Reseeding-based Test Set Embedding with Reduced Test Sequences

E. Kalligerosl’ 2 D. Kaseridis'" %, X. Kavousianos® and D. Nikolos'*?

'Computer Engineering & Informatics Dept., University of Patras, 26500 Patras, Greece
’Research Academic Computer Technology Institute, 61 Riga Feraiou str., 26221 Patras, Greece
3C’0mputer Science Dept., University of loannina, 45110 loannina, Greece
kalliger@ceid.upatras.gr, kaserid@ceid.upatras.gr, kabousia@cs.uoi.gr, nikolosd@cti.gr

Abstract

A novel technique for reducing the test sequences of re-
seeding-based schemes is presented in this paper. The pro-
posed technique is generic and can be applied to test set em-
bedding or mixed-mode schemes based on various TPGs. The
imposed hardware overhead is very small since it is confined
to just one extra bit per seed plus one very small counter in
the scheme’s control logic, while the test-sequence-length
reductions achieved are up to 44.71%. Along with the test-
sequence-reduction technique, an efficient seed-selection
algorithm for the test-per-clock, LFSR-based, test set embed-
ding case is presented. The proposed algorithm targets the
minimization of the selected seed volumes and, combined
with the test-sequence-reduction technique, delivers results
with fewer seeds and much smaller test sequences than the
already proposed approaches.

1. Introduction

The core-oriented way of designing contemporary Systems-
on-a-Chip (SoCs) is placing a severe burden on the external
Automatic Test Equipment (ATE) used for their testing. This
core-based design style, although reducing the time-to-market
and the complexity of the designers’ task, leads to much larger
and denser circuits which require greater test data volumes and
longer test-application times in order to be properly tested.
Consequently, the introduction of new techniques that over-
come these problems is of great importance.

From the perspective of testing, the cores integrated in a
SoC can be classified into two categories: those that are of
known structure and those that are [P-protected and practically
constitute a black box. For the former, fault simulation and/or
test pattern generation can be performed, while the latter are
just accompanied by a precomputed set T of test patterns that
should be applied to their inputs so as to be tested. Three dif-
ferent approaches can be followed in order to reproduce a test
set 7T that comes with a core of unknown structure: determinis-
tic test set generation, test-pattern compression and test set
embedding. In the first approach, an on-chip ROM or a deter-
ministic Test Pattern Generator (TPG) [1] is used for precisely
reproducing the test set of the Circuit (or Core) Under Test
(CUT). In the second one, compressed versions of the test vec-
tors [2] or the test cubes (test patterns with undefined bits) [3]
of T are stored in the tester and decompressed on-chip by means
of a small built-in circuit. Contrary to the two aforementioned
approaches, test set embedding [4]-[7] encodes the test pat-
terns of 7'in a longer TPG sequence.

This work was supported in part by the Public Benefit Foundation “Alexan-
der S. Onassis” via its scholarships programs, and in part by the EPEAEK 11
“Pythagoras” program.

Similarly to Built-In Self-Test (BIST), test set embedding
techniques can be classified as test-per-clock [4]-[6] or test-
per-scan [7]. When a new pattern is generated at each clock
cycle we refer to a test-per-clock scheme, while, in a test-per-
scan scheme, the scan chain(s) of the CUT is (are) serially
filled by the TPG. Another categorization can be made accord-
ing to the test patterns of 7 that are handled. Some approaches
operate on test cubes [5]-[7], while others manipulate fully
specified patterns [4]. The advantage of test set embedding
compared to the deterministic test set generation and the test-
pattern compression approaches lies in its reduced hardware
and test-data storage requirements, respectively. However, in
some cases [5]-[7], this advantage is exchanged with exces-
sively long test sequences. Therefore, test set embedding tech-
niques that combine reduced overhead (hardware and test data
storage) with short test sequences are required.

In this paper, a novel approach for significantly reducing
the test sequences of reseeding-based schemes is presented.
This test-sequence-reduction approach is generic in the sense
that it can be applied to test-per-clock or test-per-scan, test set
embedding or mixed-mode schemes, based on various TPGs
(Linear Feedback Shift Registers-LFSRs, cellular automata
etc.). Also, it can be used either in a BIST implementation or in
a test-resource partitioning scenario, where the seeds are sup-
plied by an external ATE. The proposed technique is based on
partitioning the vector window of each seed into segments.
The seeds are then reordered according to the number of useful
segments their windows include. The overhead imposed by the
proposed technique is confined to one extra bit per stored
LFSR seed plus one very small counter in the scheme’s control
logic. In addition to the test-sequence-reduction technique, a
very efficient seed-selection algorithm is presented for the case
of test-per-clock, LFSR-based, test set embedding. For mini-
mizing the number of selected seeds, apart from three heuristic
criteria that have been presented in [8], two new criteria are
introduced, which significantly refine the selection process
and fairly reduce the selected seed volumes. We note that the
seed-selection algorithm requires that test set 7" consists of test
cubes. As explained in [9], much smaller test-data-storage re-
sults can be achieved if, instead of fully specified patterns, test
cubes are handled. The seed-selection algorithm is presented
first in Section 2, while the test-sequence-reduction technique
is explained in Section 3. Both of them are evaluated with ex-
perimental results and comparisons in Section 4 and the paper
is concluded in Section 5.

2. Seed-selection algorithm

For presenting the seed-selection algorithm, we consider
the classical LFSR-based reseeding scheme, consisting basi-
cally of an LFSR of length » and a Vector Counter (n is the
number of primary inputs of the CUT). The LFSR is loaded

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

serially with a new seed and is let generate states for L-1 clock
cycles. That is, each seed is expanded to a window of L vectors
(including the new seed), which are applied to the CUT and
the corresponding responses are captured by the Test Re-
sponse Compactor (TRC). The same process is repeated until
all the test cubes accompanying the CUT are covered.

The seed-selection algorithm receives as inputs the size L of
the window that each seed is expanded to and a test cube set 7.
Its goal is to select a number of LFSR seeds so as each test
cube of 7 to be compatible with at least one of the vectors gen-
erated when the selected seeds are expanded to the correspond-
ing vector-windows. The set of chosen seeds should be as
small as possible.

For determining a new seed, the seed-selection algorithm
makes use of the well-known concept of solving systems of
linear equations [10]. That is, if each bit of the initial state
(seed) of the LFSR were replaced by a binary variable, then
each one of the L window-states would be equal to a symbolic
vector. A symbolic vector is a vector, the bits of which are lin-
ear expressions comprising binary variables (those constitut-
ing the initial LFSR state) and/or a binary constant. Let sv; = ¢
be the linear system which results from equating the defined
bits of test cube ¢ with the corresponding linear expressions of
the ith symbolic vector of the window (sv;). If this system can
be solved, then a test vector compatible to test cube ¢ can be
generated at the ith window position (or, in other words, ¢ can
be covered or encoded at the ith window position). This is
achieved by updating the initial LFSR state according to the
solution of the system (i.e., assuming Gauss-Jordan elimina-
tion, all the variables belonging in the pivot columns of the
system should be replaced by linear expressions of the free
variables). The seed-selection algorithm examines all possible
linear systems and chooses one in order to be solved. After
variable replacement, the L symbolic vectors are regenerated
starting from the updated initial LFSR state. The difference
from the previous step is that the replaced variables are not
included in the expressions of the symbolic vectors any more.
A new test cube is selected to be covered at some window posi-
tion and the above-described process is repeated until no sys-
tem can be solved for any of the remaining test cubes. At this
point a new seed has been determined. If any of the variables
of the initial LFSR state have not been replaced by constant
values during the linear-system solving process, they are set to
arandom value.

Since at each step of the algorithm, linear systems corre-
sponding to more than one test cubes will be solvable at more
than one positions of the examined window, a set of heuristics
should be defined for selecting the system that will be actually
solved. The proposed seed-selection algorithm utilizes the
three basic criteria of the algorithm proposed in [8] for mixed-
mode BIST, which are further enhanced with two additional
ones. These two new criteria significantly refine the selection
process, improving that way the encoding ability of the pro-
posed algorithm and thus lead to better results in terms of the
required seed volumes and the resulting test-sequence lengths.
In the following, we briefly discuss the three criteria described
in [8] and then we present in detail the two new ones.

The most important of the three heuristic criteria presented
in [8] concerns the selection of a new system to be solved, at
each step of the algorithm. The algorithm examines the linear

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

systems for all the test cubes of set 7, in all the L positions of
the examined window. The system that is actually selected is
the one that leads to the replacement of the fewest variables in
the initial window state. The reason is that with more variables
in the linear expressions of the symbolic vectors, more systems
will be solvable at each step and thus more test cubes will be
encoded in the windows of the selected seeds. The above rule
is always held except for the case of the selection of the first
test cube for each seed. This cube is covered at the first state of
the examined window, i.e., its defined bits determine the val-
ues of the corresponding bits of the new seed. The test cube
containing the maximum number of defined bits is the first to
be selected for each new seed. This second criterion leads to
better results in terms of the required seed volumes, due to the
fact that cubes containing many defined bits (those selected
first for each seed) are not left to be covered at the last stages of
the seed-selection process. Such cubes are difficult to be en-
coded together in the same seed’s window due to the great
number of defined bits they include. Thus, if only cubes with
many defined bits were left to be encoded in the final stages of
the seed-selection process, many seeds would be needed in
order to cover them (there may be cases in which only one
cube would be encoded in one seed). For the same reason, the
third criterion presented in [8] splits the test cubes of T into
two different groups. The first one (high priority) consists of
the cubes of 7 that contain many defined bits, while the other
group (low priority) includes the remaining cubes. At each step
of the algorithm the cubes of high priority are targeted first and
only if no such cube can be covered, the algorithm proceeds to
the cubes of the low-priority group. To sum up, for each new
seed, the test cube containing the maximum number of defined
bits is covered first at the first window position, while the re-
maining cubes are divided into two groups. Then the algorithm
runs iteratively, examining the high priority cubes first, and
selects at each step the linear system that eliminates the fewest
variables in the initial LFSR state.

Although the application of the above heuristics leads to
good results in terms of the resulting seed volumes, the main
selection criterion is not elaborate enough. That is, at each step
of the algorithm there are many solvable linear systems that
require the same minimum number of variables to be replaced
in the initial LFSR state. According to the seed-selection algo-
rithm of [8], among those systems, the first one is selected.
However, this is essentially a random choice that does not im-
prove the algorithm’s efficiency in any way. For that reason,
this selection is refined with two new criteria. Their aim is to
favor the selection of test cubes that are more difficult to be
encoded along with others in the same seed’s window.

As explained above, an indication of this cube-encoding
difficulty is given by the number of defined bits a test cube
contains. Therefore, this number is chosen to be the first of the
two new selection criteria. Specifically, from the systems that
require the elimination of the same minimum number of vari-
ables in order to be solved, those corresponding to the test cube
with the maximum number of defined bits are preferred. From
the preferred systems, the one, which is nearest to the initial
state in the L-state window, is selected. This last choice favors
the test-sequence-reduction procedure that will be presented in
the following section. We should note that the number of de-
fined bits is a “global” metric of how difficult is for a cube to

YF]',F.

COMPUTER
SOCIETY

be encoded in the same seed’s window along with another one.
That is, independently of the test cubes that have already been
encoded in the current window, if cube #; has fewer defined
bits than #,, then the probability that #; can be encoded along
with another cube #; is higher than the probability of #, being
able to be encoded together with #;.

Since there may be minimum-variable-eliminating systems
that correspond to more than one test cubes with the same
maximum number of defined bits, a second criterion for select-
ing the proper system in such cases is used. According to this
criterion, the systems corresponding to the cube, which can be
covered at the fewest positions within the L-state window, are
preferred. As above, from those systems, the one that is higher
in the examined window is selected. In contrast with the previ-
ous one, this encoding-difficulty metric can be characterized
as “local”. That is, according to this criterion, the selection
between test cubes ¢, and ¢, with the same number of defined
bits totally depends on the test cubes that have been previously
encoded in the same window. In other words, a different test-
cube encoding history may lead to the selection of #, instead of
t, or the opposite.

With the addition of the two above-described heuristic cri-
teria, the encoding ability of the seed-selection algorithm has
been significantly improved. Specifically, the resulting sets of
seeds were up to 25% smaller than those derived after the ap-
plication of the algorithm of [8] in the test set embedding case.

We should note that the running time of the seed-selection
algorithm is rather moderate. It mainly depends on the length
of the LFSR used, i.e., on the number of primary inputs of the
CUT. For reducing the execution time, we mark during each
step the window positions where a system cannot be solved for
each test cube, in order not to try to solve it again in the follow-
ing steps. We also stop solving a system, when, during its so-
lution, more variables are replaced compared to the, up to that
point, best system (the one that eliminates the fewest vari-
ables). These two run-time optimizations combined with the
fact that the procedures for solving binary linear systems are
much faster than those for solving conventional systems of
linear equations [11], lead to run-times in the range of some
seconds to few hours in a Pentium 4, 2.6 GHz workstation, for
each of the experiments that will be presented in Section 4.

3. Test-sequence-reduction scheme

As it has been explained in the previous section, the seed-
selection algorithm assumes a window of L successive LFSR
states for each selected seed. Only some of the states of each
window are actually being used for reproducing the test cubes
of set 7. One can easily understand that, if the last state of a
window is not a useful one, i.e. no test cube has been selected
by the seed-selection algorithm to be covered at that state, then
all the states from the last useful one to the last window state
are redundant (Figure 1). On the other hand, the useless states
between two successive useful ones are necessary since they
connect the two useful states in the LFSR sequence. Therefore,
they cannot be removed without reseeding the LFSR (so as to
bridge the gap created in the state sequence by the removed
states). Moreover, as more seeds are selected by the seed-
selection algorithm, more variables need to be replaced in
order for the remaining test cubes to be covered and thus
fewer cubes are encoded in each seed, leaving more useless

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

states at the end of the corresponding windows. Due to the
above-mentioned reasons we conclude that, usually, there will
be a significant number of final-redundant LFSR states in each
window. This fact negatively affects the required test applica-
tion time. This problem is much more important in the case of
test set embedding since the increased number of seeds, com-
pared to the case where the CUT is of known structure, leads to
much longer test sequences.

r

First Window State ¢— New Seed

.
-
-

L-state 4
window <

Last Useful State

7

Redundant
States
¢ Last Window State

Figure 1. A window of L states

The most efficient way, in terms of test-sequence length, for
eliminating those redundant final window-states is to stop the
expansion of each seed after the clock cycle, in which the last
useful state was generated by the LFSR. In that way the num-
ber of redundant states in each window (the useless states at
the end of the window) will be equal to zero. Assuming that a
Vector Counter is used for counting the states of each window,
this “maximum reduction” approach requires Vector Counter
to be initialized in a different value at each reseeding and con-
sequently, the initialization values of the counter should be
stored along with the corresponding seeds. Therefore, exces-
sive test data storage may be required, especially when a long
Vector Counter is needed. In order to overcome this ineffi-
ciency an intermediate approach is proposed.

Partitioning the window in

m segments
VIIIIIIIS

Window of Size L

7777777

7777777 77777777

Useful States 77777777 7777777

—

Segment k
(Last useful segment)

77777777 7777777,

Segment k+1
(First redundant segment)

Segment m
(Last segment - redundant)

Figure 2. The proposed window segmentation technique

Redundant
States

According to this approach, each window is segmented into
a number of equal-sized groups of LFSR states. The genera-
tion of the states of each group (segment) is controlled by a
counter called Segment-Vectors Counter, which counts from
Segment_Size-1 to 0. The partitioning of a window into seg-
ments is shown in Figure 2. The useful states of the window
are included in the first k segments, where the kth segment con-
tains the last useful state. £ is, most of the times, smaller than m
(the total number of segments a window has been partitioned
to) and thus the last m-k segments (those containing redundant
states) can be dropped during test generation. Furthermore,
with proper selection of the value of parameter Segment Size,
the distance between the last useful state and the end of the last

YF]',F.

COMPUTER
SOCIETY

useful segment can be minimized. Both the above reasons as-
sure that this intermediate approach eliminates the majority of
redundant states that a window includes, having as upper limit
(of the eliminated redundant states) those that the “maximum
reduction” approach drops.

Having partitioned each window into segments, a low
hardware-overhead solution for generating the useful seg-
ments of each window is required. Seed reordering could be
helpful for coming up with such a solution. We remind that the
selected seeds are independent of each other and therefore can
be rearranged in any suitable order. The main idea behind the
adopted approach is that if we order the seeds according to the
number of useful segments they include and if the useful-
segment volumes of two successive windows differ at most by
one, then only a single extra bit per seed is necessary for indi-
cating this relation. A zero value of that bit corresponds to the
same number of segments between the current seed and its
successor while a value equal to one indicates a one segment
difference. The problem is that there will be cases for which
the difference in the number of useful segments between two
successive (ordered) seeds will be greater than one. In such
cases, some of the useless segments should be maintained in
the window with the smaller number of useful segments. The
proposed seed rearrangement procedure is better explained
with the example of Figure 3.

Seed1 Seed2 Seed3 Seed4 Seed5

il

a)Initial windows and useful segment volumes

Seed3 Seed! Sced5 Seed4 Seed2 Seed3 Seedl ScedS Seed4 Seed2
5

8 7 7 8 7 7 Rszdundanl

i

Extra Bits gments

1 0 1 1 0

b)Reordering ¢) Final windows and extra bits

Figure 3. Rearrangement technique: a) Initial windows, b) Windows
after the reordering, c) Final windows and extra bits

At first, the seeds are arranged in descending order accord-
ing to the number of useful segments their windows include
(Figure 3.b). After that, if there is any difference in the number
of required segments between two successive windows, let say
W;and W.,, that is larger than one, then a number of redundant
segments should be allowed in W}y, so as this difference to be
reduced to one (Figure 3.c windows d and b). On the other
hand, if the above difference is smaller than or equal to one
then the number of segments remains unchanged (Figure 3.c
windows c, a and ¢). As a final step, the value of the extra bit
is calculated for each seed (one=next seed’s window requires
one segment less, zero=next seed’s window requires the same
number of segments). Although the described procedure de-
creases the effectiveness of the segment-partitioning scheme
(due to the redundant segments allowed in some windows), the
extra storage required for its implementation is cut down to

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

just one bit per seed. Furthermore, by properly selecting Seg-
ment Size we can reduce the number of allowed redundant
segments, achieving test-sequence-length reductions that are
very close to those of the “maximum reduction” approach, as
will be demonstrated in Section 4.

For maintaining the necessary number of segments for each
window, a down counter, called Load Counter, is used. This
counter is initially loaded with the maximum number of seg-
ments required among all the windows, which is actually the
number of segments of the first window in the rearranged or-
der. The value of the extra bit of each seed determines the op-
eration of Load Counter. An 1 triggers the counter decreasing
its value by one, while a 0 leaves it unchanged (Load Counter
maintains its previous value). That is, before being triggered,
Load Counter contains the number of vector-segments that
should be applied to the CUT, starting from the current seed.
We note that Load Counter is triggered at most once for each
seed, depending on the value of the corresponding extra bit.

|—>1 2-t0-1
Seeds rql LFSR }J
Enable »o WX J
(controllediby extra bit) A
-
&5
1]
é 3 CuUT
f
Ee 5
Do =
ES Sled
Control &2 3| Enable -
Logic > | TRC |

Figure 4. The proposed test-sequence-reduction scheme

The architecture that handles the operation of the proposed
scheme is shown in Figure 4. As previously mentioned, Load
Counter is controlled by the value of the extra bit of each seed
and is responsible for maintaining the required number of seg-
ments for each window. In order to actually control the
generation of the patterns of a window, two counters are
needed. The first one is the Segment-Vectors Counter, which
(as has already been mentioned) counts from Segment size-1
to 0 and controls the generation of the vectors of a segment.
The second counter has length equal to that of Load Counter,
and is called Segment Counter. Segment Counter is responsi-
ble for counting the required number of segments for each
window and thus it is initialized for each seed with the value of
Load Counter. As can be easily seen, Segment and Segment-
Vectors Counter constitute a combined counter. Segment
Counter’s value is decreased by one every time Segment-
Vectors Counter signals that Segment Size patterns have been
applied to the CUT. That is, for every state of Segment
Counter a full count down of Segment-Vectors Counter is car-
ried out. When Segment Counter becomes equal to zero, the
vectors of the current window have been generated and the
expansion of the current seed stops (Segment-Vectors Counter
is disabled). In order to generate the next window the follow-
ing steps have to be carried out: the next stored seed is loaded
in the LFSR, Segment Counter is loaded with current Load
Counter’s value, Load Counter is triggered (or not) according
to the value of the seed’s extra bit and Segment-Vectors
Counter is enabled again (due to the initialization of Segment
Counter to a value different from 0). The above-described pro-
cedure is repeated until all the seeds have been expanded to
their corresponding vector-segments. We stress that Segment

YF]',F.

COMPUTER
SOCIETY

Counter does not count down from #Segments-1 to 0 for each
seed but from #Segments, since its zero value triggers the load-
ing of the next seed.

A final comment that should be made about the proposed
scheme is that, since Segment and Segment-Vectors Counters
are combined to generate the vectors of a seed’s window, the
sum of their lengths cannot be much greater than the length of
the Vector Counter of the classical reseeding approach. In fact
it can be proven that their combined size is at most one bit
larger than that of Vector Counter. Consequently, extra hard-
ware overhead in the Control Logic of the proposed scheme is
imposed only by the addition of Load Counter, which, as will
be seen in the evaluation section, is very small (its length is
equal to that of Segment Counter).

4. Evaluation and comparisons

In order to validate the effectiveness of the proposed
scheme, we implemented the seed-selection and segmentation-
rearrangement algorithms in C programming language and we
conducted a series of experiments on both the ISCAS’85 and
the (combinational part of) ISCAS’89 benchmark circuits. The
corresponding test sets were obtained by using the Atalanta
ATPG tool. We only considered circuits that are not com-
pletely tested with the application of 10000 pseudorandom
patterns. The characteristic polynomials of the LFSRs were
selected to be primitive.

o
-]

=
&

@
-1

Saturation Point

Number of seeds
n
B

e

3

0+
A &
PSS
Figure 5. Number of seeds versus window size for s1238

The choice of the window size parameter L of the seed-
selection algorithm significantly affects both the number of
final selected seeds and the length of the resulting test se-
quences. Increasing the size of the window may reduce the
required seeds due to the existence of more useful LFSR states
in each window and thus the final test-sequence length may
also be reduced. However, the number of required seeds is

gradually saturated, as the value of parameter L increases. That
is, although larger windows are used by the seed-selection
algorithm, the number of required seeds will not be reduced at
the same rate (or even at all after some point), having as a re-
sult larger test sequences. This is shown in Figure 5 (the satu-
ration point is marked with an “X”). In order to achieve a good
balance between the number of seeds and the test-sequence
length (before the application of the segmentation-
rearrangement technique), the size of the seed-selection algo-
rithm’s window was selected to be near the saturation point.
However, since our primary target was to reduce the number of
required seeds, the selected window size L was chosen to be
after that point.

In Table 1 we present the results of the proposed tech-
nique, having determined the window size L as explained
above. In columns 4 to 6 the results of the seed-selection al-
gorithm are given. The last column concerning the seed-
selection algorithm (the column labeled “Test-seq. length
(unreduced)”) refers to the test sequences before the applica-
tion of the segmentation-rearrangement technique of Section
3. Their length is equal to Number of Seeds-L. In columns 7
to 11 we present the results of the segmentation - rearrange-
ment technique. In contrast with the window size parameter
L, the selection of the value of parameter Segment Size for
this technique can be easily performed by using a very fast,
brute-force procedure. This procedure tests all possible seg-
ment sizes and chooses the best one, with respect to the final
test-sequence length, i.e., it chooses the Segment Size that
achieves the best balance between the number of allowed
redundant segments in the seeds’ windows and the number of
redundant vectors included in the last useful segment of each
window. The running time of this procedure is very low. In
fact, it was lower than two seconds for each of the experi-
ments of Table 1, in a Pentium 4, 2.6 GHz workstation. The
final test-sequence length after the application of the segmen-
tation-rearrangement procedure is shown in column 9, while
the reduction achieved compared to the unreduced test se-
quences of column 6 is given in column 10. As can be seen,
in most cases the gain is significant and the average test-
sequence-length reduction reaches 20.17%. We should men-
tion that this reduction is achieved in spite of the fact that the

Table 1. The results of the proposed technique

Seed-selection algorithm Segmentation-rearrangement technique
o Nun.ﬂber Test ‘set Window | Number Test-seq. Segment Segment | Test-seq. | Test-seq. | % of “Mai.
Circuit | of primary | (7) size size (L) | of seeds length Size Counter | length length | reduction
inputs [(#vectors) (unreduced)| — length | (reduced) | gain (%) gain
c2670 233 533 1400 15 21000 108 4 15984 23.89 84.59
c7552 207 607 500 55 27500 8 6 23112 15.96 90.64
5420 34 96 4000 6 24000 1964 2 17676 26.35 76.32
5641 54 173 1220 4 4880 405 2 3645 25.31 62.88
s713 54 172 2895 3 8685 965 2 5790 33.33 73.16
s838 66 196 2100 13 27300 351 3 15093 44.71 86.73
s953 45 184 1000 6 6000 265 3 3975 33.75 75.99
s1196 32 216 2800 6 16800 948 2 13272 21.00 70.52
51238 32 228 1900 7 13300 625 2 11250 15.41 52.73
85378 214 926 2000 9 18000 656 2 11808 34.40 83.90
$9234 247 1190 900 27 24300 31 5 21731 10.57 84.31
513207 700 2217 1800 5 9000 450 3 8550 5.00 83.49
s15850 611 2391 1400 9 12600 116 4 12180 3.33 60.26
s38417 1664 6322 1664 21 34944 14 7 34510 1.24 57.64
s38584 1464 8317 1464 6 8784 732 2 8052 8.33 78.21

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

seed-selection algorithm targets the minimization of the re-
quired seed volumes and not that of the test-sequence length.
This seed-volume-minimization objective of the seed-
selection algorithm explains the small reductions for s13207,
s15850 and 38417. Test cubes were encoded even in the last
states of the seeds’ windows for these circuits, thus leaving
very few redundant states that could be dropped.

For assessing the effectiveness of the segmentation-
rearrangement technique, in the rightmost column of Table 1
we provide the percentage of the managed test-sequence-
length reductions over those that can be achieved by the
“maximum reduction” approach (Section 3). That is, if the
application of the segmentation-rearrangement technique
leads to a test-sequence-length reduction of X vectors, while
the “maximum reduction” technique achieves a Y-vector re-
duction, then this percentage is equal to (X/Y)-100. As can be
seen, the proposed test-sequence-reduction technique man-
ages to drop most of the windows’ redundant vectors (74.76%
on average), while, even for the small-gain cases of s13207,
s15850 and s38417, a significant percentage of the (few) re-
dundant vectors is eliminated from the final test sequences
(83.49, 60.26 and 57.64 respectively).

Table 2. Test-sequence length and ROM bits comparisons

Test-sequence length ROM bits

Circuit [6] with | [6] with |Proposed| [6] with | [6] with | Proposed

Mintest | Atalanta|technique| Mintest | Atalanta |technique
c2670 - - 15984 - - 3510
c7552 - - 23112 - - 11440
5420 21114 18768 17676 306 272 210
s641 35316 52974 3645 324 486 220
s713 47088 47088 5790 432 432 165
s838 | 272118 | 131670 | 15093 2046 990 871
s953 32760 36855 3975 360 405 276
s1196 | 31200 35360 13272 480 544 198
s1238 | 52000 33280 11250 800 512 231
s5378 | 1652508 - 11808 3852 - 1935
$9234 | 6113250 |4034745| 21731 12350 8151 6696
s13207| 1961400 - 8550 1400 - 3505
s15850| 8219783 - 12180 6721 - 5508
$38417)105249664 - 34510 31616 - 34965
s38584| 94337232 - 8052 32208 - 8790

In Table 2 we compare the proposed technique against the
Twisted-Ring Counters approach of [6], which is, in terms of
the required test-data storage, the most successful test-per-
clock, test set embedding approach in the literature. Although
(only) the Atalanta ATPG tool was used for generating the test
sets for our experiments, we compare the results of Table 1
against those presented in [6] for (uncompacted) test sets ob-
tained with both the Mintest and Atalanta ATPG tools. A dash
(-) in the comparison table means that no result has been pro-
vided by the authors of [6] for the corresponding benchmark
circuit. Two kinds of comparison are presented in Table 2. In
the first three columns we compare the two techniques with
respect to the length of the resulting test sequences. In the
next three columns we present the test data storage compari-
sons (in ROM bits). We remind that the number of bits that
need to be stored for our technique is equal to Number of
seeds - (Number of primary inputs+1), with the 1 correspond-
ing to the extra bit that is stored along with each seed. We
should also note that the control logic for the two compared
schemes is very small and imposes similar area overhead (our

approach requires on average 11.78% fewer flip-flops), and,
for that reason, it is not considered in the comparisons.

As can be seen from Table 2, the proposed approach re-
quires substantially smaller test sequences than those of [6].
Specifically, our technique is better in terms of test-sequence
length in all cases, requiring on average 85.39% and 74.07%
fewer test vectors than the approach of [6], for the Mintest and
Atalanta cases respectively. As far as the test-data storage
comparisons are concerned, the effectiveness of the seed-
selection algorithm is reflected in the ROM-bits results. Even
with much smaller test sequences, the proposed technique is,
in the majority of cases, better than that of Twisted-Ring
Counters. Only for s13207 and s38417 in the Mintest case, the
proposed approach requires more ROM bits to be stored (3
more seeds are needed for s13207 and 2 for s38417). How-
ever, in these two cases the test-sequence-length savings are
99.56% and 99.97% respectively. On average, compared to
the technique of [6], the proposed one requires 27.79% and
39.94% less test-data storage for the results concerning the test
sets obtained with Mintest and Atalanta respectively.

5. Conclusions

A test-sequence-reduction technique that can be applied to
a variety of reseeding TPG schemes has been proposed. The
presented technique is based on seed-windows’ segmentation
and rearrangement and imposes very small hardware over-
head. The combination of the proposed technique with an
efficient seed-selection algorithm that has been introduced
for LFSR-based, test-per-clock, test set embedding schemes,
leads to results with significantly reduced test-sequence
length and test-data storage requirements. Future work will
be concentrated in scan-based schemes.

References

[1] C. Dufaza et al., “LFSROM: A hardware test pattern generator for
deterministic ISCASS8S5 test sets”, Proc. of ATS, 1993, pp. 160-165.
[2] A. Jas and N. A. Touba, “Test vector decompression via cyclical
scan chains and its application to testing core-based designs”, Proc.
of ITC, 1998, pp. 458-464.

[3] W. Rao et al., “Test application time and volume compression
through seed overlapping”, Proc. of DAC, 2003, pp. 732-737.

[4] L. F. C. Lew Yan Voon et al., “BIST linear generator based on
complemented outputs”, Proc. of VTS, 1992, pp. 137-142.

[5] D. Kagaris and S. Tragoudas, “On the design of optimal counter-
based schemes for test set embedding”, /EEE Trans. on CAD, vol.
18, Feb. 1999, pp. 219-230.

[6] S. Swaminathan and K. Chakrabarty, “On using twisted-ring
counters for test set embedding in BIST”, JETTA, Kluwer Academic
Publishers, vol. 17, no. 6, Dec. 2001, pp. 529-542.

[7] L. Li and K. Chakrabarty, “Test set embedding for deterministic
BIST using a reconfigurable interconnection network”, /EEE Trans.
on CAD, vol. 23, Sept. 2004, pp. 1289-1305.

[8] E.Kalligeros et al., “An efficient seeds selection method for LFSR
based test-per-clock BIST”, Proc. of ISQED, 2002, pp. 261-266.

[9] E. J. McCluskey et al., “Test data compression (ITC’02 roundta-
ble)”, IEEE Design Test Comp., vol. 20, Mar./Apr. 2003, pp. 76-87.
[10] B. Koenemann, “LFSR-coded test patterns for scan design”,
Proc. of ETC, 1991, pp. 237-242.

[11] E. Kalligeros et al., “Multiphase BIST: A new reseeding tech-
nique for high test-data compression”, IEEE Trans. on CAD, vol.
23, Oct. 2004, pp. 1429-1446.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Sixth International Symposium on Quality Electronic Design (ISQED’05)
0-7695-2301-3/05 $ 20.00 IEEE

