
A Novel Reseeding Technique for
Accumulator-based Test Pattern Generation

X. Kavousianos

Computer Technology Institute
Patras,
Greece

kabousia@ceid.upatras.gr

D. Bakalis

Dept of Comp. Engineering &
Informatics, University of Patras,

Greece

bakalis@cti.gr

D. Nikolos

Dept of Comp. Engineering &
Informatics, University of Patras,

Greece

nikolosd@cti.gr

ABSTRACT
In this paper we present a novel reseeding technique for

accumulator-based Test Pattern Generation suitable for circuits
with hard-to-detect faults. Storing the seeds is not necessary since
the seeds are generated on-the-fly by inverting the logic value of
some of the bits of the accumulator's register. The proposed
technique achieves complete fault coverage with shorter test
sequences and requires less hardware for its implementation than
the corresponding already-known techniques. Furthermore, our
technique does not affect the system performance since the logic
required for its implementation is not inserted in the critical path.

1. INTRODUCTION
The advances of semiconductor process technology force IC

companies to move towards very deep submicron integrated
circuit technology for taking advantage of the increased
functionality, higher speeds and decreased costs that it offers.
Very deep submicron ICs although capable of offering increased
speeds and integration of millions of gates require new and
effective test methodologies in order to be tested adequately and
cost effectively.

Built-In Self-Test (BIST) is becoming a very attractive Design
For Testability (DFT) strategy since it reduces external testing
requirements. BIST tries to incorporate in the same IC the Circuit
Under Test (CUT) and its tester enabling in this way the chip to
test itself. Although this leads to increased implementation area,
this DFT method is becoming more and more attractive since it
decreases the time to market, it often leads to higher testing
quality and it cuts down the cost effectively [7].

The quality of a BIST scheme depends on: (a) the Test Pattern

Generator (TPG), a circuit that produces the patterns applied to
the CUT, and (b) the Test Response Verifier, a circuit which
captures the responses of the CUT, compacts them to one single
pattern called signature and compares this against the signature of
a fault-free CUT.

One way to perform test pattern generation and test response
compaction is by means of linear feedback shift registers (LFSRs)
and multiple-input linear feedback shift registers (MISRs) [1], [3].
In this way high fault coverage can be achieved without using
expensive external test equipment. However, modifications to the
registers of the circuit must be made resulting to additional
hardware overhead and possible system performance degradation
due to the additional multiplexers in the signal path.

The possible system performance degradation and the area
required for BIST can be minimised if some of the original
building blocks of the circuit are utilised to generate patterns
and/or to compact test responses. General purpose computing
structures as well as digital signal processing circuits' datapaths
and many other circuits contain adders, subtractors and/or
accumulators. The suitability of these modules for test pattern
generation [4]-[6], [10]-[12], [14], [15] and test response
compaction [2], [6], [8], [9], [12], [13] in test per-clock BIST
schemes has been investigated. In many cases the test set length to
achieve complete fault coverage can be prohibitively large. To
cope with this problem, three approaches have been proposed [4],
[14], [15]. The first one [14] presents a method for suitably
choosing the seed and the constant value of the accumulator such
that the cardinality of the test set for a set of hard-to-detect faults
to be minimised. However the cardinality of the test set still
remains large. The second approach [15] is suitable for easily-
random testable circuits and it is based on reseeding. Forward and
reverse fault simulation is used to find windows of ineffective test
patterns and determine the seeds of the accumulator. Recently, a
method was presented [4] that, based on Genetic Algorithms,
computes the initial values for general functional modules, such as
adders and multipliers, so that they are able to produce test
patterns with complete fault coverage. However, in the case of
circuits with many hard-to-detect faults a large number of seeds
must be used. Therefore the hardware overhead can be very large
considering the ROM that must be used to store the various seeds
and the necessary control module. Furthermore, in order to be able
to load the various seeds to the registers of the TPG, multiplexers
have to be inserted. In the case that these registers are in the
critical path this results in system performance degradation.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI 2001, West Lafayette, Indiana, USA
© ACM 2001 1-58113-351-0/00/03…$5.00

7

In this paper we present a novel reseeding technique for
accumulator-based test pattern generation. The accumulator
beginning from an initial seed and a constant value produces a
new test pattern at each clock cycle by the "add" operation. A new
seed is produced on-the-fly by inverting the logic value of some of
the bits of the accumulator's register. The proposed technique
achieves complete fault coverage with less hardware overhead and
shorter test sequences than the accumulator-based method given
in [4] for all circuits with hard-to-detect faults. Furthermore, the
logic required by our technique is not inserted in the critical path,
therefore it does not impact the system performance.

The remaining of the paper is organised as follows: Sections 2
and 3 present respectively the architecture and the reseeding
algorithm for the proposed TPG. In Section 4 the effectiveness of
the proposed technique is evaluated with experimental results and
comparisons are made with the other already-known techniques.
Conclusions are given in Section 5.

2. PROPOSED ARCHITECTURE
The accumulator is utilised as a test pattern generator for

testing blocks physically connected to it. The architecture of the
proposed TPG is shown in Figure 1. The accumulator consists of a
k-bit adder and a k-bit register. It has been reported in [10] that
accumulators with stored carry feedback perform better than the
accumulators without carry feedback. For that reason we suppose
that the carry out of the adder is stored in a flip-flop and is used in
the next clock cycle. After being initialised, the accumulator adds
the constant value, the current contents of the register and the
content of the flip-flop and stores the result back to the register.

k-bit Register (R1...Rk)

k-bit
Adder

constant value

FF

Cout Cin

k

Counter

Inversion
Control
Logic

k

k

k mInversion
module

To CUT

Figure 1. Proposed TPG circuit

In order to produce a new seed, some of the bits of the register
are inverted before added with the constant value. For that
purpose, we insert the “Inversion Module” between the inputs of
the adder and the outputs of the register. The inversion module
consists of a series of exclusive-OR (XOR) gates. As will be
shown in experimental results, only a few inputs must be inverted
at some time during testing mode. Therefore, m XORS, with m<k
are sufficient (see Figure 2). The counter and the inversion control
logic decide which bits will be inverted and when.

Ra

Ca

Rb

Ia Ib

Figure 2. Inversion module

Let Ii, 1≤i≤k, be the input of the adder driven by cell Ri of the
accumulator’s register R directly or through a XOR gate. Ca, is 1
only when during test mode Ra must be inverted. During the
normal mode of operation Ca has the value 0. The inversion
control logic is responsible for producing all control lines Ca. It
receives the output of a counter, which counts the vectors
generated by the accumulator, and sets the m control lines Ca to
either 0 or 1 depending on the number of the current vector.

For example consider that the circuit under test has 4 inputs
and we have a 4-bit accumulator with initial seed 0111 and
constant value 0111. The sequence of test vectors that are
generated by the accumulator is given in Figure 3a. Consider that
our circuit has 3 hard-to-detect faults that are tested by the vectors
x011, 0001 and 1001, where x denotes don’t care. Also consider
that all the easy to detect faults are detected by the first two
vectors of the sequence generated by the accumulator. We can see
that, without reseeding, the first twelve vectors are sufficient for
testing our circuit. Now suppose that we invert the value of R2 line
during the addition for the generation of vector 2. Then vector
0011 will be generated which covers the desirable vector x011. In
the same way, the inversion of the value of lines R2 and R4 at the
next addition, generates the vector 0001. The next vector that will
be generated by the accumulator is the vector 1001. We can easily
see that all the faults are now detected by the first 5 vectors
produced by the reseeded accumulator. The implementation, that
is, the counter, the inversion control logic and the inversion
module are shown in Figure 3b. We assume that in normal mode
the counter remains at the 00 state (vector 0), so C2=C4=0. It is
obvious that when the accumulator is used to test more than one
circuits, the inversion control logic can be easily designed in such
a way so as to generate the m control signals taking into account
all the under test circuits.

In the above example, the selection of bits R2, R4 to be
inverted is a crucial factor affecting the hardware overhead of the
proposed architecture. Therefore, in section 3 we present an
efficient algorithm for selecting those register bits, which will
minimise the overall hardware overhead.

3. RESEEDING ALGORITHM
According to the proposed method, the test session consists of

the parts P0, P1, P2, P3,... as shown in Figure 4. Each one of these
parts consists of vectors produced by successive additions of the
constant value and the current value of the register. The last vector
of each part, except P0, is produced by adding the constant value
and the current content of the register with some bits inverted
(shaded areas in Figure 4).

Let MV be the maximum number of vectors to be generated

8

for the detection of the hard-to-detect faults. Given the value of
MV, the main objective of the algorithm is to minimise the
required hardware (inversion module and inversion control logic).

0 1 1 1
1 1 1 0
0 1 0 1
1 1 0 1
0 1 0 0
1 1 0 0
0 0 1 1
1 0 1 1
0 0 1 0
1 0 1 0
0 0 0 1
1 0 0 1
0 0 0 0
1 0 0 0
1 1 1 1

.

.

.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.
.
.

Accumulator
Sequence

Vector

Reseeding
Resseding

0 1 1 1
1 1 1 0
0 0 1 1
0 0 0 1
1 0 0 1

R4R3R2R1
R4R3R2R1

Accumulator
Sequence

R4

d1 d0

R3
R2

R1

I1I2I3I4

counter

control
block

Inversion
module

C4 C2

d2

End of
Testing

(a)

(b)
Figure 3. Example circuit.

P0 . . .
����
����

Inversions

Test Session

P1 P2

���
���

�����
����� . . .

������
������Pi

���
���

Figure 4. Test session

The flowchart of the algorithm is given in Figure 5. The first
step is to select the constant value as proposed in [10], in order the
accumulator to be able to generate a sequence of vectors with
period 2k-1. The initial seed of the state register is set for
simplicity to 00...0.

The set P0 is calculated by dropping all easy-to-detect faults.
Specifically, successive additions are performed until a number of
T successive vectors fail to cover any additional faults. All vectors
applied excluding the T last ones form set P0. The remaining f0
undetected faults are considered as hard-to-detect. For each hard-
to-detect fault at most Q test vectors are extracted via Automatic
Test Pattern Generation. Each test vector has as many don’t care
bits as possible.

Select constant value
Set initial seed=0...0

Select set P0
f0=number of undetected faults

Extract Test Vectors

i=1
SL = MV / f0

Select set Pi

Run fault simulation for Pi
fi= number of undetected faults

fi = 0 ?

Yes
Reverse Simulation

Update SL
i=i+1

End

Figure 5. Flowchart.

So far the first P0 vectors of the test sequence are
determined. We must now cover the remaining f0 faults with at
most MV vectors. In the worst case f0 reseedings will be
necessary, and in order to produce at most MV vectors, each
reseeding must be performed at every MV/f0 vectors or sooner.
Therefore, we introduce the factor SL which is the maximum
number of successive additions before a reseeding operation.

9

Table 1: The results of the proposed technique for two different values of MV.
Solution 1 Solution 2

Circuit MV Number of
Vectors

Inversion
bits

Area Overhead
(gate equivalents)

MV Number of
Vectors

Inversion
bits

Area Overhead
(gate equivalents)

c2670 10000 4535 42 472 5000 2482 48 554
c7552 5000 4377 147 1070 4000 3646 145 985
s420 5000 2516 12 192 2000 1712 11 226
s641 5000 2112 12 95 3000 2423 11 80
s713 9000 5490 8 80 4000 1872 13 88
s820 10000 4827 5 38 3000 2787 7 72
s838 6000 2272 29 766 4000 3095 34 734
s953 9000 8412 3 47 4000 2449 7 137

s1196 10000 6279 6 112 5000 4415 6 167
s1238 7000 4082 7 137 5000 4757 6 104
s1423 3000 2468 13 93 2000 1511 21 117

Initially SL is set to MV/f0 and its value is updated after
each reseeding in order to take into consideration a number of
vectors possibly left unused by the reseeding, as well as possible
additional faults detected even if they were not predicted. In
order to select the test vectors of set Pi (i=1,2,...), we perform SL
successive additions. Among the SL accumulator vectors, the
one resulting in less hardware overhead must be selected. After
each addition the content of the register R is compared with each
of the ATPG extracted vectors. If it is compatible with at least
one of them, then the corresponding fault (faults) has been
covered without any inversions, and it is dropped. If it is not
compatible with any one of them, then some inversions have to
be done at the previous state of the register, in order the current
state (after the addition) to be compatible with at least one test
vector. Suppose that set Pi consists of states R(1), R(2), …,
R(SL) and let R(j-1), R(j) be the previous and current state of the
register respectively. Then we have R(j)=R(j-1) +
ConstantValue + Carry. Lets assume that R(j) must be made
compatible with test vector T. Then we compare R(j) and T at
each bit position, starting from the least significant bit to the
most significant one. If at the q bit we have Rq(j)=Tq or Tq = X
(don’t care bit) then we move to the next bit q+1. If Rq(j)≠Tq
then we invert the corresponding bit Rq(j-1). We perform again
the addition and we get the new state R(j) which is compatible
with test vector T at the q least significant bits. Note that after
the inversion of bit q, the q-1 less significant ones remain
unaffected. The above procedure is repeated until we compare
all bits of R and T.

We apply the above procedure for all states R(1), R(2), …,
R(SL) and for all test vectors, and we select the test vector and
the state which results to the least additional hardware overhead,
that is the least additional XOR gates. This state is considered as
the last state of Pi.

The next step is to run fault simulation and drop all faults
detected by Pi. Let fi be the number of the remaining undetected
faults. Since, in general, |Pi|<SL, we adjust the value of SL as

(MV- ∑
=

i

1j
jP)/fi. Then the algorithm continues with the next set

Pi+1 until all faults are covered.

Some of the easily-testable faults that were covered with the
test vectors of set P0 can also be covered with some test vectors

of the sets P1, P2,... For that reason some of the first test vectors
of the test sequence can be redundant. In order to minimise the
cardinality of the test set, reverse simulation [15] is performed
and the initial seed is adjusted so as to exclude these redundant
test vectors.

We assume that the initial seed of the register is set via
initialisation of the register. When the initialisation state of the
register is determined by other operations of the system (e.g. in
normal mode) then the algorithm considers as initial seed this
initialisation state and the reverse simulation is not performed.
This is also valid when more than one circuits are to be tested by
the accumulator with a single initialisation seed. Therefore, no
loading of the register is needed, and thus no multiplexers are
inserted for making the register accessible.

Concerning the constant value, we note that the selection is
done as in [10] and depends only on the length of the
accumulator, k. Moreover, it is the same for all TPG sessions of
the accumulator. Therefore, an initialisation operation can be
sufficient to set the initial seed to the register containing the
constant value.

4. EXPERIMENTAL RESULTS
In order to validate the effectiveness of the proposed

technique, we have implemented the algorithm of Section 3 in C
programming language and performed several simulations. For
comparison reasons, we have used the ISCAS'85 and ISCAS'89
benchmark circuits that were used in [4] and require more than 1
seed.

In Table 1 we present results for two different values of MV
for each benchmark circuit. The constant value of the
accumulator is selected randomly. The third and seventh
columns indicate the number of vectors required for achieving
complete fault coverage. The fourth and eighth columns present
the number of inputs of the adder where XOR gates must be
inserted (this constitutes the Inversion Logic module). Finally, in
the fifth and ninth columns we present the hardware overhead
required. This includes the hardware overhead of the XOR gates
and the inversion control logic. The hardware overhead is
measured in terms of gate equivalents assuming that 1 gate
equivalent is equal to a 2-input NAND gate. We remind that MV

10

Table 2: Comparison of the proposed technique with the one presented in [4]
Number of Vectors Area overhead

Functional BIST [4]Circuit Functional
BIST [4]

Proposed
technique Reduction Multiplexers

(gate equiv.) ROMbits Control Logic

Proposed
technique

(gate equiv.)
c2670 10179 2482 75.6% 559 15378 H 554
c7552 4000 3646 8.9% 497 26496 H 985
s420 5510 1712 68.9% 82 476 H 226
s641 4475 2423 45.9% 130 540 H 80
s713 9082 1872 79.4% 130 540 H 88
s820 5311 2787 47.5% 55 138 H 72
s838 6694 2272 66.1% 158 1452 H 766
s953 7871 2449 68.9% 108 270 H 137

s1196 10000 4415 55.9% 77 256 H 167
s1238 7356 4757 35.3% 77 256 H 104
s1423 3100 1511 51.3% 218 546 H 117

denotes the maximum number of test vectors devoted for
detecting the hard-to-detect faults. From Table 1 we can see that
the number of the required test vectors for all faults never
exceeds the value of MV.

We can also see that, in most cases, only a very small
portion of the adder inputs require inversion. Furthermore, a big
MV value results in more total number of vectors but in less
hardware overhead whereas a small MV value results in less
total number of vectors but with more hardware overhead. The
exceptions in this rule (see circuits s641, s820 and s1238) are
due to the random way of selecting the constant value, the
reverse fault simulation and the extracted ATPG test vectors.

Let us now compare the proposed technique with the
accumulator-based technique presented in [4] (see Table 2).
Columns 2 and 3 present the total number of vectors required in
these two techniques. Column 4 presents the reduction
percentages. It is quite obvious that the proposed technique
outperforms the one in [4].

The functional BIST approach [4] requires: (a) multiplexers
to both input and state registers to make them accessible, (b) a
ROM for storing the seeds and (c) a counter and a logic block
controlling the reseeding operation. The area overhead, in
equivalent gates, of the multiplexers and the number of ROM
bits for storing the seeds are given in columns 5 and 6
respectively. The area of the logic block controlling the
reseeding operation is expected to be comparable to the area
required by the control module of the proposed technique, but it
can not be estimated since we do not have enough information
about the reseeding process. For that reason, in Column 7 we
estimate it as H. The area of the proposed technique is given in
Column 8. It includes all the necessary logic expect for the
counter which is ignored in both techniques. We observe that in
most cases the area overhead of our method is even less than the
area overhead required only for the multiplexers in [4]. If we
also consider the area for the ROM and the controlling logic of
[4], then the area overhead of the proposed technique is
drastically less than the area overhead of [4].

We have to remind that the reseeding applied in [4] may
affect system performance while our method does not affect
system performance because the additional logic is added to a

non-critical path of the system.

5. CONCLUSIONS
In this paper we have proposed a new reseeding technique

for accumulator-based Test Pattern Generation suitable for
circuits with hard-to-detect faults. Reseeding takes place on-the-
fly by inverting the logic value of some of the bits of the
accumulator’s register. With experimental results we have
shown that the hardware required for the implementation of the
proposed technique is lower than that required by the other
accumulator-based reseeding techniques, the test set length is
shorter and the system performance is not affected. Even better
results are expected by: (a) making experiments with various
constants and choosing the best solution, and (b) improving the
reseeding algorithm targeting minimal hardware implementation
cost.

6. REFERENCES
[1] Agrawal V., Kime Ch. and Saluja K., "A Tutorial on Built-

In Self-Test, Part 1: Principles", IEEE Design and Test of
Computers, pp. 73-82, March 1993.

[2] Bakalis D., Nikolos D. and Kavousianos X., "Test
Response Compaction by An Accumulator Behaving as a
Multiple-Input Non-Linear Feedback Shift Register", Proc.
of International Test Conference, pp. 804-811, Atlantic
City, NJ, USA, 2000.

[3] Bardell P., McAnney W. and Savir J., Built-In Test for
VLSI: Pseudorandom Techniques, John Wiley & Sons,
1987.

[4] Chiusano S., Prinetto P. and Wunderlich H., "Non-
Intrusive BIST for Systems-on-a-Chip", Proc. of
International Test Conference, pp. 644-651, Atlantic City,
NJ, USA, 2000.

[5] Gupta S., Rajski J. and Tyszer J., "Arithmetic Additive
Generators of Pseudo-Exhaustive Test Patterns", IEEE
Trans. on Computers, vol. 45, no. 8, August 1996.

[6] Mukherjee N., Kassab M., Rajski J. and Tyszer J.,
"Arithmetic Built-In Self-Test for High Level Synthesis",
Proc. of VLSI Test Symposium, pp. 132-139, Princeton,
NJ, USA, 1995.

11

[7] Nadeau B.-Dostie, Design for At-Speed Test, Diagnosis
and Measurement, Kluwer Academic Publishers, 2000.

[8] Rajski J., Tyszer J., "Test Response Compaction in
Accumulators with Rotate Carry Adders", IEEE Trans. on
CAD, vol. 12, no.4, pp. 531-539, April 1993.

[9] Rajski J., Tyszer J., "Accumulator-Based Compaction of
Test Responses", IEEE Trans. on Computers, vol.42, no.6,
pp. 643-650, June 1993.

[10] Stroele A. P., "BIST Pattern Generators Using Addition
and Subtraction Operations", Journal of Electronic
Testing: Theory and Applications, vol. 11, pp. 69-80,
1997.

[11] Stroele A. P., "Arithmetic Pattern Generators for Built-In
Self-Test", Proc. of International Conference on Computer
Design, pp. 131-134, Austin, TX, USA, 1996.

[12] Stroele A. P., "Synthesis for Arithmetic Built-In Self-
Test", Proc. of VLSI Test Symposium, pp. 165-170,
Montreal, Canada, 2000.

[13] Stroele A. P., "Test Response Compaction Using
Arithmetic Functions", Proc. of VLSI Test Symposium,
pp. 380-386, Princeton, NJ, USA, 1996.

[14] Stroele A. P. and Mayer F., "Test Length Reduction for
Accumulator-based Self-Test", Proc. of International
Symposium on Circuits and Systems, pp. 2705-2708, New
York, NY, USA, 1997.

[15] Stroele A. P. and Mayer F., "Methods to Reduce Test
Application Time for Accumulator-based Self-Test", Proc.
of VLSI Test Symposium, pp. 48-53, Monterey, CA, USA,
1997.

12

	1. INTRODUCTION
	
	
	2. PROPOSED ARCHITECTURE
	3. RESEEDING ALGORITHM
	4. EXPERIMENTAL RESULTS

	Number of Vectors

