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Abstract-Multi-detect (N-detect) testing suffers from the draw-
back that its test length grows linearly with N. We present a new 
method to generate compact test sets that provide high defect 
coverage. The proposed technique makes judicious use of a new 
pattern-quality metric based on the concept of output deviations. 
We select the most effective patterns from a large N-detect pat-
tern repository, and guarantee a small test set as well as complete 
stuck-at coverage. Simulation results for benchmark circuits 
show that with a compact, 1-detect stuck-at test set, the proposed 
method provides considerably higher transition-fault coverage 
and coverage ramp-up compared to another recently-published 
method.  Moreover, in all cases, the proposed method either out-
performs or is as effective as the competing approach in terms of 
bridging-fault coverage and the surrogate BCE+ metric. In many 
cases, higher transition-fault coverage is obtained than much 
larger N-detect test sets for several values of N. Finally, our re-
sults provide the insight that, instead of using N-detect testing 
with as large N as possible, it is more efficient to combine the 
output deviations metric with multi-detect testing to get high-
quality, compact test sets. 

I. INTRODUCTION 
*Manufacturing test is a major challenge for very-deep sub-

micron (VDSM) integrated circuits. Mandated product-quality 
levels must be ensured by screening all defective devices be-
fore they are shipped. However, defect screening remains a 
formidable problem, especially for VDSM process technolo-
gies, since it is impossible to explicitly target every possible 
defect. To facilitate defect detection and manage test complex-
ity, abstract fault models are used in practice to mimic the 
behavior of real defects. The most widely used fault model in 
industry today continues to be the single stuck-at fault model. 
This model offers a number of advantages⎯it is simple, it 
requires low computational effort for test generation, and test 
patterns for single stuck-at faults also detect many physical 
defects. However, even though coverage of all or a large per-
centage of single stuck-at faults is considered to be indispen-
sable for any realistic test-development flow today, it does not 
always guarantee high defect coverage [12].  

The inadequacy of the stuck-at model for achieving high 
defect coverage led to the development of new fault models, 
e.g. transition-delay faults, bridging faults, etc., which reflect 
the behavior of realistic defects more accurately than the 
stuck-at fault model. However, even these fault models are 
inadequate for many new defect types and they are accompa-
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nied by practical problems that hinder their widespread adop-
tion.  For example, the automatic test-pattern generation 
(ATPG) algorithms associated with these fault models require 
excessive computational effort. Moreover, these models lead 
to prohibitively high pattern counts, thereby leading to high 
test application times. Finally, many of these fault models 
require detailed layout information, which is available only at 
the latter stages of the chip design flow. As a result, test de-
velopment becomes a significant contributor to delays in chip 
tape-out. 

An alternative approach to increase defect coverage is to 
rely on multi-detect testing, also referred to as N-detect testing. 
This method was proposed in [11], and since then it has been 
identified as a very effective test strategy [1]-[6], [8]-[10], 
[13]-[17]. The main idea of N-detect testing is to apply N (N > 
1) different test patterns for each stuck-at fault. By detecting 
each stuck-at fault multiple times, with different test patterns 
each time, the probability that arbitrary defects are activated at 
the target fault site increases. An important property of N-
detect testing is that it employs conventional fault models 
(usually the stuck-at fault model), therefore it can be easily 
incorporated in existing ATPG algorithms and tools. However, 
N-detect testing has one significant disadvantage⎯the size of 
the test set increases linearly as the value of N increases in 
order to provide test patterns of higher quality. An alternative 
method proposed recently in [7] addresses this problem by 
embedding multi-detection of faults within a compact 1-detect 
test set, thereby increasing test quality without significantly 
increasing test-set size.  

In this paper, we propose a new method to generate high-
quality compact test sets with test lengths similar to that of 1-
detect stuck-at test sets. In contrast to [7], we do not embed 
multi-detection of stuck-at faults within 1-detect stuck-at pat-
terns. Instead, we first select a small number of the most-
efficient test patterns from an N-detect pattern repository. 
Next we embed single-detection of stuck-at faults within the 
selected high-quality test patterns. Despite its compact size, 
the test set generated by the proposed method provides sig-
nificantly higher coverage of transition-delay faults and com-
parable coverage for bridging faults, when compared to the 
baseline 1-detect test set and the test set obtained using [7]. It 
also provides higher coverage of transition-delay faults than 
larger N-detect test sets for several values of N. 

The proposed method relies on a new quality metric for 
evaluating the effectiveness of each test pattern. We also pre-
sent an efficient algorithm for selecting the most efficient test 
patterns. The quality metric is based on the concept of output 
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Fig. 1. Proposed test-generation flow. 

deviations [19], which offer an effective probabilistic means 
to evaluate test vectors based on their potential for detecting 
arbitrary defects and, most importantly, without being biased 
towards any particular fault model. As shown in [18], unbi-
ased testing provides higher test quality than a test method 
that is biased by a particular fault model. Simulations results 
for benchmark circuits demonstrate the effectiveness of the 
proposed method for defect screening. These results also 
show that simply increasing the value of N for N-detection, 
which is currently common industry practice, is not necessar-
ily the best approach to enhance defect coverage. Instead, 
combining N-detection with pattern selection based on output 
deviations appears to be the most promising defect-screening 
strategy with low pattern counts.  

II. OUTPUT DEVIATIONS  
Output deviations (described in detail in [19]) are probabil-

ity measures at primary outputs, as well as pseudo-outputs for 
full-scan designs (all denoted as circuit outputs hereafter), that 
reflect the likelihood of error detection at these outputs. As it 
is shown in [19], test patterns with high deviations tend to be 
more effective for fault detection.  

Output deviations are based on a probabilistic fault model, 
in which a probability map (referred to as the confidence-level 
vector) is assigned to every gate in the circuit. Signal prob-
abilities pi,0 and pi,1 are associated with each line i for every 
input pattern, where pi,0 and pi,1 are the probabilities for line i 
to be at logic 0 and 1, respectively. The confidence level Ri of 
a gate Gi with m inputs and a single output is a vector with 2m 
components, defined as: Ri = ( ri

0...00 ri
0...01...ri

1...11 ), where 
each component of Ri denotes the probability that the gate 
output is correct for the corresponding input combination. For 
example, let y be the output of a NAND gate Gi, with inputs a 
and b. We have: 
py,0 = pa,1 pb,1ri

11+pa,0 pb,0(1-ri
00)+pa,0pb,1(1-ri

01)+pa,1pb,0(1-ri
10) 

py,1 = pa,0 pb,0ri
00 + pa,0 pb,1ri

01 + pa,1 pb,0ri
10 + pa,1 pb,1 (1- ri

11). 
Likewise, the signal probabilities can be easily computed for 
other gate types. For any logic gate (or output) Gi in a circuit, 
let its fault-free output value for any given input pattern tj be d, 

with d ∈ {0, 1}. The output deviation ∆Gi,j of  Gi for tj is de-
fined as 

iG ,dp , where d  is the complement of d. Intuitively, 
the deviation for an input pattern is a measure of the likeli-
hood that the gate output is incorrect for that input pattern. 
Output deviations can be determined without explicit fault 
grading, hence the computation (linear in the number of gates) 
is feasible for large circuits and large test sets. In the next sec-
tion, we define a new output-deviations measure that can be 
used for test generation.  

III. PROPOSED TEST-GENERATION METHOD 

The flow of the proposed test generation method is shown 
in Fig. 1(a). In the following discussion, we explain each step 
in detail. A test cube is a test pattern that contains 0, 1 and 
don’t-care (X) logic values, and a test vector is a test pattern 
without X logic values. 
Step 1: In the first step a repository of test cubes is generated, 
using N-detect ATPG with as high a value of N as is computa-
tionally feasible. During ATPG, the Xs of the test cubes are 
left unspecified but the dynamic-compaction option is turned 
on in order to limit the size of the repository. Next, the gener-
ated test cubes are evaluated according to the proposed devia-
tion-based quality metric. Since output deviations are not de-
fined in [19] for test patterns containing Xs (i.e., test cubes), 
we evaluate each test cube according to its potential to yield 
test vectors with high output deviations values if its Xs are 
replaced randomly by logic values 0, 1. To this end, we gen-
erate m random test vectors per cube by specifying its Xs in m 
different random ways (m is a predetermined constant). Next, 
all test vectors are inserted in a list L and their output devia-
tions are calculated as proposed in [19]. Note that the m ran-
dom test vectors per cube are used only for evaluating the 
cube, and they are discarded after the selection of the most 
efficient cubes.  
Step 2: The second step uses a quality metric to evaluate all 
the test vectors generated in the previous step, and selects k 
out of them. These k vectors are deemed to be of the highest 
quality and they correspond to k different test cubes. The se-



lection process provides the set of k test cubes from which the 
k selected test vectors were generated. The selection is based 
on the following two rules: 
(i) Rule 1: A test vector is selected only if it provides a high 
deviation value at one or more outputs.  
(ii) Rule 2: The final set of selected test vectors provides high 
deviation value at least once at every output. However, the 
number of selected test vectors that provide high deviation 
value at output i may be higher than the number of selected test 
vectors that provide high deviation at output j, if the potential 
of output i to observe defects is higher than that of output j, 
based on the structure of the circuit.  

The first rule ensures that a test vector will not be selected if 
it does not provide high deviation value, that is high ob-
servability at, at least one output. The deviation value D(t,i) 
for test vector t at output i is high if it is close to the maximum 
deviation value provided by any test vector at this output. 
However, since we cannot consider all possible test vectors 
due to computation constraints, we limit the calculation of the 
maximum deviation values to the test vectors in list L. In addi-
tion, the maximum deviation at output i when the fault-free 
response is 0 can be different than the maximum deviation at 
the same output when the fault-free response is 1. Therefore, 
in contrast to [19], for every output i, 1 ≤ i ≤ NO, where NO is 
the number of circuit outputs, we calculate two values, 
namely Max(i,0) and Max(i,1). These are the maximum devia-
tion values achieved by any of the test vectors producing the 
fault-free response 0 (referred to as test vector subset Ti,0) and 
1 (referred to as Ti,1) at this output (Ti,0∪Ti,1=L). Thus, 
Max(i,v)= max{D(t,i)}, where t∈Ti,v, v=0 or 1. We say that 
D(t,i) is high if  

D(t,i)  ≥ F1 · Max(i,v), where F1 ≤ 1, v = 0 or 1,          (1) 
where v is the fault-free response of t at output i. Note that F1 
is a real-valued quantity that should be close to 1 for selecting 
vectors with maximum output deviation values. However, in 
practice a value of F1 = 1 is very strict and sometimes it re-
sults in a failure to select vectors, especially after the first few 
most-efficient vectors are selected. We experimentally veri-
fied that a value of F1 in the range [0.99, 0.995] provides 
high-quality vectors, and thus for the experiments reported 
here, we set F1 = 0.995. 

The second rule ensures that the test vectors will be selected 
to eventually provide high deviation value at every output at 
least once, in order to provide high observability for as many 
defects as possible. It also considers the fact that the number of 
defects that can be observed at the output of a large logic cone 
is likely to be higher than the corresponding number at the out-
put of a small logic cone. Therefore, every output i is initially 
assigned a pair of weights wo(i,0) and wo(i,1), one for each set 
Ti,0 and Ti,1, respectively. Both these weights are initially set 
equal to the number of lines in the fan-in logic cone of output i, 
a measure of the volume of defects that can possibly affect this 
output. Then, a weight WT(t) is calculated for every test vector 
t as follows: let MS(t) be the set consisting of all outputs i, 1 ≤ 
i ≤ NO, with high deviation value D(t,i) when vector t is ap-
plied at the circuit (i.e. outputs i satisfy inequality (1) for vec-
tor t). MS(t) is partitioned into two subsets MS0(t), MS1(t); all 

outputs with fault-free response 0 are placed in MS0(t) and the 
rest in MS1(t). Then we have: 

0 1i MS [ t ] i MS [ t ]
WT( t ) wo( i,0 ) wo( i,1)

∈ ∈
= +∑ ∑   (2) 

WT(t) is equal to the sum of the weights of all outputs with 
high observability during the application of t. The vector t 
with the highest weight WT(t) is selected every time. 

If the selection is based only on Equation (2) then it will be 
biased towards test vectors that increase the deviations at a 
subset of outputs (with high weights), thus adversely affecting 
observability for other nodes in the circuit. In order to avoid 
this problem, every time a test vector t that provides high de-
viation value at output i is selected, the weight wo(i,v), where 
i ∈ MSv(t), v=0, 1 is divided by a constant factor F2. Therefore, 
outputs that exhibit increased observability by the application 
of t are considered as less effective in detecting defects during 
the selection of the test vectors following. In this way the suc-
ceeding selected test vectors will provide high deviation value 
at other outputs too. Note that, by using two weights wo(i,0) 
and wo(i,1) for each output i we enforce the selection of test 
vectors which provide high deviation values for both fault free 
responses 0 and 1 at this output since we control the number 
of vectors which provide high deviation value for each re-
sponse separately. We verified experimentally that a value of 
F2 in the range [2, 10] is sufficient to guarantee the selection 
of test vectors which provide high deviation values at all out-
puts. We have chosen the value of F2 = 8 in the experiments 
reported in Section 4. The overall flow for this selection proc-
ess is highlighted in Fig. 1(b).  
Step 3: Next, we guarantee that the selected test cubes 
achieve complete coverage of single stuck-at faults. Therefore, 
we perform stuck-at fault simulation with the selected test 
cubes and we drop every detected stuck-at fault. Then, we 
specify their Xs in order to detect as many undetected stuck-at 
faults as possible, and if necessary, we top-up the k test cubes 
with additional dynamically-compacted test cubes. The addi-
tional test cubes are not selected from the repository in order 
to extend the set of the k test cubes with the smallest possible 
number of top-up test cubes. 
Step 4: This step is optional. Any remaining Xs are specified 
in order to achieve multiple detections of as many stuck-at 
faults as possible, as suggested in [7].  
Step 5: At this step all remaining Xs, are specified in such a 
way as to maximize the output deviations. Therefore, for each 
test cube, m random test vectors are generated and the best 
test vector is selected, according to the WT measure as in Step 
2. Finally, the selected test vectors are ranked in descending 
order of their WT measures.  

IV. SIMULATION RESULTS 

In this section, we evaluate the defect coverage of the pro-
posed test-generation method for the largest ISCAS’89 and a 
subset of IWLS’05 benchmark circuits. The test-generation 
flow (Fig. 1), excluding ATPG and fault simulation, was im-
plemented in C. Commercial tools were used for all ATPG-
related and fault simulation steps.  

The quality of the proposed method, with respect to defect  



TABLE I 
BENCHMARKS AND TEST-SET SIZES. 

 Prop SD/ND
 

Circuit # 
Inp. 

# Scan 
Cells 

# 
Gates

Reg 
SD/ND 2-p 1-p 

Reposit.
size 

s5378 35 179 3114 142 147 146 498 
s9234 36 211 4636 190 188 206 1358 

s13207 62 638 6837 287 301 322 949 
s15850 77 534 7949 178 167 171 728 
s38417 28 1636 21104 155 160 159 692 IS

C
A

S’
89

 

s38584 38 1426 22780 313 246 283 1326 
sytemcaes 258 670 16574 343 325 309 1428 

tv80 13 359 13460 747 752 753 4198 
usb_funct 112 1746 23379 181 169 175 1049 
ac97_ctrl 54 2199 24055 217 179 176 1711 
mem_ctrl 116 1078 22402 607 643 647 2839 IW

L
S’

05
 

pci_bridge32 159 3358 38015 1007 739 727 7157 
 
coverage, was evaluated using two surrogate fault mod-
els⎯the transition-delay fault model (using the launch-on-
capture technique) and the bridging fault model. In the former 
case we calculated the proposed quality metric using the re-
sponse to the second vector for each vector pair, (consisting of 
each stuck-at test and the response to the stuck-at test) while 
in the latter case, we use the response for every single vector 
(i.e., every stuck-at test). 

In order to highlight the benefits of the proposed test-
generation method, we compare it with traditional 1-detect 
stuck-at ATPG, as well as with the embedded multi-detect 
ATPG method proposed in [7]. For each experiment, the fol-
lowing four test sets were compared with each other: 
Reg_SD: traditional (regular) dynamically compacted 1-detect 
test set, with the Xs specified randomly. 
Reg_ND: traditional dynamically compacted 1-detect test set, 
with the Xs specified in such a way as to detect a stuck-at 
fault as many times (up to N) as possible. The approach of [7] 
for N =10 was implemented for this purpose.  
Prop_SD: compact 1-detect test set generated by the proposed 
test-generation flow, with the Xs specified exclusively to 
maximize output deviation (Step 4 is omitted).  
Prop_ND: compact 1-detect test set generated by the pro-
posed test-generation flow, with the Xs specified in order to 
detect first multiple (up to N=10) times as many stuck-at 
faults as possible (Step 4 is applied) and then the remaining 
Xs are specified in order to maximize the output deviations.  

For Prop_SD and Prop_ND test sets, 10-detect test sets 
were used as repositories. The number k of selected cubes from 
the repositories was set equal to 1/3 of the number of cubes in 
the Reg_SD test sets for circuits mem_ctrl, tv80, s13207, and 
to 2/3 for the rest of the circuits. Finally, m was set equal to 10.  

The basic characteristics of the benchmarks are shown in 
Columns 1-4 of Table I. Column 5 presents the number of test 
vectors in Reg_SD and Reg_ND (the pattern counts are the 
same). Column 6 presents the (identical) number of test vec-
tors in Prop_SD and Prop_ND, generated by applying the 
quality metric to vector pairs (denoted as 2-p in the Table I). 
Column 7 presents the same data generated by applying the 
quality metric to single vectors (denoted as 1-p). Finally, col-
umn 8 lists the number of the test cubes in the 10-detect pat-
tern repositories. For each circuit, the size of the smallest test 
set generated is bold. In a majority of cases, the size of the test  

TABLE II 
BCE+ VALUES AND BRIDGING FAULT COVERAGE (1-P TEST SETS) 
 BCE+ Bridging fault coverage 

Circuit 
Reg 
SD 

Reg 
ND 

Prop 
SD 

Prop 
ND 

Reg 
SD 

Reg 
ND 

Prop
SD 

Prop
ND 

s5378 94.65 96.50 96.06 96.86 93.91 95.30 95.07 95.63
s9234 88.24 89.68 88.85 89.81 87.32 88.68 88.03 88.92

s13207 93.81 95.75 95.43 96.41 92.99 94.54 94.32 94.98
s15850 94.72 95.73 95.35 95.76 94.18 95.00 94.65 95.07
s38417 98.38 99.07 98.69 99.14 97.59 98.34 97.79 98.42
s38584 91.68 93.09 91.54 92.36 91.13 92.04 90.99 91.48

sytemcaes 99.08 99.23 99.07 99.08 96.73 96.76 96.54 96.52
tv80 91.91 92.71 92.31 92.72 89.61 90.02 89.86 89.97

usb_funct 94.87 96.55 95.23 96.45 96.13 97.19 96.36 97.16
ac97_ctrl 98.99 99.31 98.79 98.95 99.27 99.42 99.15 99.23
mem_ctrl 62.34 63.31 63.06 63.77 74.64 75.30 75.18 75.68

pci_bridge32 98.70 99.13 98.63 98.85 98.48 98.76 98.46 98.61
 
set generated by the proposed method is smaller than the test 
sets generated by the other methods and in all other cases, the 
test-set sizes are comparable. The test-set sizes for the pro-
posed method can be reduced further by selecting a smaller 
value of k. A large k leads to higher test quality, therefore pat-
tern count can be traded off with test quality by appropriately 
selecting k. 

Next, we compare the four test sets with respect to the cov-
erage achieved for transition-delay faults (Fig. 2). As expected, 
in the vast majority of the cases, Reg_ND, Prop_SD, and 
Prop_ND provide significantly higher transition-fault cover-
age than the baseline Reg_SD test set. Moreover, both the 
proposed test sets, Prop_SD and Prop_ND, provide higher 
coverage than Reg_ND generated using the method proposed 
in [7]. In most cases, the highest coverage is provided by the 
Prop_ND test sets. Moreover, the proposed method provides 
higher ramp-up than the other methods, and it offers reduced 
test application time in an abort-at-first-fail environment.  

In the second experiment, we study the multiple-detection 
profile of each test set. Due to limited space, we present re-
sults for three representative cases. The other benchmarks 
exhibit similar behavior. Each curve in Fig. 3 presents the 
percentage of stuck-at faults detected n times or more for n = 
1, 2, …, 11. Our results show that a high degree of multi-
detection is not always necessary for high defect coverage. 
The test sets of the ac97_ctrl and system_caes for the pro-
posed method provide less multi-detection than the two base-
line methods, yet they provide higher transition-fault coverage. 
We therefore note that generating patterns with high devia-
tions allows us to get high defect coverage with a smaller 
value of N than would be possible by using N-detect testing 
alone. Hence, a combination of output deviations and multi-
detection (Prop_ND) offers the most promising solution. 

Next, we compare the four test sets using the bridging fault 
model. For each generated test set, the BCE+ metric proposed 
in [16] was used as an estimate of bridging fault coverage. In 
addition, 400K bridging faults were simulated as follows: 
100K pairs of lines were selected randomly for each circuit, 
and four bridging faults were simulated for each pair by con-
sidering both lines as aggressors and victims, as well as by 
considering both AND and OR bridging faults. The results for 
the various test sets are shown in Table II. Columns 2-5 and 
6-9 show the BCE+ measures and the bridging fault coverage 
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Fig. 2. Transition-fault coverage for the different test sets and the various benchmarks (2-p test sets). 
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Fig. 3. Multi-detection results for the different test sets. 

TABLE III 
SMALLER TEST SETS ARE MORE EFFECTIVE FOR DEFECT COVERAGE THAN N-

DETECT TEST SETS. 
 Test-Set Size 

Circuit 
N*: Thresh-

old on N  N*-detect Proposed 
Size Reduc-

tion (%) 
s5378 7 367 147 59.9% 
s9234 6 876 188 78.5% 

s13207 6 660 301 54.4% 
s15850 5 448 167 62.7% 
s38417 2 226 160 29.2% 
s38584 2 482 246 49.0% 

sytemcaes 2 488 325 33.4% 
tv80 3 1632 752 53.9% 

usb_funct 3 397 169 57.4% 
ac97_ctrl 8 1396 179 87.2% 
mem_ctrl 5 1718 643 62.6% 

pci_bridge32 3 2739 739  73.0%  
 

for all test sets, respectively. We note that in most cases, the 
Prop_ND test set provides the best results, both in terms of 
the BCE+ measure and bridging fault coverage. In some cases, 
Reg_ND provides slightly higher bridging fault coverage and 
BCE+ values. However, note that in all these cases, the pro-
posed test sets are smaller than the test-set sizes for Reg_ND. 
We expect that a larger value of k, and thus a larger test set 
(enriched with higher-quality patterns), will lead to higher 
BCE+ and bridging fault coverage using Prop_ND. 

Finally, we determine a threshold N* on N such that for all 
N < N*, either Prop_SD or Prop_ND test set offers higher 
transition-fault coverage than an N*-detect test set (all test sets 
provide complete coverage of detectable stuck-at faults). The 
results in Table III demonstrate that, for most benchmarks, the 
proposed method leads to smaller but more effective test sets 
than several N-detect test sets.  

V. CONCLUSIONS 

We have presented a new method, based on the judicious 
use of output deviations, for generating compact, high-quality 
test sets. Simulation results show that compact test sets can be 
generated for complete single stuck-at coverage and higher 
coverage of unmodeled transition-delay faults and bridging 
faults compared to other methods. The effectiveness of the 
proposed method can be attributed to the combination of 
multi-detect ATPG and pattern selection based on deviations; 
therefore, this method serves as a promising alternative to N-
detect ATPG with large N. 
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