
A New Reseeding Technique for LFSR-based Test Pattern Generation'

E. Kalligeros, X. Kavousianos, D. Bakalis and D. Nikolos

Dept. of Computer Engineering & Informatics, Univ. of Patras, 26500, Patras, Greece

Computer Technology Institute, 3, Kolokotroni Str., 26221 Patras, Greece

e-mail: kalliger@ceid. upatras.gr, kabousia 0 ceid. upatras.gr, bakalis @ cti.gr, nikolosd @ cti.gr

Abstract
In this paper we present a new reseeding technique for

LFSR-based test pattern generation suitable for circuits
with random-pattern resistant faults. Our technique
eliminates the need of a ROM for storing the seeds since
the LFSR jumps from a state to the required state (seed)
by inverting the logic value of some of the bits of its next
state. An eflcient algorithm for selecting reseeding points
is also presented, which targets complete fault coverage
and minimization of the cardinality of the test set and the
hardware required f o r the implementation of the test
pattern generator. The application of the proposed
technique to ISCAS '85 and the combinational part of
ISCAS '89 benchmark circuits shows its superiority
against the already known reseeding techniques with
respect to the length of the test sequence and, in the
majority of cases, the hardware required for their
implementation.

1. Introduction

The traditional testing approaches, based on external
Automatic Testing Equipment (ATE), are becoming more
and more unsuitable for System-on-Chip (SOC) testing.
The reason is twofold: (a) the gap between I/O and
internal bandwidth often prevents ATEs from testing
SOCs at speed and (b) the number of externally accessible
U0 pins, although counting up to several hundreds,
strongly limit the controllability and observability of the
embedded modules.

Built-In Self-Test (BIST) [1-51 has been widely
recognized as an effective approach for testing SOCs,
since it incorporates in the same IC the Circuit Under Test
(CUT) and its tester, enabling this way the chip to test
itself. The main components of a BIST scheme are the
Test Pattern Generator (TPG) that produces the test
patterns applied to the CUT and the Test Response

This research was partially supported by the Research Committee of
Patras University within the framework of K. Karatheodoris
scholarships program

Verifer that compacts the responses of the CUT to a
single pattern called signature and compares it with the
signature of the fault-free circuit. Minimal test application
time, area overhead, and test data storage as well as
minimal performance degradation and at-speed testing is
essential for any successful BIST scheme. Furthermore, in
most applications, complete (100%) fault coverage is
desirable.

Linear Feedback Shift Registers (LFSRs) are
commonly used as pseudorandom test pattern generators
in BIST schemes. Their structure is simple, they require
very small area overhead and furthermore can be used
both for test pattern generation and test response
compaction. However, in circuits with random pattern
resistant faults, high fault coverage cannot be achieved
with an acceptable test length.

LFSR reseeding [6-121 has been proposed as a possible
solution to cope with this drawback. In (61 a test-per-scan
technique is presented where an LFSR is used to generate
pseudorandom and deterministic patterns which are
encoded as seeds. Test-per-scan techniques for generating
test patterns through reseeding of multiple polynomial
LFSRs were proposed in [7-91. These techniques involve
storing LFSR seeds in a ROM instead of storing the
deterministic patterns that detect random pattern resistant
faults. The LFSRs are used to generate both
pseudorandom and deterministic patterns. Deterministic
patterns are encoded with a seed and a polynomial ID,
where the seed specifies the value to be loaded in the
register and the polynomial ID selects one of the feedback
polynomials. In [IO] a test-per-clock scheme based on a
modified design of an LSSD-based LFSR is described.
The proposed scheme is capable of changing seeds by the
application of a pair of clock pulses at the time of change.
The seeds cannot be predetermined, they are randomly
selected and they have the property of being uniformly
distributed over the entire LFSR pattern space. In [1 I], a
scheme using a Shift Register driven by an LFSR
(LFSWSR) for the generation of pseudo-deterministic
patterns, was proposed. Recently, a test-per-clock
technique was presented [121 that, based on Genetic

0-7695-1290-9/01 $10.00 0 2001 IEEE
80

Algorithms, computes the initial values for several
general functional modules and LFSRs, so that they are
able to produce test patterns with complete fault coverage.

However all of the above techniques (except for [lo],
which has the drawback that the seeds cannot be
predetermined) suffer from the same problem. In the case
of circuits with many random pattern resistant faults, a
large number of seeds must be used. Therefore the
hardware overhead can be very large if we take into
account the necessary control module and the ROM that
must be used to store the various seeds.

In this paper we present a novel reseeding technique
for LFSR-based test pattern generation suitable for test-
per-clock BIST schemes. The LFSR, beginning from an
initial state, produces a new test pattern at each clock
cycle. A new seed is produced on-the-fly by inverting the
logic value of some of the bits of the register. The
proposed technique achieves complete fault coverage with
shorter test sequences and, in the majority of cases, less
hardware overhead than the LFSR-based TPGs given in

The remaining of the paper is organized as follows:
Sections 2 and 3 present respectively the architecture and
the reseeding algorithm for the proposed TPG. In Section
4 the effectiveness of the proposed technique is evaluated
with experimental results and comparisons are made with
previously presented works. Conclusions are given in
Section 5 .

2. The proposed architecture

The architecture of the proposed TPG is given in
Figure I . The proposed TPG consists of an LFSR with k
2-port register stages RI , Rz, ..., Rk, the exclusive-OR
(XOR) gates of the feedback logic and a number of
additional 2-input XOR gates distributed among the
stages of the register (the XOR gates drawn using dashed
lines in Figure 1) . We can see that one of the inputs of

each of the additional XORs is driven by the output of the
previous register stage and the other input by the output
C, of a block called Inversion Control Logic. In normal
mode of operation the register is loaded from the
functional block.

In test mode, for cI = c, = ... = ck = 0, the LFSR,
after its initialization, changes state at each clock cycle,
according to its feedback structure. Reseeding can take
place in clock time f f by setting, in clock time f I . / , the lines
CI, Cz, . . ., ck to the suitable values. If the b i t j of the state
that will be loaded in the register in time rf has to be
inverted, we insert before the cell I?, of the LFSR, a 2-
input XOR gate (one of the dashed XOR gates of Figure
I). In time r,./ the control line that drives that XOR gate
(C,) is set to 1 by the Inversion Control Logic and the
value of bit j is inverted before stored to the R, stage.

The “Inversion Control Logic” is responsible for
generating all control lines C,. It receives the output of a
counter, which counts the vectors generated by the LFSR,
and sets each control line C, to either 0 or 1 depending on
the number of the current vector. W e note that the same
counter can be used for the generation of the test end
signal. During the normal operation, the values of the
control lines are don’t care since the register is loaded
with the values from the functional block. As will be
shown by experimental results, not all k bits of the LFSR
need to be inverted in order for the necessary seeds to be
produced. Therefore m XORs (m < k) are sufficient for
producing all the seeds needed to completely test thc
circuit under test.

For example, consider that the CUT has 4 inputs and
we have a 4-bit LFSR with initial seed 1010. The
sequence that is generated by the LFSR is shown in
Figure 2 (the LFSR implements the characteristic
polynomial x4+x+1). Consider also that the easy faults of
the circuit are detected by the first 3 vectors of that
sequence while the remaining faults, which are hard-to-

From functional block

Y Y Y Y

Figure 1. The proposed TPG scheme

81

detect, need the vectors 0x01, 1000 and 11 11 in order to
be tested. We observe that, without reseeding, the first 12
vectors are sufficient to test the circuit. If, during the
generation of vector 3, we invert the bit of the LFSR that
will be stored to the third cell (B3), the vector 0001,
instead of the vector 001 I , will be generated. This vector
covers the fault that needs the vector Ox01 to be tested. In
the same way, with the inversion of the third and the
fourth bit of the LFSR (B3 and B4 respectively) during the
generation of vector 5, vector 1111 is derived. Since
vector 4 is 1000, we can see that the reseeded LFSR
covers all faults within 6 clock cycles, while without
reseeding 12 cycles were needed. The implementation of
the proposed TPG, that is the vector counter, the
Inversion Control Logic and the LFSR along with the
XORs that perform the inversions is shown in Figure 3.

Vector

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

LFSR LFSR
Sequence Sequence

without with
Reseeding Reseeding

Bi BP B3 B4 BI BP B3 8 4

1 0 1 0 1 0 1 0
1 1 0 1 1 1 0 1
0 1 1 0 0 1 1 0
0 0 1 1 0 0 0 1 Reseeding
1 0 0 1 1 0 0 0
0 1 0 0 1 1 1 1 Reseeding
0 0 1 0
0 0 0 1
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
1 0 1 1
0 1 0 1

Figure 2. Example sequence

to CUT

Figure 3. Example TPG

It is obvious that the selection of the points at which
the LFSR will be reseeded, is crucial to the hardware
overhead imposed by the proposed architecture. In the
following section we present an efficient algorithm that
selects the reseeding points and the proper seed at each
point, so as to minimize the overall hardware overhead.

We presented the proposed scheme using an LFSR
with the feedback implemented by external XOR gates. It
is obvious that our scheme can also be used when the
XOR gates of the feedback are distributed between the
stages of the register.

3. Reseeding algorithm

According to the proposed method, the test sequence
consists of the parts PO, P I , P2, P J , ... as shown in Figure
4. Each one of these parts is comprised of successive
vectors produced by the LFSR, while the first vector of
each part, except P I , is a new seed produced by inverting
some of the bits of the LFSR (shaded areas in Figure 4).

Test Sequence

Inversions
Figure 4. Test sequence

The flowchart of the algorithm is given in Figure 5 . Its
main objective is to select the parts Pi and the
corresponding seeds effectively, in order to minimize the
required hardware, that is, the Inversion Control Logic
and the XOR gates needed for realizing the inversions.
The initial state of the LFSR is set to a random value.

Set initial seed to 1 a random value 1
Select set P, to cover easy faults
&=number of undetected faults

I = 1

Select set P I

Reverse Simulation

Figure 5. The proposed algorithm’s flowchart

82

Let MAXVECTORS be a user-defined parameter,
which declares the maximum acceptable number of test
vectors required to fully test the CUT. The first vectors
produced by the LFSR constitute the set Po which is
capable of detecting all easy-to-detect faults. Specifically,
successive test vectors are generated until the last T of
them fail to detect any additional faults. All vectors
generated, excluding the last T, form the set Po. Let fo be
the faults of the CUT which are not detectable by the
vectors of set Po. We consider them as hard-to-detect
faults. We set MVo = MAXVECTORS - 1 Po I . MVo is the
number of vectors that can be used for testing the& hard-
to-detect faults of the CUT. For each hard-to-detect fault
we extract Q test vectors using a random test pattern
generation program. In the case that for a fault f the
random test pattern generation program fails to give at
least one test vector, test vectors are derived using a
deterministic test pattern generation tool. Each test vector
in the sequence is modified to a test cube with as many
don't care bits as possible.

After determining the part Po, we have to select the rest
of the sets P; so as to cover the remaining hard-to-detect
faults. We denote as SL the maximum length of each one
of the sets PI , with i 2 I . That means that a reseeding
operation can be performed after at most SL vectors from
the previous reseeding or from the last vector of set Po.
The criteria we use to specify a reseeding point and how
SL is determined are critical for the performance of our
algorithm.

We will at first discuss how the algorithm selects,
among the SL vectors of set PI , the most suitable point for
reseeding. Let HV be the set of all the test cubes extracted
for testing the hard-to-detect faults. First, all SL states of a
set PI are generated by the LFSR and examined in order to
find out if some of them match any test cubes of HV
without any reseeding. If this is the case, we select the last
LFSR state that is compatible with a test cube as the first
vector of the next set PI+,. If there is no LFSR state that
matches a test cube of HV without reseeding, we select as
the next seed of the LFSR the test vector of HV that needs
the less bit inversions in order, for an LFSR state s, within
SL, to match this test vector. As reseeding point we select
the state s, (s, is the first vector of For example, if
HV = { 1x10, 11Ox) and SL = 2 with sI = 0110 and s2 =
001 1, then for sI to match 1x10 we need 1 bit inversion,
for S I to match 1 lox we need 2 bit inversions, for s2 to
match 1x10 we need 2 bit inversions and for s2 to match
llOx we need 3 bit inversions. Therefore we choose the
test vector 11 10 (1x10) as the new seed and the state sI as
the reseeding point. If two or more vectors need the same
minimum number of bit inversions, we choose the one
that requires the smallest number of additional XOR gates
in order to be formed by an LFSR state.

For each set P, (i > 0), SL, can be derived by the
formula

SL, = MV,.I IJ., (11,
where is the number of the remaining hard-to-detect
faults after i-I reseedings and MV,./ is the number of
vectors which can be applied for detecting theseJ.{ faults.
When the value of SL is derived by the above formula, the
final test length is strongly dependent on the value of
MAXVECTORS. If the circuit under test has random-
pattern resistant faults, then the vectors generated between
two successive reseedings can detect very few if not zero
additional faults than those detected by just the two seed
vectors. In such cases, we observed that if we choose the
value of SL directly equal to 1, 3 or 5, we can get smaller
test sets with less hardware overhead. The latter can be
attributed to the fact that the tool that synthesizes the
control logic exploits the fact that the distances between
the reseedings are small, to make groupings in the control
logic and therefore the final hardware overhead is much
smaller than in the case that SL is calculated by relation
(1) . When the value of SL is directly defined by the user,
the parameter MAXVECTORS has no impact on the
performance of our algorithm.

After determining a new part PI of our test set, with the
value of SL derived either by relation (1) or defined by the
user, we run fault simulation so as to drop all faults
detected by PI. At this step of our algorithm we also
update the set HV by throwing out all the vectors that test
the faults detected by set P, and, if SL is not user-defined,
we calculate the valuesJ and MV, for the next part

Some of the easy-to-detect faults that are tested with
the test vectors of set Po can also be detected by some test
vectors of the sets P I , P2, . . . Therefore some of the first
vectors of the test sequence can be redundant. In order to
minimize the cardinality of the test set, reverse simulation
[131 is performed after determining all the P I sets and the
initial seed is adjusted so as to exclude these redundant
test vectors.

4. Experimental results

In order to evaluate the effectiveness of the proposed
technique, we implemented the algorithm described in
Section 3 in C programming language and performed
several simulations. For comparison reasons, we used the
ISCAS '85 and the combinational part of ISCAS '89
benchmarks circuits.

In tables I and 2 we present results for the cases that
MAXVECTORS (maximum number of vectors to test the
CUT) and SL (maximum number of vectors between the
previous and the next reseeding) are used as user-defined
parameters respectively. In the case that MAXVECTORS
is used as a user-defined parameter, SL is given by
relation (1). Each result presented is the best out of 10
trials. In the third and the fourth column of these tables
we give the number of the XOR gates that must be
inserted in order to produce the seeds and the total

83

number of test vectors required to achieve complete (100
%) fault coverage respectively. The fifth column shows
the hardware overhead required by the inverting XORs
and the Inversion Control Logic. The hardware overhead
is given in terms of gate equivalents, assuming that 1 gate
equivalent is a 2-input NAND gate. The test vector
counter has not been taken into account in the derivation
of the hardware overhead since every LFSR-based TPG
use such a counter. Also the cost of the modification of a
register to an LFSR has not been taken into account in the
hardware overhead, since the same modifications are
required by any test-per-clock LFSR-based TPG. In
Tables 1 and 2 the best results with respect to the number
of test vectors or the hardware overhead are shaded.

3
5
10

I

s820

Table 1. Results for 3 different values of MAXVECTORS
I

19 5 24 I94
17 494 * 186
13 760 174
57 1625 423

~~~ 

: The best results between Table 1 and Table 2 

1 ,  4 l - l  I J- i 13 I 4963 I 64 
5 16 I 3436 I 83 I s953 
i n  11 I 1<7& I Ql 

Table 2. Results for 4 different values of SL 

3 
5 
10 

s838 

I I I 498 1 182* I 

60 I844 426 
63 1929 420 
61 1223 423 * 

3 
5 
10 

s838 

I 

60 I844 426 
63 1929 420 
61 1223 423 * 
1 1  7 1 A 7  <A* I 

3 
5 s953 
i n  

I I  3147 54* 
13 4963 64 
16 3436 83 
11 1<7& Ql 

I 
3 
5 
10 
I 

s1196 

*: The best results between Table I and Table 2 

16 6266 89 
16 4063 76 
15 4728 86 
18 3880 1 I6 
20 7788 83 

84 



11207 I I 948 I I -  I 
*: The authors of [ I21  have not given results for these circuits 

Table 4. Comparison of the proposed technique with the results of [ 121 for LFSRs (serial reseeding) 

*: The authors of [I21 have not given results for these circuits 

From Table 1 we can see that, in general, the total 
number of vectors required for testing the CUT (fourth 
column), do not exceed the parameter MAXVECTORS. In 
some cases ( ~ 1 3 5 5 ,  ~ 1 9 0 8 ,  s820, s5378, s9234) this is not 
true as a consequence of the fact that MAXVECTORS is 
small compared to the vectors needed by the algorithm in 
order to detect the easy faults. We can also observe that as 
the value of MAXVECTORS increases, less XOR gates 
and a greater number of vectors are required to fully test 
the CUT. The exceptions of this rule are due to the 
random selection of the initial seed and the reverse 
simulation process. Since the majority of the circuits used 
as benchmarks have random-pattern resistant faults, from 
Tables 1 and 2 we can easily verify that using SL as the 
user-defined parameter, we get, in most cases, better 
results with respect to the hardware overhead and the 
cardinality of the test set. W e  should finally note that 

when SL is user-defined, the test length strongly depends 
on the number of vectors needed for detecting the easy-to- 
detect faults. Hence we cannot assert that for greater 
values of SL we get longer test sequences. 

In Tables 3 and 4 we compare the proposed scheme 
against the LFSR-based TPG scheme of [ 121. Among the 
results given in Tables 1 and 2, those with the least 
hardware overhead were chosen. Also, among results with 
similar hardware overhead, we chose the one requiring 
the fewer test vectors. Columns 2 and 3 of Table 3 present 
the number of test vectors required by the two techniques. 
It is obvious that our method outperforms the one 
proposed in [12] (the reduction percentages are given in 
column 4). 

We consider that in both the proposed and the LFSR- 
based TPG of [12], the initialization of the LFSR takes 
place by resetting the register. The LFSR-based TPG 

85 



approach of [ 121 requires a ROM for storing the seeds and 
a control logic for controlling the reseeding operation. 
The ROM bits required for each circuit are shown in the 
sixth column of Table 3 as a product Y x Z ,  where Y is 
the number of the required seeds minus 1 and Z the word- 
length of the ROM. The area overhead of the control logic 
cannot be calculated, since not enough information has 
been given in [ 121, and is therefore represented with letter 
H in the seventh column. 

There are two ways for reseeding the LFSR in [ 121, 
parallel reseeding and serial. If the seeds are loaded in 
parallel, then another set of multiplexers, besides those 
used for modifying a register to an LFSR, is needed. The 
hardware overhead for these multiplexers is given in 
column 8 of Table 3. W e  observe that in some cases 
(s641, s713, s953, s1423), this area overhead is greater 
than the total area required by our technique (column 5, 
Table 3), while in others ( ~ 2 6 7 0 ,  s1196, s1238), the 
difference is small enough to conclude that the addition of 
the ROM and the required control logic will result in 
greater hardware overhead than the one shown in column 
5. As far as c880, c l355  and c l908  are concerned, we 
observe that the adoption of the proposed technique leads 
to significantly smaller test sequences with negligible 
additional hardware overhead. We also note that the use 
of the extra set of multiplexers imposes further delay in 
the critical path of the circuit under test thus causing 
further system performance degradation. 

In the case of serial reseeding of the LFSR, instead of 
the multiplexers, a bit counter is required. This approach 
also causes an increase to the test application time of each 
circuit. The test application time is equal to NV - NS + NS 
x s(LFSR), where NV is the number of test vectors, NS the 
number of the seeds and s(LFSR) the size of the LFSR. 
The clock cycles needed to test each benchmark circuit, 
are given in column 3 of Table 4. We observe that in 
several cases ( ~ 2 6 7 0 ,  s641, s713, s820, s1423), the 
increase in the test application time is significant, while 
the use of a ROM and the required control logic still 
imposes considerable hardware overhead. 

5. Conclusions 

Reseeding has been proposed as an effective technique 
for testing circuits with random-pattern resistant faults, 
since it can achieve complete fault coverage with an 
acceptable number of test vectors. In this paper a new 
reseeding technique for LFSR-based test pattern 
generation, suitable for test-per-clock BIST schemes, was 
proposed. The generation of the seeds is performed on- 
the-fly by the inversion of the logic values of some of the 
bits of the LFSR’s next state. Experimental results on the 

ISCAS ‘85 and the combinational part of ISCAS ‘89 
benchmark circuits showed that the proposed technique 
requires less test vectors and, in the majority of cases, less 
hardware overhead than the other LFSR-based reseeding 
techniques for achieving complete fault coverage. 

References 
[I]  M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital 
Systems Testing and Testable Design, Computer Science Press, 
New York, NY, 1990. 
[2] P. H. Bardell, W. H. McAnney and J. Savir, Built-In Test fo r  
VLSI: Pseudo-Random Techniques, Johh Wiley & Sons, New 
York, NY, 1987. 
[3] V. Agrawal, Ch. Kime and K. Saluja, “A tutorial on Built-In 
Self-Test Part 1 : Principles”, IEEE Design & Test of Computers, 
March 1993, pp. 73-82. 
[4] V.  Agrawal, Ch. Kime and K. Saluja, “A tutorial on Built-In 
Self-Test Part 2: Applications”, IEEE Design & Test of 
Computers, June 1993, pp. 69-77. 
[5] H. J. Wunderlich, “BIST for systems-on-a-chip”, 
Integration, The VLSI Journal, vol. 26, (n0.l-2), Elsevier, 
December 1998, pp. 55-78. 
[6] B. Koenemann, “LFSR-Coded Test Pattems for Scan 
Design”, Proc. of European Test Conference, Munich, Germany, 
April 1991, pp 237-242. 
[7] S. Hellebrand, S. Tarnick, B. Courtois and J. Rajski, 
‘Generation of Vector Patterns through Reseeding of Multiple- 
Polynomial Linear Feedback Shift Registers”, Proc. of 
International Test Conference, Baltimore, MD, USA, Sept. 
1992, pp. 120-129. 
[8] S. Venkataraman, J .  Rajski, S. Tarnick and S. Hellebrand, 
“An Efficient BIST Scheme based on Reseeding of Multiple 
Polynomial Linear Feedback Shift Registers”, Proc. of 
International Conference on Computer-Aided Design, Santa 
Clara, CA, USA, Nov. 1993, pp. 572-577. 
[9] S. Hellebrand, J. Rajski, S. Tamick, S. Venkataraman and B. 
Courtois, “Built-In Test for Circuits with Scan Based on 
Reseeding of Multiple-Polynomial Linear Feedback Shift 
Registers”, XEEE Transactions on Computers, Vol. 44, NO. 2, 
February 1995, pp. 223-233. 
[lo] J. Savir and W. H. McAnney, “A Multiple Seed Linear 
Feedback Shift Register”, XEEE Trans. on Computers, vol. 41, 
no. 2, February 1992, pp. 250-252. 
[ l l ]  S. K. Mukund, E. J. McCluskey and T. R. N. Rao, “An 
Apparatus for Pseudo-Deterministic Testing”, Proc. of 13th 
VLSI Test Symposium, Princeton, NJ, USA, April-May 1995, 

[12] S. Chiusano, P. Prinetto and H. J. Wunderlich, “Non- 
Intrusive BIST for Systems-on-a-Chip”, Proc. of International 
Test Conference, Atlantic City, NJ, USA, Oct. 2000, pp. 644- 
651. 
[13] A. P. Stroele and F. Mayer, “Methods to Reduce Test 
Application Time for Accumulator-based Self-Test”, Proc. of 
VLSI Test Symposium, Monterey, CA, USA, April-May 1997, 

pp. 125-131. 

pp. 48-53. 

86 


