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Abstract—Selective Huffman coding has recently been proposed for efficient test-

data compression with low hardware overhead. In this paper, we show that the

already proposed encoding scheme is not optimal and we present a new one,

proving that it is optimal. Moreover, we compare the two encodings theoretically

and we derive a set of conditions which show that, in practical cases, the proposed

encoding always offers better compression. In terms of hardware overhead, the

new scheme is at least as low-demanding as the old one. The increased

compression efficiency, the resulting test-time savings, and the low hardware

overhead of the proposed method are also verified experimentally.

Index Terms—Embedded testing techniques, IP cores, selective Huffman coding,

test-data compression.
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1 INTRODUCTION

CORE-BASED design, i.e., the use of predesigned and preverified
modules (cores) in modern Systems-on-a-Chip (SoCs), has become
the dominant design strategy in the industry since it ensures the
economic viability of electronic products. Although the utilization
of cores shortens the design time of SoCs, the increased complexity
of the latter introduces new challenges in the testing process.
During testing, a large amount of data should be stored on the
tester (Automatic Test Equipment—ATE), and then transferred at
high rates deep into the chip. However, the limited channel
capacity, memory, and speed of ATEs, as well as the reduced
accessibility of some of the inner nodes of dense SoCs, make test-
ing the bottleneck of the production cycle and, thus, the benefits
from shortening the SoCs’ design time are compromised.

For easing the burden of testing on ATEs and for providing the
required accessibility to cores deeply embedded in a SoC, the ATE
capabilities are combined with on-chip integrated test structures in
an embedded testing framework. The test set of each core of an
SoC is stored in the ATE’s memory in a compressed form and,
during testing, it is downloaded into the chip, where it is
decompressed and applied to the core. For cores of known
structure, Automatic Test Pattern Generation (ATPG) and fault
simulation are utilized in order to minimize the data stored on
ATE, as in SmartBIST [11], Embedded Deterministic Test [15], and
DBIST [19]. However, this is not possible for Intellectual Property
(IP) cores of unknown structure, the test sets of which are provided
precomputed by the core vendor. In such cases, direct test set
encoding is performed most of the time since it combines

minimum test application time with high compression ratios.
Various compression methods have been proposed toward this
direction which use, among others, Golomb codes [1], alternating
run-length codes [2], FDR codes [3], [13], statistical codes [4], [7],
[8], [9], [10], a nine-coded technique [17], selective encoding of scan
slices [18], and combinations of codes [12], [14], [16]. Due to their
high efficiency, statistical codes have received increased attention
and have been widely used in test data compression techniques.
Their efficiency is justified by the inherent correlation of the test
vectors belonging in the cores’ test sets and by the existence of
unknown (“x”) values within them. Huffman is the most effective
statistical code because it provably provides the shortest average
codeword length among all uniquely decodable variable length
codes [6]. The main problem of Huffman coding is the high
hardware overhead of the required decompressors. To alleviate
this problem, Selective Huffman coding was proposed in [8] which
significantly reduces the decoder size by slightly sacrificing the
compression ratio. Selective Huffman is a very attractive approach
whose low hardware overhead allows the exploitation of the
compression advantages of Huffman coding in the embedded
testing framework.

In this paper, we show that the Selective Huffman approach of
[8] is not optimal and we propose a new one which maximizes the
compression ratio with similar or often smaller decompressor
hardware overhead. We theoretically prove that the proposed
Selective Huffman coding is optimal and we investigate under
which conditions it provides better compression than that of [8]
(otherwise, the achieved compression ratios are equal). Our
analysis shows that, in practical cases, the proposed approach
performs better than that of [8], a fact that is also verified
experimentally.

The rest of the paper is organized as follows: Section 2 reviews
the Selective Huffman encoding of [8], while Section 3 describes
the proposed one and theoretically proves its optimality. A
thorough theoretical analysis-comparison of the proposed
approach and that of [8] is also provided. In Section 4, the
effectiveness of the new encoding is evaluated with experimental
results and comparisons, while Section 5 concludes the paper.

2 SELECTIVE HUFFMAN ENCODING REVIEW

Statistical codes belong in the category of fixed-to-variable codes
since they represent data blocks of fixed length using variable
length codewords. Compression is achieved by encoding the most
frequently occurring blocks with short codewords and the less
frequently occurring ones with long codewords. Therefore, the
efficiency of a statistical code depends on the frequency of
occurrence of all distinct fixed-length blocks in a set of data. As
mentioned above, Huffman is the statistical code that provably
provides the shortest average codeword length (it is closer than
that of any other statistical code to the theoretical entropy bound)
and, thus, offers the best compression. Moreover, Huffman code is
prefix-free (i.e., no codeword is the prefix of another one) and,
therefore, its decoding process is simple and easy to implement.

Let T be the test set of an IP core. If we partition the test vectors
of T into jT j=l data blocks of length l (jT j is the test set’s size in
bits), we get k distinct blocks, b1; b2; . . . ; bk, with frequencies
(probabilities) of occurrence p1 � p2 � . . . � pk, respectively. For
example, if we partition T into 4-bit blocks (l ¼ 4), then all possible
distinct blocks will be 2l ¼ 24 ¼ 16 (0000; 0001; . . . ; 1111). Each of
the jT j=l data blocks is equal to one of the distinct blocks. However,
after T ’s partitioning, some of the 2l distinct blocks may not appear
(e.g., no data block is equal to distinct block 1011) and, as a result,
k � 2l. Hereafter, we will refer to blocks b1; b2; . . . ; bk with the term

1146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 8, AUGUST 2007

. X. Kavousianos is with the Computer Science Department, University of
Ioannina, 45110 Ioannina, Greece. E-mail: kabousia@cs.uoi.gr.

. E. Kalligeros is with the Computer Science Department, University of
Ioannina, 45110 Ioannina, Greece, and with the Computer Science and
Technology Department, University of Peloponnese, Terma Karaiskaki,
22100 Tripoli, Greece. E-mail: kalliger@ceid.upatras.gr.

. D. Nikolos is with the Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece. E-mail: nikolosd@cti.gr.

Manuscript received 6 Sept. 2006; revised 19 Jan. 2007; accepted 21 Mar.
2007; published online 20 Apr. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0384-0906.
Digital Object Identifier no. 10.1109/TC.2007.1057.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:10 from IEEE Xplore.  Restrictions apply. 



distinct blocks in order to explicitly distinguish them from the
jT j=l data blocks that result from the partitioning of test set T .

In order to generate a Huffman code, a binary tree is
constructed, beginning with the leaves and moving toward the
root. For every distinct block bi, a leaf node is generated, and a
weight equal to pi is assigned to it (pi is the occurrence frequency of
block bi). The pair of nodes with the smallest weights is selected
first and a parent node is generated with weight equal to the sum
of the weights of these two nodes. This step is repeated iteratively
until only a single node is left unselected, the root (we note that
each node can be selected only once). Then, starting from the root,
all nodes are visited once and the logic “0” (“1”) value is assigned
to each left (right)-child edge. The codeword of distinct block bi is
the sequence of the logic values of the edges belonging to the path
from the root to the leaf node corresponding to bi.

As already mentioned, the major problem that prevents us from
using Huffman coding for embedded testing is the large hardware
overhead of the required decompressors. Specifically, a linear
increase in the block size l causes an exponential increase in the
distinct-block volume k and, consequently, in the number of
codewords that should be decoded. For that reason, the approach
of [8] encodes only a few of the distinct blocks. Specifically, among
the k distinct blocks b1; b2; . . . ; bk of the test set, only the m most
frequently occurring ones, b1; b2; . . . ; bm (m < k), are Huffman
encoded, while the rest, bmþ1; . . . ; bk, remain unencoded (i.e., the
compressed test set contains some unencoded data blocks). For
distinguishing between a codeword and an unencoded data block
in the compressed test set, an extra bit is used before either of them
(each unencoded data block is preceded by the “0” bit, while each
codeword is preceded by the “1” bit). This way, a new prefix-free
code, called Selective Huffman, is generated.

Example 1. Consider the test set shown in column 1 of Table 1,
which consists of five test vectors of length 16 (80 bits overall).
By partitioning the test vectors into 4-bit blocks, we get
20 occurrences of five distinct blocks (k ¼ 5) shown in Column 2.
Column 3 presents the occurrence frequency of each distinct
block. Suppose that the test set is compressed by using Selective
Huffman coding with m ¼ 3 encoded distinct blocks. Then, the
first three distinct blocks, namely 1010, 0000, and 1111, are
encoded as shown in Fig. 1, while blocks 0001 and 0010 remain
unencoded. During the construction of the compressed test set,
an extra bit (shown underlined in Fig. 1) is appended before
either each codeword (the “1” bit) or each unencoded data
block (the “0” bit). The compressed data volume is equal to
57 bits (compression ratio = 28.8%).

Usually, test sets include many unspecified (“x”) values which
are exploited in order to maximize the compression ratio. In [8],
two procedures have been proposed which replace these
“x” values with 0s or 1s in order to maximize the skewing of the
occurrence frequencies of the distinct blocks that will be encoded.
The great number of “x” values even in compacted test sets, as well
as the inherent correlation of test vectors, guarantee the high
efficiency of Selective Huffman coding since, even if a few distinct

blocks are selected for encoding, they will be compatible with the
vast majority of the data blocks (and, thus, these data blocks will be
compressed).

3 PROPOSED SELECTIVE HUFFMAN ENCODING

The inefficiency of the Selective Huffman encoding of [8] stems
from the fact that the required extra bit equally lengthens all data
in the compressed test set (encoded or not), irrespective of their
occurrence frequency. This constant overhead, although minimum
for the unencoded data blocks, can be relatively high for the most
frequently occurring codewords. A better approach would be to
use an additional Huffman codeword in front of only the
unencoded data blocks, relieving in this way the most frequently
occurring codewords from the extra-bit overhead. Thus, the gain
from shortening the codewords that appear very often in the
compressed test set will overbalance the loss from using a whole
codeword, instead of a single bit, in front of the unencoded data
blocks (the unencoded data blocks are usually a small fraction of
the compressed test set). Specifically, according to the proposed
Selective Huffman approach, mþ 1 Huffman codewords are used,
m for encoding the m most frequently occurring distinct blocks
and 1 for indicating the unencoded blocks. The occurrence
frequency of the latter codeword is equal to the sum of the
occurrence frequencies of all the unencoded distinct blocks.

Example 2. Consider the test set of Table 1 and that m ¼ 3, that is,
0001 and 0010 are, as in Example 1, the unencoded blocks. The
sum of the occurrence frequencies of 0001 and 0010 is equal to
2/20 + 1/20 = 3/20. The proposed Selective Huffman encoding
as well as the compressed test set are given in Fig. 2. We
observe that now, for encoding distinct blocks 1010 and 0000,
only 1 and 2 bits are, respectively, required (instead of 2 and 3
in Example 1), while the cost for distinct block 1111 remains
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TABLE 1
Test Data Partitioning and Occurrence Frequencies

Fig. 1. The Huffman tree of Example 1 and Selective Huffman encoding according

to [8].

Fig. 2. Proposed Selective Huffman encoding.
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constant (3 bits). Only before the unencoded data blocks, a 3-bit

codeword, instead of a single bit, is utilized. The compression

ratio in this case is equal to 38.8 percent, which is significantly

higher than that of Example 1.

Note that both approaches encode the same distinct blocks, i.e.,

the same part of the original test set, since the additional Huffman

codeword of the proposed method is not used for distinct-block

encoding but plays the same role as the extra “0” bit in the

approach of [8] (it indicates the unencoded blocks). Equivalently,

the extra “0” bit of the method of [8] can be regarded as the

codeword that precedes the unencoded data blocks.
Example 2 also serves as a counterexample that proves the

nonoptimality of the Selective Huffman approach of [8]. Since, for

the presented case, the proposed encoding offers better compres-

sion (for the same number of encoded distinct blocks), then the

code of [8] is not an optimal Selective Huffman code.
Let T be the test set of an IP core and assume that p1; p2; . . . ; pm

are the occurrence frequencies of the m distinct blocks b1; b2; . . . ; bm
that will be encoded and that pu ¼ pmþ1 þ pmþ2 þ . . .þ pk is the

sum of the occurrence frequencies of all the k-m unencoded

distinct blocks bmþ1; bmþ2; . . . ; bk (p1 � p2 � . . . � pk).
Theorem 1. The proposed Selective Huffman encoding is optimal.

Proof. The average block length of the proposed encoding, which

is the average length of the codewords and the unencoded data

blocks in the compressed test set, is given by the relation

wpr ¼ l1 � p1 þ l2 � p2 þ . . .þ lm � pm þ ðlu þ lbÞ � pu

or, equivalently,

wpr ¼ ½l1 � p1 þ l2 � p2 þ . . .þ lm � pm þ lu � pu� þ lb � pu; ð1Þ

where li, i 2 ½1; m�, is the length of the codeword of each

encoded distinct block bi (i 2 ½1;m�), lu is the length of the

codeword corresponding to the unencoded data blocks, and lb
is the length of each unencoded data block. We note that all

codewords of the proposed encoding are Huffman codewords.
Assume now that, for the same test set T , there is another

Selective Huffman code, which encodes the same distinct
blocks bi, i 2 ½1; m�, and leads to smaller average block length w
than that of the proposed one. That is,

w ¼ l01 � p1 þ l02 � p2 þ . . .þ l0m � pm þ ðl0u þ lbÞ � pu

or, equivalently,

w ¼ ½l01 � p1 þ l02 � p2 þ . . .þ l0m � pm þ l0u � pu� þ lb � pu ð2Þ

with w < wpr. We observe that the term lb � pu is common in

relations (1) and (2) and that the term in the brackets in (1) gives

the average length of mþ 1 Huffman codewords with

occurrence frequencies p1; p2; . . . ; pm and pu, while the term in

the brackets in (2) gives the average length of the mþ 1

codewords of a uniquely decodable variable length code with

the same occurrence frequencies as in (1). Then, the assumption

that w < wpr leads to the erroneous conclusion that a uniquely

decodable variable length code exists, which provides shorter

average codeword length than that of a Huffman code.

Therefore, wpr � w, which means that the proposed Selective

Huffman encoding is optimal. tu

Corollary 1. Assuming that wJ is the average block length of the

encoding proposed in [8], then wpr � wJ .

We will now investigate under which conditions the proposed

encoding performs better than that of [8] (i.e., when wpr < wJ ). The

code proposed in [8] is equivalent to the one of the Huffman-like tree

shown in Fig. 3 (Q-tree). This tree is constructed as follows: The

root’s left child (Nu) is the node corresponding to all unencoded

distinct blocks, while the root’s right child is the Huffman tree

generated for encoding the m most frequently occurring distinct

blocks. Hence, as explained above, the “0” bit is the codeword

preceding every unencoded data block (Nu), while every distinct-

block codeword is preceded by the “1” bit (subtree S).
Let NA;NB be the children of node Ns (root of subtree S in

Fig. 3), with weights pA; pB. Note that

pA þ pB ¼ 1� pu ¼ p1 þ p2 þ . . .þ pm:

The assumption that NS has two children is reasonable since,

nearly always, at least two distinct blocks are encoded (if only one

distinct block was encoded, a case that is rather impractical, the

two examined coding schemes would be equivalent).

Lemma 1. The proposed encoding and that of [8] are equivalent if and

only if pu � pA and pu � pB. In any other case, the proposed encoding

is more efficient than that of [8].

Proof. If pu � pA and pu � pB, then, for constructing a Huffman

tree, among nodes NA, NB, and Nu, nodes NA and NB would be

selected as children of node Ns since they have the smallest

weights. Therefore, in this case, the Q tree of Fig. 3 is a Huffman

tree and, thus, the two encodings are equivalent.
When at least one of the inequalities pu � pA and pu � pB is

not valid, we have that pu < pA and/or pu < pB. In order to
prove that the proposed encoding is more efficient than that of
[8], it suffices to prove that, if pu < pA or pu < pB, the Q tree of
Fig. 3 is not a Huffman tree. Assume that pu < pA. Then, among
the pairs of nodes ðNA;NuÞ, ðNA;NBÞ, and ðNB;NuÞ, pair
ðNA;NBÞ does not have the smallest sum of weights since
pu þ pB < pA þ pB. Hence, either node-pair ðNA;NuÞ or ðNB;NuÞ
has the smallest sum of weights and, therefore, in a Huffman
tree, node Nu would not be a child of the root, but it would
belong to the S subtree. Consequently, the Q tree is not a
Huffman tree. For pu < pB the proof is similar. tu

The above lemma will help us determine the range of pu values

for which the proposed encoding is more efficient than that of [8].

Theorem 2. If pu � 1=2, then the proposed encoding and that of [8] are

equivalent.

Proof. We have that pA þ pB þ pu ¼ 1 or, equivalently,

pu ¼ 1� pA � pB. Taking into account that pu � 1=2, we

get pA þ pB � 1=2. Therefore, pA � 1=2 and pB � 1=2 and,
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consequently, pu � pA and pu � pB. Then, according to Lem-
ma 1, the two encodings are equivalent. tu

Theorem 3. If pu 2 ½0; 1=3Þ, then the proposed encoding is more efficient

than that of [8].

Proof. Since pu ¼ 1� pA � pB and pu < 1=3, then pA þ pB > 2=3.
Therefore, at least one of the inequalities pA � 1=3 and pB � 1=3

is true and, consequently, pu < pA or pu < pB. Then, according
to Lemma 1, the proposed encoding is more efficient than that

of [8]. tu

It remains to examine the case that pu 2 ½1=3; 1=2Þ. Since, as

already mentioned, at least two distinct blocks are encoded, we
have that pA > 0 and pB > 0. Replacing pB with 1� pu � pA in the

latter inequality, we get pA < 1� pu. Hence,

0 < pA < 1� pu: ð3Þ

According to Lemma 1, the proposed encoding and that of [8] are

equivalent when pu � pA and pu � pB. Again, by replacing pB with
1� pu � pA, we get pA � 1� 2pu and, thus,

1� 2pu � pA � pu: ð4Þ

Inequality (4) determines the range of pA values for which the two

compared encodings are equivalent. For that reason we will call this

value range of pA the equivalence range. The wider that range is, the
greater the probability is that the Q tree is a Huffman tree (since (4) is

satisfied for more values of pA). In the interval of interest, i.e.,

pu 2 ½1=3; 1=2Þ, when pu ! 1=3, the pA equivalence range shrinks
and tends to become equal to ½1=3; 1=3�. Since the Q tree is a Huffman

tree for fewer values of pA, the probability that the two encodings are
equivalent reduces (for pu ¼ 1=3, equivalence exists only if

pA ¼ 1=3). On the other hand, when pu ! 1=2, the pA equivalence

range expands and tends to become equal to ð0; 1=2Þ.1 Note that the
range of pA values according to (3) is ð0; 1� puÞ and, as pu ! 1=2,

this range tends to ð0; 1=2Þ. Since the pA equivalence range tends to

become equal to the range of pA values as pu ! 1=2, we conclude
that the probability that the two encodings are equivalent

increases.
Concluding the above analysis, we can say that, for pu � 1=2,

the proposed encoding is equivalent to that of [8], for

1=3 � pu < 1=2, the probability that the proposed encoding is
better than that of [8] increases as pu gets closer to 1/3, while, for

pu < 1=3, the proposed encoding is always more efficient. How-

ever, in practical cases, pu is relatively small since, due to the
inherent test vectors’ correlation and the existence of many

“x” values within them, the few encoded distinct blocks are
compatible with the majority of the test set’s data blocks (this is

why high compression ratios are achieved). That is, in practice, the

theoretical pu’s upper bound of 1/3, under which the proposed

encoding is always better than that of [8], is high enough to ensure
the superiority of the proposed approach (this is also verified
experimentally in the following section).

4 EVALUATION AND COMPARISONS

The effectiveness of Selective Huffman coding has been verified
with thorough experimental results and comparisons in [8]. Here,
for demonstrating the advantages of the proposed encoding over
that of [8], we implemented them both in C programming
language and we conducted experiments on a Pentium PC for
the largest ISCAS ’89 benchmarks circuits. For the examined
circuits, we assumed full scan with a single scan chain, while, as
input, we used the dynamically compacted test sets generated by
Mintest [5] for stuck-at faults.

We will first discuss the relation between pu and compression
ratio, for the two compared approaches

½Compression ratio ð%Þ ¼
ð1� Compression bits=Mintest bitsÞ � 100�:

In Fig. 4a and Fig. 4b, we present, respectively, the values of pu and
the compression ratios for benchmark circuit s38417, for 8, 16, and
32 encoded distinct blocks, and block sizes equal to 8, 12, and
16 bits (note that pu is the same for the two compared methods and,
thus, Fig. 4a refers to both of them). pu depends on the number of
distinct blocks that are encoded as well as on the block size.
Specifically, as shown in Fig. 4a, pu reduces as the encoded-
distinct-block volume increases and/or as block size decreases.
From Fig. 4b, we observe that, in general, both approaches yield
better compression as pu reduces. This is an expected behavior
since smaller pu values mean that fewer data blocks of the original
test set remain unencoded. However, very small block sizes lead to
many data blocks after the partitioning of the original test set,
which can negatively affect the compression ratio. This is why, in
four out of six cases of Fig. 4b, the best compression is not achieved
for block size = 8 (although, by setting block size = 8, we get the
smallest pu). Thus, moderate block size values are preferable. We
also observe that, for constant block size, the proposed method
always benefits from greater encoded-distinct-block volumes.
However, this is not true for the approach of [8] (see the
corresponding bars for block size = 8) and, as explained by its
authors, the reason is the extra-bit overhead imposed on all
codewords. On the contrary, the proposed approach, which
eliminates this overhead, can better exploit the advantage of more
encoded distinct blocks. The above described behaviors can also be
verified for the rest of the benchmark circuits in the results
reported in Table 2.

In Table 2, we present the compression ratios achieved by
the approach of [8] (columns 3-12) and by the proposed one
(columns 13-22), for all examined benchmark circuits, using 8,
16, and 32 encoded distinct blocks, and block size equal to 4, 8,
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1. pA cannot become equal to 0 or 1/2 since pu < 1=2.

Fig. 4. (a) Occurrence frequencies of unencoded data blocks (pu) and (b) compression ratios for s38417.
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12, and 16. Note that we do not provide compression ratio

results for block size = 4 when 16 and 32 distinct blocks are

encoded since there are no unencoded data blocks in these cases

(pu ¼ 0). Also, we should mention that block sizes greater than 16

do not improve the compression ratio. We can see that the

proposed approach always provides better compression than that

of [8], except for the case of s9234 for eight encoded distinct blocks

and block size = 16, for which the compression ratios of both

methods are equal. Moreover, for every encoded-distinct-block

volume in Table 2, we mark (in bold) the highest compression ratio

that has been achieved for each benchmark circuit. In most cases,

the best result of the proposed encoding (which is always better

than that of [8]) is obtained with smaller block size (in the rest of

the cases, the best compression is achieved with equal block sizes).

This can be explained as follows: The proposed approach is

favored more than that of [8] by smaller values of pu (i.e., by

smaller block sizes for the case at hand) since, as pu decreases,

more encoded-distinct-block codewords and fewer unencoded

data blocks participate in the compressed test set (recall that the

advantage of the proposed method is that it requires fewer bits

than [8] for encoding the selected distinct blocks). Taking into

account that, for both encodings, there is a minimum block-size

value, below which the compression ratios worsen instead of

improving, it is expected that the increasing gain of the proposed

method over that of [8] as block size decreases would allow it to

keep improving for smaller block size values than the minimum

value of [8] (for the same number of encoded distinct blocks). In

other words, compared to the approach of [8], the proposed one

can ”tolerate” smaller block sizes without a performance drop due

to its smaller average length of the encoded-distinct-block code-

words. This behavior also leads to reduced decompressor hard-

ware overhead, as we will see shortly.

The compression improvements of the proposed encoding over

that of [8], for all the compression cases of Table 2, are shown in

Table 3 and are calculated by the formula:

Compression Improvement ð%Þ ¼

1� Compressed bits of proposed
Compressed bits of ½8�

� �
� 100:

We see that, in most cases, the proposed scheme provides

considerably better compression than that of [8]. As expected,

better improvements are achieved for greater encoded-distinct-

block volumes and/or for smaller block sizes (i.e., for smaller

values of pu). This is illustrated in Fig. 5 for s38417.
In Table 4, we present the comparisons between the experi-

ments with the highest compression ratio of the two approaches,

for each encoded-distinct-block volume. We compare both the

achieved compression ratios and the imposed area overhead and

we report the improvement percentages in the corresponding

columns (“Compr. Impr.” and “Area Impr.,” respectively). As far

as the compression improvements are concerned, we observe that

they are significant. This is justified by Fig. 6, which shows the

distribution of pu for the experiments compared in Table 4. Fig. 6

confirms our assertion that the pu’s upper bound of 1/3 is high

enough to ensure the superiority of the proposed encoding in

practical cases since it is obvious that pu is always below 1/3. Also,

as explained above, increased encoded-distinct-block volumes lead

to smaller pu values and, thus, to greater compression improve-

ments, a trend that is clear in Table 4.
As for the area comparisons, we can see from Table 4 that,

when, for the same encoded-distinct-block volume, the two

compared best-compression results are obtained with the same

block size (the cases in the nonshaded cells), the decompressors of

both schemes occupy nearly the same area (the improvement

ranges from -3.1 percent to +1.8 percent). This is explained by the

fact that the proposed approach does not use more codewords

than [8], but it just modifies the codewords’ length (it shortens

some of the codewords that encode distinct blocks and lengthens
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Fig. 5. Compression improvement for s38417.
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the codeword that precedes the unencoded data blocks). However,

since, in most cases, the highest compression ratio of the proposed

encoding is obtained with smaller block size (shaded cells), the

imposed hardware overhead is smaller than that of [8] (from

+2.9 percent to +17.1 percent).
Fig. 7 illustrates the average test application time (TAT)

improvements of the proposed method over: 1) the case of storing

the uncompressed (Mintest) test sets in the ATE and 2) the

approach of [8], for all of the experiments presented in Table 2 and

for various values of r (r is the ratio of the frequency of an SoC’s

internal clock to the frequency of the ATE clock). TAT improve-

ments are calculated the same way as compression improvements.

In Fig. 7a, we assume that (as previously) each benchmark circuit

has a single scan chain and that one ATE channel is used for
transferring the test data to the SoC. Due to the utilization of a

single ATE channel, the test data transfer time dominates TAT and,

thus, improvements are only marginally affected by r. As a

consequence, the average TAT improvements are close to the

average test-data improvements, which are significant.
In Fig. 7b, we present the average TAT improvements assuming

32 scan chains for every circuit and four ATE channels for

transferring the test data (compression and area comparisons for

circuits with multiple scan chains are similar to those for the

single-scan-chain circuits). Both the proposed method and [8] load

the scan chains in parallel, with one decoded data block in every

clock cycle (i.e., the number of cycles for loading each slice is equal

to: dNumber of scan chains=block sizee ). For being able to do this,

either a separate scan-enable signal should be provided for every

group of block size scan chains or a separate 32-bit register should
be utilized. This register is first loaded with the decoded blocks

and then its data are transferred to the scan chains in parallel. Note

that, when Huffman coding is used, the decoded data blocks are

generated in parallel (e.g., using a lookup table) and, thus, the

parallelism offered by the multiple scan chains can be straightfor-
wardly exploited. As for the uncompressed test set case, the test

data are transferred to the SoC and loaded in the scan chains in
groups of 4 bits, through the four ATE channels. The use of four

ATE channels in the comparisons of Fig. 7b reduces the test data
transfer time significantly, in this way increasing the influence of
the decoding time (and, hence, r) on TAT. When r increases, the

decoding time reduces and, thus, the TAT improvement of the
proposed encoding over the uncompressed test set case gets

higher. On the other hand, the decoding process of [8] is also
performed faster as r increases and, therefore, the average TAT im-

provement over [8] is practically constant.
Summing up, our experimental analysis verifies that, indepen-

dent of what is more critical, area or compression, the proposed
encoding is a better solution compared to [8]. Specifically, in a
highly area-constrained design, the number of encoded distinct

blocks should remain low (the size of the decompressor mainly
depends on the encoded-distinct-block volume). As we have seen,

although pu increases as the number of encoded distinct blocks
drops, it remains smaller than 1/3 even in the case where only

eight distinct blocks are encoded. This guarantees the superiority
of the proposed approach. Further hardware overhead reduction
can be achieved by using smaller block sizes, a strategy that favors

the proposed encoding (since pu reduces). On the other hand, in a
less area-constrained design, higher compression ratios can be

achieved through the utilization of more encoded distinct blocks,
which leads to reduced pu values, again rendering the proposed

encoding the best choice. Finally, the improved compression of the
proposed method results in smaller test application times
compared to [8].

5 CONCLUSION

In this paper, it was shown that the Selective Huffman coding
scheme of [8] is not optimal and an optimal one, with similar or
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TABLE 4
Compression and Area Comparisons (Improvement %) between

Best Experiments of Table 2

Fig. 6. Distribution of pu for the experiments compared in Table 4.

Fig. 7. Average test application time (TAT) improvements.
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often smaller hardware overhead, was presented. A theoretical
analysis was also performed, demonstrating the superiority of the
proposed encoding in practical cases. The improved compression
efficiency, the low hardware overhead, and the reduced test
application time of the proposed approach were verified by
thorough experiments.
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