
Generation of Compact Test Sets with High Defect
Coverage

 Xrysovalantis Kavousianos Krishnendu Chakrabarty*
Dept. of Computer Science, University of Ioannina Dept. of Electrical & Computer Engineering, Duke University

 45110 Ioannina, Greece 27708 Durham, NC, USA
 kabousia@cs.uoi.gr krish@ee.duke.edu

Abstract-Multi-detect (N-detect) testing suffers from the draw-
back that its test length grows linearly with N. We present a new
method to generate compact test sets that provide high defect
coverage. The proposed technique makes judicious use of a new
pattern-quality metric based on the concept of output deviations.
We select the most effective patterns from a large N-detect pat-
tern repository, and guarantee a small test set as well as complete
stuck-at coverage. Simulation results for benchmark circuits
show that with a compact, 1-detect stuck-at test set, the proposed
method provides considerably higher transition-fault coverage
and coverage ramp-up compared to another recently-published
method. Moreover, in all cases, the proposed method either out-
performs or is as effective as the competing approach in terms of
bridging-fault coverage and the surrogate BCE+ metric. In many
cases, higher transition-fault coverage is obtained than much
larger N-detect test sets for several values of N. Finally, our re-
sults provide the insight that, instead of using N-detect testing
with as large N as possible, it is more efficient to combine the
output deviations metric with multi-detect testing to get high-
quality, compact test sets.

I. INTRODUCTION
*Manufacturing test is a major challenge for very-deep sub-

micron (VDSM) integrated circuits. Mandated product-quality
levels must be ensured by screening all defective devices be-
fore they are shipped. However, defect screening remains a
formidable problem, especially for VDSM process technolo-
gies, since it is impossible to explicitly target every possible
defect. To facilitate defect detection and manage test complex-
ity, abstract fault models are used in practice to mimic the
behavior of real defects. The most widely used fault model in
industry today continues to be the single stuck-at fault model.
This model offers a number of advantages⎯it is simple, it
requires low computational effort for test generation, and test
patterns for single stuck-at faults also detect many physical
defects. However, even though coverage of all or a large per-
centage of single stuck-at faults is considered to be indispen-
sable for any realistic test-development flow today, it does not
always guarantee high defect coverage [12].

The inadequacy of the stuck-at model for achieving high
defect coverage led to the development of new fault models,
e.g. transition-delay faults, bridging faults, etc., which reflect
the behavior of realistic defects more accurately than the
stuck-at fault model. However, even these fault models are
inadequate for many new defect types and they are accompa-

*The work of K. Chakrabarty was supported in part by the Semiconductor
Research Corporation under contract no. 1588.

nied by practical problems that hinder their widespread adop-
tion. For example, the automatic test-pattern generation
(ATPG) algorithms associated with these fault models require
excessive computational effort. Moreover, these models lead
to prohibitively high pattern counts, thereby leading to high
test application times. Finally, many of these fault models
require detailed layout information, which is available only at
the latter stages of the chip design flow. As a result, test de-
velopment becomes a significant contributor to delays in chip
tape-out.

An alternative approach to increase defect coverage is to
rely on multi-detect testing, also referred to as N-detect testing.
This method was proposed in [11], and since then it has been
identified as a very effective test strategy [1]-[6], [8]-[10],
[13]-[17]. The main idea of N-detect testing is to apply N (N >
1) different test patterns for each stuck-at fault. By detecting
each stuck-at fault multiple times, with different test patterns
each time, the probability that arbitrary defects are activated at
the target fault site increases. An important property of N-
detect testing is that it employs conventional fault models
(usually the stuck-at fault model), therefore it can be easily
incorporated in existing ATPG algorithms and tools. However,
N-detect testing has one significant disadvantage⎯the size of
the test set increases linearly as the value of N increases in
order to provide test patterns of higher quality. An alternative
method proposed recently in [7] addresses this problem by
embedding multi-detection of faults within a compact 1-detect
test set, thereby increasing test quality without significantly
increasing test-set size.

In this paper, we propose a new method to generate high-
quality compact test sets with test lengths similar to that of 1-
detect stuck-at test sets. In contrast to [7], we do not embed
multi-detection of stuck-at faults within 1-detect stuck-at pat-
terns. Instead, we first select a small number of the most-
efficient test patterns from an N-detect pattern repository.
Next we embed single-detection of stuck-at faults within the
selected high-quality test patterns. Despite its compact size,
the test set generated by the proposed method provides sig-
nificantly higher coverage of transition-delay faults and com-
parable coverage for bridging faults, when compared to the
baseline 1-detect test set and the test set obtained using [7]. It
also provides higher coverage of transition-delay faults than
larger N-detect test sets for several values of N.

The proposed method relies on a new quality metric for
evaluating the effectiveness of each test pattern. We also pre-
sent an efficient algorithm for selecting the most efficient test
patterns. The quality metric is based on the concept of output

978-3-9810801-5-5/DATE09 © 2009 EDAA

Generate test cubes with N-detect ATPG. Generate m random test vectors per cube. Calculate
output deviations for each test vector.

Select the k most efficient test cubes based on the deviations of the corresponding vectors.

Are there
any single stuck-at faults

undetected ?

Specify as many Xs of the test cubes as necessary to get complete coverage of stuck-at faults.
Top-up the k test cubes with new generated cubes if necessary.

Fill any remaining Xs to maximize output deviations of each test cube and rank test cubes.

Yes

No

Optional: Specify any remaining Xs of the test cubes to detect mutiple (N) times as many stuck-at
faults as possible.

Fault simulate the k test cubes. Drop detected stuck-at faults.

Calculate D(t,i), Max(i,0) Max(i,1), wo(i,0) and
wo(i,1) for all test vectors t, and outputs i

Calculate WT(t) for all remaining test vectors t

Select the test vector t with the highest value WT(t). Drop all
m-1 test vectors t' generated by the same test cube with t.

Update output weights wo(i,0) and wo(i,1)

Are k test
vectors selected ?

Return the test cubes corresponding to the
selected test vectors

Yes

No

(a) (b)

St
ep

 1
St

ep
 2

St
ep

 3
St

ep
 4

St
ep

 5
Step 2

Fig. 1. Proposed test-generation flow.

deviations [19], which offer an effective probabilistic means
to evaluate test vectors based on their potential for detecting
arbitrary defects and, most importantly, without being biased
towards any particular fault model. As shown in [18], unbi-
ased testing provides higher test quality than a test method
that is biased by a particular fault model. Simulations results
for benchmark circuits demonstrate the effectiveness of the
proposed method for defect screening. These results also
show that simply increasing the value of N for N-detection,
which is currently common industry practice, is not necessar-
ily the best approach to enhance defect coverage. Instead,
combining N-detection with pattern selection based on output
deviations appears to be the most promising defect-screening
strategy with low pattern counts.

II. OUTPUT DEVIATIONS
Output deviations (described in detail in [19]) are probabil-

ity measures at primary outputs, as well as pseudo-outputs for
full-scan designs (all denoted as circuit outputs hereafter), that
reflect the likelihood of error detection at these outputs. As it
is shown in [19], test patterns with high deviations tend to be
more effective for fault detection.

Output deviations are based on a probabilistic fault model,
in which a probability map (referred to as the confidence-level
vector) is assigned to every gate in the circuit. Signal prob-
abilities pi,0 and pi,1 are associated with each line i for every
input pattern, where pi,0 and pi,1 are the probabilities for line i
to be at logic 0 and 1, respectively. The confidence level Ri of
a gate Gi with m inputs and a single output is a vector with 2m
components, defined as: Ri = (ri

0...00 ri
0...01...ri

1...11), where
each component of Ri denotes the probability that the gate
output is correct for the corresponding input combination. For
example, let y be the output of a NAND gate Gi, with inputs a
and b. We have:
py,0 = pa,1 pb,1ri

11+pa,0 pb,0(1-ri
00)+pa,0pb,1(1-ri

01)+pa,1pb,0(1-ri
10)

py,1 = pa,0 pb,0ri
00 + pa,0 pb,1ri

01 + pa,1 pb,0ri
10 + pa,1 pb,1 (1- ri

11).
Likewise, the signal probabilities can be easily computed for
other gate types. For any logic gate (or output) Gi in a circuit,
let its fault-free output value for any given input pattern tj be d,

with d ∈ {0, 1}. The output deviation ∆Gi,j of Gi for tj is de-
fined as

iG ,dp , where d is the complement of d. Intuitively,
the deviation for an input pattern is a measure of the likeli-
hood that the gate output is incorrect for that input pattern.
Output deviations can be determined without explicit fault
grading, hence the computation (linear in the number of gates)
is feasible for large circuits and large test sets. In the next sec-
tion, we define a new output-deviations measure that can be
used for test generation.

III. PROPOSED TEST-GENERATION METHOD

The flow of the proposed test generation method is shown
in Fig. 1(a). In the following discussion, we explain each step
in detail. A test cube is a test pattern that contains 0, 1 and
don’t-care (X) logic values, and a test vector is a test pattern
without X logic values.
Step 1: In the first step a repository of test cubes is generated,
using N-detect ATPG with as high a value of N as is computa-
tionally feasible. During ATPG, the Xs of the test cubes are
left unspecified but the dynamic-compaction option is turned
on in order to limit the size of the repository. Next, the gener-
ated test cubes are evaluated according to the proposed devia-
tion-based quality metric. Since output deviations are not de-
fined in [19] for test patterns containing Xs (i.e., test cubes),
we evaluate each test cube according to its potential to yield
test vectors with high output deviations values if its Xs are
replaced randomly by logic values 0, 1. To this end, we gen-
erate m random test vectors per cube by specifying its Xs in m
different random ways (m is a predetermined constant). Next,
all test vectors are inserted in a list L and their output devia-
tions are calculated as proposed in [19]. Note that the m ran-
dom test vectors per cube are used only for evaluating the
cube, and they are discarded after the selection of the most
efficient cubes.
Step 2: The second step uses a quality metric to evaluate all
the test vectors generated in the previous step, and selects k
out of them. These k vectors are deemed to be of the highest
quality and they correspond to k different test cubes. The se-

lection process provides the set of k test cubes from which the
k selected test vectors were generated. The selection is based
on the following two rules:
(i) Rule 1: A test vector is selected only if it provides a high
deviation value at one or more outputs.
(ii) Rule 2: The final set of selected test vectors provides high
deviation value at least once at every output. However, the
number of selected test vectors that provide high deviation
value at output i may be higher than the number of selected test
vectors that provide high deviation at output j, if the potential
of output i to observe defects is higher than that of output j,
based on the structure of the circuit.

The first rule ensures that a test vector will not be selected if
it does not provide high deviation value, that is high ob-
servability at, at least one output. The deviation value D(t,i)
for test vector t at output i is high if it is close to the maximum
deviation value provided by any test vector at this output.
However, since we cannot consider all possible test vectors
due to computation constraints, we limit the calculation of the
maximum deviation values to the test vectors in list L. In addi-
tion, the maximum deviation at output i when the fault-free
response is 0 can be different than the maximum deviation at
the same output when the fault-free response is 1. Therefore,
in contrast to [19], for every output i, 1 ≤ i ≤ NO, where NO is
the number of circuit outputs, we calculate two values,
namely Max(i,0) and Max(i,1). These are the maximum devia-
tion values achieved by any of the test vectors producing the
fault-free response 0 (referred to as test vector subset Ti,0) and
1 (referred to as Ti,1) at this output (Ti,0∪Ti,1=L). Thus,
Max(i,v)= max{D(t,i)}, where t∈Ti,v, v=0 or 1. We say that
D(t,i) is high if

D(t,i) ≥ F1 · Max(i,v), where F1 ≤ 1, v = 0 or 1, (1)
where v is the fault-free response of t at output i. Note that F1
is a real-valued quantity that should be close to 1 for selecting
vectors with maximum output deviation values. However, in
practice a value of F1 = 1 is very strict and sometimes it re-
sults in a failure to select vectors, especially after the first few
most-efficient vectors are selected. We experimentally veri-
fied that a value of F1 in the range [0.99, 0.995] provides
high-quality vectors, and thus for the experiments reported
here, we set F1 = 0.995.

The second rule ensures that the test vectors will be selected
to eventually provide high deviation value at every output at
least once, in order to provide high observability for as many
defects as possible. It also considers the fact that the number of
defects that can be observed at the output of a large logic cone
is likely to be higher than the corresponding number at the out-
put of a small logic cone. Therefore, every output i is initially
assigned a pair of weights wo(i,0) and wo(i,1), one for each set
Ti,0 and Ti,1, respectively. Both these weights are initially set
equal to the number of lines in the fan-in logic cone of output i,
a measure of the volume of defects that can possibly affect this
output. Then, a weight WT(t) is calculated for every test vector
t as follows: let MS(t) be the set consisting of all outputs i, 1 ≤
i ≤ NO, with high deviation value D(t,i) when vector t is ap-
plied at the circuit (i.e. outputs i satisfy inequality (1) for vec-
tor t). MS(t) is partitioned into two subsets MS0(t), MS1(t); all

outputs with fault-free response 0 are placed in MS0(t) and the
rest in MS1(t). Then we have:

0 1i MS [t] i MS [t]
WT(t) wo(i,0) wo(i,1)

∈ ∈
= +∑ ∑ (2)

WT(t) is equal to the sum of the weights of all outputs with
high observability during the application of t. The vector t
with the highest weight WT(t) is selected every time.

If the selection is based only on Equation (2) then it will be
biased towards test vectors that increase the deviations at a
subset of outputs (with high weights), thus adversely affecting
observability for other nodes in the circuit. In order to avoid
this problem, every time a test vector t that provides high de-
viation value at output i is selected, the weight wo(i,v), where
i ∈ MSv(t), v=0, 1 is divided by a constant factor F2. Therefore,
outputs that exhibit increased observability by the application
of t are considered as less effective in detecting defects during
the selection of the test vectors following. In this way the suc-
ceeding selected test vectors will provide high deviation value
at other outputs too. Note that, by using two weights wo(i,0)
and wo(i,1) for each output i we enforce the selection of test
vectors which provide high deviation values for both fault free
responses 0 and 1 at this output since we control the number
of vectors which provide high deviation value for each re-
sponse separately. We verified experimentally that a value of
F2 in the range [2, 10] is sufficient to guarantee the selection
of test vectors which provide high deviation values at all out-
puts. We have chosen the value of F2 = 8 in the experiments
reported in Section 4. The overall flow for this selection proc-
ess is highlighted in Fig. 1(b).
Step 3: Next, we guarantee that the selected test cubes
achieve complete coverage of single stuck-at faults. Therefore,
we perform stuck-at fault simulation with the selected test
cubes and we drop every detected stuck-at fault. Then, we
specify their Xs in order to detect as many undetected stuck-at
faults as possible, and if necessary, we top-up the k test cubes
with additional dynamically-compacted test cubes. The addi-
tional test cubes are not selected from the repository in order
to extend the set of the k test cubes with the smallest possible
number of top-up test cubes.
Step 4: This step is optional. Any remaining Xs are specified
in order to achieve multiple detections of as many stuck-at
faults as possible, as suggested in [7].
Step 5: At this step all remaining Xs, are specified in such a
way as to maximize the output deviations. Therefore, for each
test cube, m random test vectors are generated and the best
test vector is selected, according to the WT measure as in Step
2. Finally, the selected test vectors are ranked in descending
order of their WT measures.

IV. SIMULATION RESULTS

In this section, we evaluate the defect coverage of the pro-
posed test-generation method for the largest ISCAS’89 and a
subset of IWLS’05 benchmark circuits. The test-generation
flow (Fig. 1), excluding ATPG and fault simulation, was im-
plemented in C. Commercial tools were used for all ATPG-
related and fault simulation steps.

The quality of the proposed method, with respect to defect

TABLE I
BENCHMARKS AND TEST-SET SIZES.

 Prop SD/ND

Circuit #
Inp.

Scan
Cells

Gates

Reg
SD/ND 2-p 1-p

Reposit.
size

s5378 35 179 3114 142 147 146 498
s9234 36 211 4636 190 188 206 1358

s13207 62 638 6837 287 301 322 949
s15850 77 534 7949 178 167 171 728
s38417 28 1636 21104 155 160 159 692 IS

C
A

S’
89

s38584 38 1426 22780 313 246 283 1326
sytemcaes 258 670 16574 343 325 309 1428

tv80 13 359 13460 747 752 753 4198
usb_funct 112 1746 23379 181 169 175 1049
ac97_ctrl 54 2199 24055 217 179 176 1711
mem_ctrl 116 1078 22402 607 643 647 2839 IW

L
S’

05

pci_bridge32 159 3358 38015 1007 739 727 7157

coverage, was evaluated using two surrogate fault mod-
els⎯the transition-delay fault model (using the launch-on-
capture technique) and the bridging fault model. In the former
case we calculated the proposed quality metric using the re-
sponse to the second vector for each vector pair, (consisting of
each stuck-at test and the response to the stuck-at test) while
in the latter case, we use the response for every single vector
(i.e., every stuck-at test).

In order to highlight the benefits of the proposed test-
generation method, we compare it with traditional 1-detect
stuck-at ATPG, as well as with the embedded multi-detect
ATPG method proposed in [7]. For each experiment, the fol-
lowing four test sets were compared with each other:
Reg_SD: traditional (regular) dynamically compacted 1-detect
test set, with the Xs specified randomly.
Reg_ND: traditional dynamically compacted 1-detect test set,
with the Xs specified in such a way as to detect a stuck-at
fault as many times (up to N) as possible. The approach of [7]
for N =10 was implemented for this purpose.
Prop_SD: compact 1-detect test set generated by the proposed
test-generation flow, with the Xs specified exclusively to
maximize output deviation (Step 4 is omitted).
Prop_ND: compact 1-detect test set generated by the pro-
posed test-generation flow, with the Xs specified in order to
detect first multiple (up to N=10) times as many stuck-at
faults as possible (Step 4 is applied) and then the remaining
Xs are specified in order to maximize the output deviations.

For Prop_SD and Prop_ND test sets, 10-detect test sets
were used as repositories. The number k of selected cubes from
the repositories was set equal to 1/3 of the number of cubes in
the Reg_SD test sets for circuits mem_ctrl, tv80, s13207, and
to 2/3 for the rest of the circuits. Finally, m was set equal to 10.

The basic characteristics of the benchmarks are shown in
Columns 1-4 of Table I. Column 5 presents the number of test
vectors in Reg_SD and Reg_ND (the pattern counts are the
same). Column 6 presents the (identical) number of test vec-
tors in Prop_SD and Prop_ND, generated by applying the
quality metric to vector pairs (denoted as 2-p in the Table I).
Column 7 presents the same data generated by applying the
quality metric to single vectors (denoted as 1-p). Finally, col-
umn 8 lists the number of the test cubes in the 10-detect pat-
tern repositories. For each circuit, the size of the smallest test
set generated is bold. In a majority of cases, the size of the test

TABLE II
BCE+ VALUES AND BRIDGING FAULT COVERAGE (1-P TEST SETS)
 BCE+ Bridging fault coverage

Circuit
Reg
SD

Reg
ND

Prop
SD

Prop
ND

Reg
SD

Reg
ND

Prop
SD

Prop
ND

s5378 94.65 96.50 96.06 96.86 93.91 95.30 95.07 95.63
s9234 88.24 89.68 88.85 89.81 87.32 88.68 88.03 88.92

s13207 93.81 95.75 95.43 96.41 92.99 94.54 94.32 94.98
s15850 94.72 95.73 95.35 95.76 94.18 95.00 94.65 95.07
s38417 98.38 99.07 98.69 99.14 97.59 98.34 97.79 98.42
s38584 91.68 93.09 91.54 92.36 91.13 92.04 90.99 91.48

sytemcaes 99.08 99.23 99.07 99.08 96.73 96.76 96.54 96.52
tv80 91.91 92.71 92.31 92.72 89.61 90.02 89.86 89.97

usb_funct 94.87 96.55 95.23 96.45 96.13 97.19 96.36 97.16
ac97_ctrl 98.99 99.31 98.79 98.95 99.27 99.42 99.15 99.23
mem_ctrl 62.34 63.31 63.06 63.77 74.64 75.30 75.18 75.68

pci_bridge32 98.70 99.13 98.63 98.85 98.48 98.76 98.46 98.61

set generated by the proposed method is smaller than the test
sets generated by the other methods and in all other cases, the
test-set sizes are comparable. The test-set sizes for the pro-
posed method can be reduced further by selecting a smaller
value of k. A large k leads to higher test quality, therefore pat-
tern count can be traded off with test quality by appropriately
selecting k.

Next, we compare the four test sets with respect to the cov-
erage achieved for transition-delay faults (Fig. 2). As expected,
in the vast majority of the cases, Reg_ND, Prop_SD, and
Prop_ND provide significantly higher transition-fault cover-
age than the baseline Reg_SD test set. Moreover, both the
proposed test sets, Prop_SD and Prop_ND, provide higher
coverage than Reg_ND generated using the method proposed
in [7]. In most cases, the highest coverage is provided by the
Prop_ND test sets. Moreover, the proposed method provides
higher ramp-up than the other methods, and it offers reduced
test application time in an abort-at-first-fail environment.

In the second experiment, we study the multiple-detection
profile of each test set. Due to limited space, we present re-
sults for three representative cases. The other benchmarks
exhibit similar behavior. Each curve in Fig. 3 presents the
percentage of stuck-at faults detected n times or more for n =
1, 2, …, 11. Our results show that a high degree of multi-
detection is not always necessary for high defect coverage.
The test sets of the ac97_ctrl and system_caes for the pro-
posed method provide less multi-detection than the two base-
line methods, yet they provide higher transition-fault coverage.
We therefore note that generating patterns with high devia-
tions allows us to get high defect coverage with a smaller
value of N than would be possible by using N-detect testing
alone. Hence, a combination of output deviations and multi-
detection (Prop_ND) offers the most promising solution.

Next, we compare the four test sets using the bridging fault
model. For each generated test set, the BCE+ metric proposed
in [16] was used as an estimate of bridging fault coverage. In
addition, 400K bridging faults were simulated as follows:
100K pairs of lines were selected randomly for each circuit,
and four bridging faults were simulated for each pair by con-
sidering both lines as aggressors and victims, as well as by
considering both AND and OR bridging faults. The results for
the various test sets are shown in Table II. Columns 2-5 and
6-9 show the BCE+ measures and the bridging fault coverage

Reg_SD Reg_ND Prop_SD Prop_ND

s5378m

56%

57%

58%

59%

60%

61%

62%

63%

64%

65%

66%

32 64 96 128 147

s9234

37%

39%

41%

43%

45%

47%

49%

51%

53%

32 64 96 128 160 190

s15850

50%

51%

52%

53%

54%

55%

56%

32 64 96 128 160 178

s38584

58%

59%

60%

61%

62%

63%

64%

65%

66%

32 64 96 128 160 192 224 256 288 313

ac97_ctrl

42%

44%

46%

48%

50%

52%

54%

56%

58%

32 64 96 128 160 192 217

s38417

70%

72%

74%

76%

78%

80%

82%

32 64 96 128 160

system_caes

60%

62%

64%

66%

68%

70%

72%

74%

32 64 96 128 160 192 224 256 288 320 352

pci_bridge32

50%

55%

60%

65%

70%

75%

80%

85%

32 12
8

22
4

32
0

41
6

51
2

60
8

70
4

80
0

89
6

99
2

tv80

50%

52%

54%

56%

58%

60%

62%

32 96 16
0

22
4

28
8

35
2

41
6

48
0

54
4

60
8

67
2

73
6

mem_ctrl

40%

41%

42%

43%

44%

45%

46%

32 96 16
0

22
4

28
8

35
2

41
6

48
0

54
4

60
8

usb_funct

55%

57%

59%

61%

63%

65%

67%

69%

71%

32 64 96 128 160 181

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

of vectors # of vectors

of vectors # of vectors # of vectors

of vectors # of vectors # of vectors

of vectors # of vectors # of vectors

s13207

60%

61%

62%

63%

64%

65%

66%

67%

68%

69%

32 64 96 128 160 192 224 256 288 301

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

of vectors

Fig. 2. Transition-fault coverage for the different test sets and the various benchmarks (2-p test sets).

ac97_ctrl

88%

90%

92%

94%

96%

98%

100%

1 2 3 4 5 6 7 8 9 10 11

system_caes

92%

93%

94%

95%

96%

97%

98%

99%

100%

1 2 3 4 5 6 7 8 9 10 11

usb_funct

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

1 2 3 4 5 6 7 8 9 10 11
n

Pe
rc

. o
f F

au
lts

 D
et

ec
te

d
at

 le
as

t n
 ti

m
es

Reg_SD Reg_ND Prop_SD Prop_ND

n n

Pe
rc

. o
f F

au
lts

 D
et

ec
te

d
at

 le
as

t n
 ti

m
es

Pe
rc

. o
f F

au
lts

 D
et

ec
te

d
at

 le
as

t n
 ti

m
es

Fig. 3. Multi-detection results for the different test sets.

TABLE III
SMALLER TEST SETS ARE MORE EFFECTIVE FOR DEFECT COVERAGE THAN N-

DETECT TEST SETS.
 Test-Set Size

Circuit
N*: Thresh-

old on N N*-detect Proposed
Size Reduc-

tion (%)
s5378 7 367 147 59.9%
s9234 6 876 188 78.5%

s13207 6 660 301 54.4%
s15850 5 448 167 62.7%
s38417 2 226 160 29.2%
s38584 2 482 246 49.0%

sytemcaes 2 488 325 33.4%
tv80 3 1632 752 53.9%

usb_funct 3 397 169 57.4%
ac97_ctrl 8 1396 179 87.2%
mem_ctrl 5 1718 643 62.6%

pci_bridge32 3 2739 739 73.0%

for all test sets, respectively. We note that in most cases, the
Prop_ND test set provides the best results, both in terms of
the BCE+ measure and bridging fault coverage. In some cases,
Reg_ND provides slightly higher bridging fault coverage and
BCE+ values. However, note that in all these cases, the pro-
posed test sets are smaller than the test-set sizes for Reg_ND.
We expect that a larger value of k, and thus a larger test set
(enriched with higher-quality patterns), will lead to higher
BCE+ and bridging fault coverage using Prop_ND.

Finally, we determine a threshold N* on N such that for all
N < N*, either Prop_SD or Prop_ND test set offers higher
transition-fault coverage than an N*-detect test set (all test sets
provide complete coverage of detectable stuck-at faults). The
results in Table III demonstrate that, for most benchmarks, the
proposed method leads to smaller but more effective test sets
than several N-detect test sets.

V. CONCLUSIONS

We have presented a new method, based on the judicious
use of output deviations, for generating compact, high-quality
test sets. Simulation results show that compact test sets can be
generated for complete single stuck-at coverage and higher
coverage of unmodeled transition-delay faults and bridging
faults compared to other methods. The effectiveness of the
proposed method can be attributed to the combination of
multi-detect ATPG and pattern selection based on deviations;
therefore, this method serves as a promising alternative to N-
detect ATPG with large N.

REFERENCES

[1] M. Amyeen, S. Venkataraman, A. Ojha and S. Lee, “Evaluation of the
Quality of N-Detect Scan ATPG Pattern on a Processor”, in Proc. ITC,
pp. 669-678, 2004.

[2] B. Benware, et. all., “Impact of Multiple-Detect Test Patterns on Prod-
uct Quality”, in Proc. ITC, pp. 1031-1040, 2003.

[3] R. D. Blanton, K. Dwarakanath and A. Shah, “Analyzing the Effective-
ness of Multiple-Detect Test Sets”, in Proc. ITC,pp. 876-885, 2003.

[4] E. J. McCluskey and C.-W. Tseng, “Stuck-Fault Tests vs. Actual De-
fects”, in Proc. ITC, pp. 336-343, 2000.

[5] J. Dworak, et. all., “Defect-Oriented Testing and Defect-Part-Level
Prediction”, IEEE Design & Test of Computers, pp. 31-41, 2001.

[6] P. Franco, W.D. Farwell, R.L. Stokes and E.J. McCluskey “An Experi-
mental Chip to Evaluate Test Techniques Chip and Experiment Design”,
in Proc. ITC, pp. 653-662, 1995.

[7] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz and F. Hapke,
“Embedded Multi-Detect ATPG and Its Effect on the Detection of Un-
modeled Defects”, in Proc. ITC, 2007.

[8] M. R. Grimaila, et. al, “REDO – Random Excitation and Deterministic
Observation – First Commercial Experiment”, in Proc. VTS, pp. 268-
274, 1999.

[9] S. Lee, B. Cobb, J. Dworak, M.R. Grimaila and M.R. Mercer, “A New
ATPG Algorithm to Limit Test Set Size and Achieve Multiple Detec-
tions of all Faults”, in Proc. DATE Conf., pp. 92-99, 2002.

[10] Y.–T. Lin, O. Poku, N. Bhatti and R. Blanton, “Physically-Aware N-
Detect Test Pattern Selection”, in Proc. DATE Conf., pp. 634-639, 2008.

[11] S. Ma, P. Franco and E.J. McCluskey, “An Experimental Chip to Evalu-
ate Test Techniques Experiment Results”, in Proc. ITC, pp. 663-672,
1995.

[12] P. Maxwell, R. Aitken, V. Johansen and I. Chiang, “The Effect of Dif-
ferent Test Sets on Quality Level Prediction: When is 80% better than
90%”, in Proc. ITC., pp. 358-364, 1991.

[13] J. Nelson, J. Brown, R. Desineni and R. Blanton, “Multiple-Detect
ATPG Based on Physical Neighborhoods”, in Proc. DAC, pp. 1099-
1102, 2006.

[14] I. Pomeranz and S. M. Reddy, “A Measure of Quality for n-Detection
Test Sets”, IEEE Trans. Computers, vol. 53, No 11, pp. 1497-1503,
2004.

[15] I. Pomeranz and S. M. Reddy, “Worst-Case and Average Case Analysis
of n-Detection Test Sets”, in Proc. DATE Conf., pp. 444-449, 2005.

[16] H. Tang et. al., “Defect Aware Test Patterns”, in Proc. DATE Conf., pp.
450-455, 2005

[17] S. Venkataraman et. al, “An Experimental Study of N-Detect Scan
ATPG Patterns on a Processor”, in Proc. VTS, pp. 23-28, 2004.

[18] L.-C. Wang, P.R. Mercer, S.W. Kao and T.W. Williams, “On the De-
cline of Testing Efficiency as Fault Coverage Approaches 100%”, in
Proc. VTS, pp.74-83, 1995.

[19] Z. Wang and K. Chakrabarty, "Test-Quality/Cost Optimization Using
Output-Deviation-Based Reordering of Test Patterns", IEEE Trans.
CAD, vol. 27, No 2, pp. 352-365, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

