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Abstract 
In this paper we present a new reseeding technique for  

LFSR-based test pattern generation suitable for  circuits 
with random-pattern resistant faults. Our technique 
eliminates the need of a ROM for  storing the seeds since 
the LFSR jumps from a state to the required state (seed) 
by inverting the logic value of some of the bits of its next 
state. An  eflcient algorithm for  selecting reseeding points 
is also presented, which targets complete fault coverage 
and minimization of the cardinality of the test set and the 
hardware required f o r  the implementation of the test 
pattern generator. The application of the proposed 
technique to ISCAS '85 and the combinational part of 
ISCAS '89 benchmark circuits shows its superiority 
against the already known reseeding techniques with 
respect to the length of the test sequence and, in the 
majority of cases, the hardware required for  their 
implementation. 

1. Introduction 

The traditional testing approaches, based on external 
Automatic Testing Equipment (ATE), are becoming more 
and more unsuitable for System-on-Chip (SOC) testing. 
The reason is twofold: (a) the gap between I/O and 
internal bandwidth often prevents ATEs from testing 
SOCs at speed and (b) the number of externally accessible 
U0 pins, although counting up to several hundreds, 
strongly limit the controllability and observability of the 
embedded modules. 

Built-In Self-Test (BIST) [ 1-51 has been widely 
recognized as an effective approach for testing SOCs, 
since it incorporates in the same IC the Circuit Under Test 
(CUT) and its tester, enabling this way the chip to test 
itself. The main components of a BIST scheme are the 
Test Pattern Generator (TPG) that produces the test 
patterns applied to the CUT and the Test Response 
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Verifer that compacts the responses of the CUT to a 
single pattern called signature and compares it with the 
signature of the fault-free circuit. Minimal test application 
time, area overhead, and test data storage as well as 
minimal performance degradation and at-speed testing is 
essential for any successful BIST scheme. Furthermore, in 
most applications, complete (100%) fault coverage is 
desirable. 

Linear Feedback Shift Registers (LFSRs) are 
commonly used as pseudorandom test pattern generators 
in BIST schemes. Their structure is simple, they require 
very small area overhead and furthermore can be used 
both for test pattern generation and test response 
compaction. However, in circuits with random pattern 
resistant faults, high fault coverage cannot be achieved 
with an acceptable test length. 

LFSR reseeding [6-121 has been proposed as a possible 
solution to cope with this drawback. In (61 a test-per-scan 
technique is presented where an LFSR is used to generate 
pseudorandom and deterministic patterns which are 
encoded as seeds. Test-per-scan techniques for generating 
test patterns through reseeding of multiple polynomial 
LFSRs were proposed in [7-91. These techniques involve 
storing LFSR seeds in a ROM instead of storing the 
deterministic patterns that detect random pattern resistant 
faults. The LFSRs are used to generate both 
pseudorandom and deterministic patterns. Deterministic 
patterns are encoded with a seed and a polynomial ID, 
where the seed specifies the value to be loaded in the 
register and the polynomial ID selects one of the feedback 
polynomials. In [IO] a test-per-clock scheme based on a 
modified design of an LSSD-based LFSR is described. 
The proposed scheme is capable of changing seeds by the 
application of a pair of clock pulses at the time of change. 
The seeds cannot be predetermined, they are randomly 
selected and they have the property of being uniformly 
distributed over the entire LFSR pattern space. In [ 1 I], a 
scheme using a Shift Register driven by an LFSR 
(LFSWSR) for the generation of pseudo-deterministic 
patterns, was proposed. Recently, a test-per-clock 
technique was presented [ 121 that, based on Genetic 
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Algorithms, computes the initial values for several 
general functional modules and LFSRs, so that they are 
able to produce test patterns with complete fault coverage. 

However all of the above techniques (except for [lo],  
which has the drawback that the seeds cannot be 
predetermined) suffer from the same problem. In the case 
of circuits with many random pattern resistant faults, a 
large number of seeds must be used. Therefore the 
hardware overhead can be very large if we take into 
account the necessary control module and the ROM that 
must be used to store the various seeds. 

In this paper we present a novel reseeding technique 
for LFSR-based test pattern generation suitable for test- 
per-clock BIST schemes. The LFSR, beginning from an 
initial state, produces a new test pattern at each clock 
cycle. A new seed is produced on-the-fly by inverting the 
logic value of some of the bits of the register. The 
proposed technique achieves complete fault coverage with 
shorter test sequences and, in the majority of cases, less 
hardware overhead than the LFSR-based TPGs given in 

The remaining of the paper is organized as follows: 
Sections 2 and 3 present respectively the architecture and 
the reseeding algorithm for the proposed TPG. In Section 
4 the effectiveness of the proposed technique is evaluated 
with experimental results and comparisons are made with 
previously presented works. Conclusions are given in 
Section 5 .  

2. The proposed architecture 

The architecture of the proposed TPG is given in 
Figure I .  The proposed TPG consists of an LFSR with k 
2-port register stages RI ,  Rz, ..., Rk, the exclusive-OR 
(XOR) gates of the feedback logic and a number of 
additional 2-input XOR gates distributed among the 
stages of the register (the XOR gates drawn using dashed 
lines in Figure 1) .  We can see that one of the inputs of 

each of the additional XORs is driven by the output of the 
previous register stage and the other input by the output 
C, of a block called Inversion Control Logic. In normal 
mode of operation the register is loaded from the 
functional block. 

In test mode, for cI = c, = ... = ck = 0, the LFSR, 
after its initialization, changes state at each clock cycle, 
according to its feedback structure. Reseeding can take 
place in clock time f f  by setting, in clock time f I . / ,  the lines 
CI, Cz, . . ., ck to the suitable values. If the b i t j  of the state 
that will be loaded in the register in time rf has to be 
inverted, we insert before the cell I?, of the LFSR, a 2- 
input XOR gate (one of the dashed XOR gates of Figure 
I).  In time r,./ the control line that drives that XOR gate 
(C,) is set to 1 by the Inversion Control Logic and the 
value of bit j is inverted before stored to the R, stage. 

The “Inversion Control Logic” is responsible for 
generating all control lines C,. It receives the output of a 
counter, which counts the vectors generated by the LFSR, 
and sets each control line C, to either 0 or 1 depending on 
the number of the current vector. W e  note that the same 
counter can be used for the generation of the test end 
signal. During the normal operation, the values of the 
control lines are don’t care since the register is loaded 
with the values from the functional block. As will be 
shown by experimental results, not all k bits of the LFSR 
need to be inverted in order for the necessary seeds to be 
produced. Therefore m XORs (m < k )  are sufficient for 
producing all the seeds needed to completely test thc 
circuit under test. 

For example, consider that the CUT has 4 inputs and 
we have a 4-bit LFSR with initial seed 1010. The 
sequence that is generated by the LFSR is shown in 
Figure 2 (the LFSR implements the characteristic 
polynomial x4+x+1). Consider also that the easy faults of 
the circuit are detected by the first 3 vectors of that 
sequence while the remaining faults, which are hard-to- 
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Figure 1. The proposed TPG scheme 
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detect, need the vectors 0x01, 1000 and 11 11  in order to 
be tested. We observe that, without reseeding, the first 12 
vectors are sufficient to test the circuit. If, during the 
generation of vector 3, we invert the bit of the LFSR that 
will be stored to the third cell (B3), the vector 0001, 
instead of the vector 001 I ,  will be generated. This vector 
covers the fault that needs the vector Ox01 to be tested. In 
the same way, with the inversion of the third and the 
fourth bit of the LFSR (B3 and B4 respectively) during the 
generation of vector 5,  vector 1111 is derived. Since 
vector 4 is 1000, we can see that the reseeded LFSR 
covers all faults within 6 clock cycles, while without 
reseeding 12 cycles were needed. The implementation of 
the proposed TPG, that is the vector counter, the 
Inversion Control Logic and the LFSR along with the 
XORs that perform the inversions is shown in Figure 3. 

Vector 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

LFSR LFSR 
Sequence Sequence 

without with 
Reseeding Reseeding 

Bi BP B3 B4 BI BP B3 8 4  

1 0 1 0  1 0 1 0  
1 1 0 1  1 1 0 1  
0 1 1 0  0 1 1 0  
0 0 1 1 0 0 0 1 Reseeding 
1 0 0 1  1 0 0 0  
0 1 0 0 1 1 1 1 Reseeding 
0 0 1 0  
0 0 0 1  
1 0 0 0  
1 1 0 0  
1 1 1 0  
1 1 1 1  
0 1 1 1  
1 0 1 1  
0 1 0 1  

Figure 2. Example sequence 

to CUT 

Figure 3. Example TPG 

It is obvious that the selection of the points at which 
the LFSR will be reseeded, is crucial to the hardware 
overhead imposed by the proposed architecture. In the 
following section we present an efficient algorithm that 
selects the reseeding points and the proper seed at each 
point, so as to minimize the overall hardware overhead. 

We presented the proposed scheme using an LFSR 
with the feedback implemented by external XOR gates. It 
is obvious that our scheme can also be used when the 
XOR gates of the feedback are distributed between the 
stages of the register. 

3. Reseeding algorithm 

According to the proposed method, the test sequence 
consists of the parts PO, P I ,  P2, P J ,  ... as shown in Figure 
4. Each one of these parts is comprised of successive 
vectors produced by the LFSR, while the first vector of 
each part, except P I ,  is a new seed produced by inverting 
some of the bits of the LFSR (shaded areas in Figure 4). 

Test Sequence 

Inversions 
Figure 4. Test sequence 

The flowchart of the algorithm is given in Figure 5 .  Its 
main objective is to select the parts Pi and the 
corresponding seeds effectively, in order to minimize the 
required hardware, that is, the Inversion Control Logic 
and the XOR gates needed for realizing the inversions. 
The initial state of the LFSR is set to a random value. 

Set initial seed to 1 a random value 1 
Select set P, to cover easy faults 
&=number of undetected faults 

I =  1 

Select set P I  

Reverse Simulation 

Figure 5. The proposed algorithm’s flowchart 
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Let MAXVECTORS be a user-defined parameter, 
which declares the maximum acceptable number of test 
vectors required to fully test the CUT. The first vectors 
produced by the LFSR constitute the set Po which is 
capable of detecting all easy-to-detect faults. Specifically, 
successive test vectors are generated until the last T of 
them fail to detect any additional faults. All vectors 
generated, excluding the last T, form the set Po. Let fo be 
the faults of the CUT which are not detectable by the 
vectors of set Po. We consider them as hard-to-detect 
faults. We set MVo = MAXVECTORS - 1 Po I . MVo is the 
number of vectors that can be used for testing the& hard- 
to-detect faults of the CUT. For each hard-to-detect fault 
we extract Q test vectors using a random test pattern 
generation program. In the case that for a fault f the 
random test pattern generation program fails to give at 
least one test vector, test vectors are derived using a 
deterministic test pattern generation tool. Each test vector 
in the sequence is modified to a test cube with as many 
don't care bits as possible. 

After determining the part Po, we have to select the rest 
of the sets P; so as to cover the remaining hard-to-detect 
faults. We denote as SL the maximum length of each one 
of the sets PI ,  with i 2 I .  That means that a reseeding 
operation can be performed after at most SL vectors from 
the previous reseeding or from the last vector of set Po. 
The criteria we use to specify a reseeding point and how 
SL is determined are critical for the performance of our 
algorithm. 

We will at first discuss how the algorithm selects, 
among the SL vectors of set PI ,  the most suitable point for 
reseeding. Let HV be the set of all the test cubes extracted 
for testing the hard-to-detect faults. First, all SL states of a 
set PI are generated by the LFSR and examined in order to 
find out if some of them match any test cubes of HV 
without any reseeding. If this is the case, we select the last 
LFSR state that is compatible with a test cube as the first 
vector of the next set PI+,. If there is no LFSR state that 
matches a test cube of HV without reseeding, we select as 
the next seed of the LFSR the test vector of HV that needs 
the less bit inversions in order, for an LFSR state s, within 
SL, to match this test vector. As reseeding point we select 
the state s, (s, is the first vector of For example, if 
HV = { 1x10, 11Ox) and SL = 2 with sI = 0110 and s2 = 
001 1, then for sI to match 1x10 we need 1 bit inversion, 
for S I  to match 1 lox we need 2 bit inversions, for s2 to 
match 1x10 we need 2 bit inversions and for s2 to match 
llOx we need 3 bit inversions. Therefore we choose the 
test vector 11 10 (1x10) as the new seed and the state sI as 
the reseeding point. If two or more vectors need the same 
minimum number of bit inversions, we choose the one 
that requires the smallest number of additional XOR gates 
in order to be formed by an LFSR state. 

For each set P,  (i > 0), SL, can be derived by the 
formula 

SL, = MV,.I IJ., (11, 
where is the number of the remaining hard-to-detect 
faults after i-I reseedings and MV,./ is the number of 
vectors which can be applied for detecting theseJ.{ faults. 
When the value of SL is derived by the above formula, the 
final test length is strongly dependent on the value of 
MAXVECTORS. If the circuit under test has random- 
pattern resistant faults, then the vectors generated between 
two successive reseedings can detect very few if not zero 
additional faults than those detected by just the two seed 
vectors. In such cases, we observed that if we choose the 
value of SL directly equal to 1, 3 or 5, we can get smaller 
test sets with less hardware overhead. The latter can be 
attributed to the fact that the tool that synthesizes the 
control logic exploits the fact that the distances between 
the reseedings are small, to make groupings in the control 
logic and therefore the final hardware overhead is much 
smaller than in the case that SL is calculated by relation 
(1) .  When the value of SL is directly defined by the user, 
the parameter MAXVECTORS has no impact on the 
performance of our algorithm. 

After determining a new part PI of our test set, with the 
value of SL derived either by relation (1) or defined by the 
user, we run fault simulation so as to drop all faults 
detected by PI. At this step of our algorithm we also 
update the set HV by throwing out all the vectors that test 
the faults detected by set P, and, if SL is not user-defined, 
we calculate the valuesJ and MV, for the next part 

Some of the easy-to-detect faults that are tested with 
the test vectors of set Po can also be detected by some test 
vectors of the sets P I ,  P2, . . . Therefore some of the first 
vectors of the test sequence can be redundant. In order to 
minimize the cardinality of the test set, reverse simulation 
[ 131 is performed after determining all the P I  sets and the 
initial seed is adjusted so as to exclude these redundant 
test vectors. 

4. Experimental results 

In order to evaluate the effectiveness of the proposed 
technique, we implemented the algorithm described in 
Section 3 in C programming language and performed 
several simulations. For comparison reasons, we used the 
ISCAS '85 and the combinational part of ISCAS '89 
benchmarks circuits. 

In tables I and 2 we present results for the cases that 
MAXVECTORS (maximum number of vectors to test the 
CUT) and SL (maximum number of vectors between the 
previous and the next reseeding) are used as user-defined 
parameters respectively. In the case that MAXVECTORS 
is used as a user-defined parameter, SL is given by 
relation (1). Each result presented is the best out of 10 
trials. In the third and the fourth column of these tables 
we give the number of the XOR gates that must be 
inserted in order to produce the seeds and the total 
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number of test vectors required to achieve complete (100 
%) fault coverage respectively. The fifth column shows 
the hardware overhead required by the inverting XORs 
and the Inversion Control Logic. The hardware overhead 
is given in terms of gate equivalents, assuming that 1 gate 
equivalent is a 2-input NAND gate. The test vector 
counter has not been taken into account in the derivation 
of the hardware overhead since every LFSR-based TPG 
use such a counter. Also the cost of the modification of a 
register to an LFSR has not been taken into account in the 
hardware overhead, since the same modifications are 
required by any test-per-clock LFSR-based TPG. In 
Tables 1 and 2 the best results with respect to the number 
of test vectors or the hardware overhead are shaded. 

3 
5 
10 

I 

s820 

Table 1. Results for 3 different values of MAXVECTORS 
I 

19 5 24 I94 
17 494 * 186 
13 760 174 
57 1625 423 

~~~ 

: The best results between Table 1 and Table 2 

1 ,  4 l - l  I J- i 13 I 4963 I 64 
5 16 I 3436 I 83 I s953 
i n  11 I 1<7& I Ql 

Table 2. Results for 4 different values of SL 

3 
5 
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s838 

I I I 498 1 182* I 

60 I844 426 
63 1929 420 
61 1223 423 * 

3 
5 
10 

s838 

I 

60 I844 426 
63 1929 420 
61 1223 423 * 
1 1  7 1 A 7  <A* I 

3 
5 s953 
i n  

I I  3147 54* 
13 4963 64 
16 3436 83 
11 1<7& Ql 

I 
3 
5 
10 
I 

s1196 

*: The best results between Table I and Table 2 

16 6266 89 
16 4063 76 
15 4728 86 
18 3880 1 I6 
20 7788 83 
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11207 I I 948 I I -  I 
*: The authors of [ I21  have not given results for these circuits 

Table 4. Comparison of the proposed technique with the results of [ 121 for LFSRs (serial reseeding) 

*: The authors of [I21 have not given results for these circuits 

From Table 1 we can see that, in general, the total 
number of vectors required for testing the CUT (fourth 
column), do not exceed the parameter MAXVECTORS. In 
some cases ( ~ 1 3 5 5 ,  ~ 1 9 0 8 ,  s820, s5378, s9234) this is not 
true as a consequence of the fact that MAXVECTORS is 
small compared to the vectors needed by the algorithm in 
order to detect the easy faults. We can also observe that as 
the value of MAXVECTORS increases, less XOR gates 
and a greater number of vectors are required to fully test 
the CUT. The exceptions of this rule are due to the 
random selection of the initial seed and the reverse 
simulation process. Since the majority of the circuits used 
as benchmarks have random-pattern resistant faults, from 
Tables 1 and 2 we can easily verify that using SL as the 
user-defined parameter, we get, in most cases, better 
results with respect to the hardware overhead and the 
cardinality of the test set. W e  should finally note that 

when SL is user-defined, the test length strongly depends 
on the number of vectors needed for detecting the easy-to- 
detect faults. Hence we cannot assert that for greater 
values of SL we get longer test sequences. 

In Tables 3 and 4 we compare the proposed scheme 
against the LFSR-based TPG scheme of [ 121. Among the 
results given in Tables 1 and 2, those with the least 
hardware overhead were chosen. Also, among results with 
similar hardware overhead, we chose the one requiring 
the fewer test vectors. Columns 2 and 3 of Table 3 present 
the number of test vectors required by the two techniques. 
It is obvious that our method outperforms the one 
proposed in [12] (the reduction percentages are given in 
column 4). 

We consider that in both the proposed and the LFSR- 
based TPG of [12], the initialization of the LFSR takes 
place by resetting the register. The LFSR-based TPG 

85 



approach of [ 121 requires a ROM for storing the seeds and 
a control logic for controlling the reseeding operation. 
The ROM bits required for each circuit are shown in the 
sixth column of Table 3 as a product Y x Z ,  where Y is 
the number of the required seeds minus 1 and Z the word- 
length of the ROM. The area overhead of the control logic 
cannot be calculated, since not enough information has 
been given in [ 121, and is therefore represented with letter 
H in the seventh column. 

There are two ways for reseeding the LFSR in [ 121, 
parallel reseeding and serial. If the seeds are loaded in 
parallel, then another set of multiplexers, besides those 
used for modifying a register to an LFSR, is needed. The 
hardware overhead for these multiplexers is given in 
column 8 of Table 3. W e  observe that in some cases 
(s641, s713, s953, s1423), this area overhead is greater 
than the total area required by our technique (column 5, 
Table 3), while in others ( ~ 2 6 7 0 ,  s1196, s1238), the 
difference is small enough to conclude that the addition of 
the ROM and the required control logic will result in 
greater hardware overhead than the one shown in column 
5. As far as c880, c l355  and c l908  are concerned, we 
observe that the adoption of the proposed technique leads 
to significantly smaller test sequences with negligible 
additional hardware overhead. We also note that the use 
of the extra set of multiplexers imposes further delay in 
the critical path of the circuit under test thus causing 
further system performance degradation. 

In the case of serial reseeding of the LFSR, instead of 
the multiplexers, a bit counter is required. This approach 
also causes an increase to the test application time of each 
circuit. The test application time is equal to NV - NS + NS 
x s(LFSR), where NV is the number of test vectors, NS the 
number of the seeds and s(LFSR) the size of the LFSR. 
The clock cycles needed to test each benchmark circuit, 
are given in column 3 of Table 4. We observe that in 
several cases ( ~ 2 6 7 0 ,  s641, s713, s820, s1423), the 
increase in the test application time is significant, while 
the use of a ROM and the required control logic still 
imposes considerable hardware overhead. 

5. Conclusions 

Reseeding has been proposed as an effective technique 
for testing circuits with random-pattern resistant faults, 
since it can achieve complete fault coverage with an 
acceptable number of test vectors. In this paper a new 
reseeding technique for LFSR-based test pattern 
generation, suitable for test-per-clock BIST schemes, was 
proposed. The generation of the seeds is performed on- 
the-fly by the inversion of the logic values of some of the 
bits of the LFSR’s next state. Experimental results on the 

ISCAS ‘85 and the combinational part of ISCAS ‘89 
benchmark circuits showed that the proposed technique 
requires less test vectors and, in the majority of cases, less 
hardware overhead than the other LFSR-based reseeding 
techniques for achieving complete fault coverage. 
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