSRs 
bridge the gap between test data compression and test set em-
bedding by offering the high compression efficiency of test 
set embedding with test sequences reduced to such an amount 
(up to 96%) that approach the length of the sequences of test 
data compression methods. In this way, test set embedding 
becomes an attractive approach for testing IP cores. 

 
References 
[1] K. Balakrishnan et al,"PIDISC:Pattern Independent Design In-
dependent Seed Compression Technique",VLSID 2006, pp.811-817. 
[2] C. Barnhart et al., "OPMISR: the foundation for compressed 
ATPG vectors", in Proc. ITC, 2001, pp. 748 – 757. 
[3] I. Bayraktaroglu, A. Orailoglu "Concurrent application of com-
paction and compression for test time and data volume reduction in 
scan designs" IEEE Trans. Comp, vol 52, pp.1480-1489, Nov 2003 
[4] A. Chandra, and K. Chakrabarty, "Test data compression and 
test resource partitioning for system-on-a-chip using frequency-
directed run-length (FDR) codes", IEEE Trans. on Comp., vol. 52, 
pp. 1076 – 1088, Aug. 2003. 
[5] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, "Variable-
length input Huffman coding for system-on-a-chip test", IEEE 
Trans. on CAD, vol. 22, pp. 783 – 796, June 2003. 
[6] S. Hellebrand et al., "Built-in test for circuits with scan based on 
reseeding of multiple-polynomial linear feedback shift registers", 
IEEE Trans. on Comp., vol. 44, pp.223–233, Feb. 1995. 
[7] A. Jas, J. Ghosh-Dastidar, M. Ng., and N. Touba, "An efficient 
test vector compression scheme using selective Huffman coding", 
IEEE Trans. on CAD, vol. 22, pp. 797-806, June 2003. 
[8] D. Kagaris, and S. Tragoudas, "On the design of optimal 
counter based schemes for test set embedding", IEEE Trans. on 
CAD, pp. 219-230, Feb. 1999. 
[9] E. Kalligeros et al., "Efficient Multiphase Test Set Embedding 
for Scan-based Testing", in Proc. ISQED, 2006, pp. 433-438. 
[10] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase 
BIST: a new reseeding technique for high test-data compression”, 

IEEE Trans. on CAD, vol. 23, pp. 1429-1446, Oct. 2004. 
[11] D. Kaseridis et al., "An efficient test set embedding scheme 
with reduced test data storage and test sequence length requirements 
for scan-based testing", Inf. Pap. Dig. IEEE ETS, 2005, pp. 147-150. 
[12] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel 
Huffman coding: an efficient test-data compression method for IP 
cores”, IEEE Trans. on CAD, vol. 26, pp. 1070-1083, June 2007. 
[13] X. Kavousianos, E. Kalligeros, D. Nikolos,  “Optimal Selec-
tive Huffman Coding for Test-Data Compression”, IEEE Trans. on 
Computers, Vol. 56, No 8, Aug. 2007, pp. 1146-1152. 
[14] B. Koenemann, "LFSR-coded Test Patterns for Scan Design", 
in Proc ETC, 1991, pp. 237-242. 
[15] B. Koenemann, et al., "A SmartBIST variant with guaranteed 
encoding", in Proc. ATS, 2001, pp. 325-330. 
[16] C. Krishna, A. Jas, and N. Touba, "Test Vector Encoding Us-
ing Partial LFSR Reseeding", in Proc. ITC, 2001, pp. 885-893. 
[17] C. Krishna, N. Touba, "Reducing test data volume using LFSR 
reseeding with seed compression", ITC, 2002, pp. 321-330. 
[18] C. Krishna, N. Touba, "Adjustable width linear combinational 
scan vector decompression", Proc. ICCAD, 2003, pp. 863- 866. 
[19] C. Krishna, N. Touba, "3-Stage variable length continuous-
flow scan vector decompression scheme", VTS, 2004, pp. 79- 86. 
[20] H. K. Lee, and D. S. Ha, "Atalanta: An Efficient ATPG for 
Combinational Circuits", TR, 93-12, Dep't of Electrical Eng., Vir-
ginia Polytechnic Institute and State University, 1993. 
[21] J. Lee, and N. Touba, "Low Power Test Data Compression 
Based on LFSR Reseeding", in Proc. ICCD, 2004, pp. 180-185. 
[22] L. Li, and K. Chakrabarty, "Test set embedding for determinis-
tic BIST using A reconfigurable interconnection network", IEEE 
Trans. on CAD, vol.23, pp.  1289-1305, Sept. 2004. 
[23] L. Li et al., "Efficient space/time compression to reduce test 
data volume and testing time for IP cores", in Proc. 18th Int. Conf. 
on VLSI Des., 2005, pp. 53-58. 
[24] H. Liang et al., "Two-Dimensional Test Data Compression for 
Scan-Based Deterministic BIST", ITC 2001, pp. 894-902. 
[25] S. Mitra, K. Kim, "XPAND: An Efficient Test Stimulus Compres-
sion Technique", IEEE Trans. on Comp., vol. 55, pp. 163-173, Feb. 2006. 
[26] M. Nourani, M. Tehranipour, "RL-Huffman encoding for test 
compression and power reduction in scan applications", ACM 
Trans. on Des. Aut. of Electr. Syst., vol. 10, pp. 91–115, Jan. 2005. 
[27] J. Rajski et al., "Embedded deterministic test", IEEE Trans. on 
CAD, vol. 23, pp. 776-792, May 2004. 
[28] W. Rao et al., "Test Application Time and Volume Compres-
sion through Seed Overlapping", in Proc. DAC, 2003, pp. 732-737. 
[29] S. Reda, and A. Orailoglu, "Reducing Test Application Time 
Through Test Data Mutation Encoding", DATE, 2002, pp. 1-5. 
[30] L. Schäfer, R. Dorsch, and H.-J. Wunderlich, "RESPIN++ – 
Deterministic Embedded Test", Proc. ETW, 2002, pp. 37-44. 
[31] S. Swaminathan, and K. Chakrabarty, "On using twisted-ring 
counters for test set embedding in BIST", JETTA, vol. 17, no. 6, 
Dec. 2001, pp.529-542. 
[32] M. Tehranipour, M. Nourani, and K. Chakrabarty, "Nine-
coded compression technique for testing embedded cores in SoCs", 
IEEE Trans. on VLSI Syst., vol. 13, pp. 719-731, June 2005. 
[33] E. Volkerink, and S. Mitra, "Efficient Seed Utilization for 
Reseeding based Compression", Proc. VTS, 2003, pp. 232-237. 
[34] S. Ward et al., "Using Statistical Transformations to Improve 
Compression for Linear Decompressors", DFT, 2005, pp. 42-50. 
[35] P. Wohl, et al.,"Efficient Compression of Deterministic Pat-
terns into Multiple PRPG Seeds", Proc. ITC, 2005, pp. 1-10. 
[36] P. Wohl et al,"X-tolerant Compression and Application of Scan 
ATPG Patterns in a BIST Archirtecture", ITC, 2003, pp 727-736. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


