A ROMless LFSR Reseeding Scheme for Scan-based BIST'
E. Kalligeros, X. Kavousianos and D. Nikolos

Dept. of Computer Engineering & Informatics, Univ. of Patras, 26500, Patras, Greece
Computer Technology Institute, 61 Riga Feraiou Str., 26221, Patras, Greece

e-mail: kalliger@ceid.upatras.gr, kabousia@ceid.upatras.gr, nikolosd@cti.gr

Abstract

In this paper we present a new LESR reseeding scheme
for scan-based BIST suitable for circuits with random-
pattern-resistant faults. The proposed scheme eliminates
the need of a ROM for storing the seeds since the
reseedings are performed dynamically by inverting some
selected bits of the LFSR register. A time-to-market
efficient algorithm is also presented for selecting the
reseeding points in the test sequence, as well as a proper
seed at each point. This algorithm targets complete fault
coverage and minimization of the resulting test length and
hardware overhead. Experimental results on ISCAS '85
and ISCAS '89 benchmark circuits demonstrate the
advantages of this new LFSR reseeding approach in terms
of area overhead and test application time.

1. Introduction

Built-In Self-Test (BIST) is an effective approach for
testing large and complex circuits [1, 2]. Minimal test
application time, area overhead, and test data storage as
well as minimal performance degradation are essential in
many BIST applications. Also, complete (100%) fault
coverage is often desirable.

BIST schemes can be classified into two general
categories [3]: test-per-scan and test-per-clock. In a test-
per-scan scheme a complete or partial scan is serially filled
by the Test Pattern Generator (TPQG), while in a test-per-
clock scheme a new test vector is applied to the Circuit
Under Test (CUT) at each clock cycle. In this paper we
consider only test-per-scan BIST schemes.

The most common and widely used BIST approach is
pseudo-random BIST [1, 2]. It is usually performed by a
Linear Feedback Shift Register (LFSR) used as TPG,
which applies pseudo-random patterns to the CUT.
Although pseudo-random BIST schemes have the
advantage of low hardware overhead, for circuits with
random pattern resistant faults, high fault coverage cannot
be achieved within an acceptable test length. Test point
insertion, weighted pseudo-random patterns and mixed-

" This research was financially supported by the Public Benefit
Foundation "Alexander S. Onassis" via its scholarships programs and
by the Research Committee of Patras University, within the framework
of "K. Karatheodoris" scholarships programs.

mode BIST [4-16] are the main techniques, which have
been proposed to solve this problem. Mixed-mode BIST
techniques have the advantage of achieving high fault
coverage without altering the mission logic and with
relatively short test sequences and small hardware
overhead.

When a mixed-mode BIST technique is adopted, an
LFSR is usually used for generating pseudo-random
patterns that detect the random-pattern-testable faults. The
remaining hard-to-detect faults are tested by deterministic
patterns. Some techniques [4, 5] alter the sequence
generated by the LFSR by means of some control logic in
order to produce such patterns.

Reseeding techniques [6-16] on the other hand change
the state of the TPG register with a new one (seed), starting
from which, the TPG produces a pre-calculated
deterministic pattern. The original idea of encoding test
patterns as LFSR seeds by solving systems of linear
equations, was proposed in [6]. This technique needs
Smat20 bits to encode each test cube, where s, is the
maximum number of care bits in any test cube testing a
hard-to-detect fault. In [7] a method for improving the
encoding efficiency of LFSR reseeding by using multiple-
polynomial LFSRs was proposed. By using 16
polynomials instead of 1, the width of the seeds was
reduced to s,,... However, in both [6] and [7] the encoding
efficiency is limited, since there are many test cubes that
contain fewer than s,, bits, which should be encoded
using §,,+20 or s, bits respectively. Two approaches for
addressing this problem have been proposed. The first one
[8] tries to encode more than one test cubes in just one
seed for achieving vertical compression (reduction in the
number of the required seeds) and the other uses variable-
length seeds [9-11].

In [12, 13] the reseeding technique is applied to BIST
schemes based not on LFSRs but on twisted-ring counters.
This approach is as simple to implement as an LFSR-based
one and features a very small control logic for controlling
the reseeding operation. Its main disadvantage is that a
twisted-ring counter cannot offer high encoding efficiency
and as a result many seeds and thus many ROM bits are
required for fully testing the CUT. In [14] a reseeding
scheme based on folding counters (twisted-ring counters
with programmable feedback) is presented. Although it

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



manages to significantly reduce the storage requirements,
this is done at the expense of a rearrangement in the scan
path of the CUT, which may be very costly. This problem
is solved in [15] where the properties of folding counters
are exploited in order to reduce the number of the required
seeds (vertical compression), while an LFSR and a small
control logic are used to decompress the seeds into folding
counter states (horizontal compression). The method of
[15] (2-D Compression) needs slightly more ROM bits
than that of [14], with the advantage that no
rearrangements of the scan chain are required. Finally the
technique proposed in [16] reseeds the LFSR dynamically
and partially (not all the LFSR register is changed)
reducing this way the storage requirements significantly.
We should mention that all the above reseeding techniques
make use of a ROM in order to store the necessary seeds.
In this paper we present a new LFSR reseeding scheme
for scan-based BIST that does not need a ROM for its
implementation. The reseeding operation, that is the
alteration of the state sequence 4 -> B of the LFSR to the
sequence 4 -> B', with B’ # B, is performed dynamically,
by inverting the logic value of the bits of state B which are
complementary to those of B". The idea behind this is that,
when the LFSR is reseeded, not all its bits need to be
changed and, as a result, storing a whole seed in a ROM is
not necessary. With the proper selection of the seeds and
the reseeding points, only a few bits of B have to be
inverted at each reseeding. By inverting only these bits, the
proposed approach induces a further compression on the
seeds' length. Experimental results demonstrate the
advantages of the new LFSR reseeding approach.

2. The proposed architecture
The classical scan-based reseeding approach is shown
in Figure 1.

Combinational Part

LFSR_@_ T T

Scan chain ‘ |

Linear Feedback Logic

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1. Classical LFSR reseeding scheme for scan-based BIST

As CUT we consider a sequential circuit consisting of a
combinational part and of a scan chain of length n. The
TPG circuit consists of an LFSR with & flip-flop cells
(k<n) and a ROM for storing the seeds, which are
periodically loaded into the LFSR. Unlike the classical
reseeding approaches, the method proposed in this paper
eliminates the need of a ROM. The seeds are produced
dynamically and loaded into the LFSR in a single clock
cycle, according to a combinational control module.

The architecture of the proposed TPG scheme is shown
in Figure 2. The reseeding operation is performed by
inverting, at certain clock cycles, the outputs of some of

the LFSR cells before being stored to their adjacent cells.
This is achieved by means of additional exclusive-OR
(XOR) gates, which are placed between the cells of the
LFSR, as shown in Figure 2 (these XOR gates are drawn
using dashed lines). We observe that one of the inputs of
each of the additional XORs is driven by the output of the
previous LFSR cell, while the other one is driven by an
output C; of the Inversion Control Module. C; is
responsible for controlling all the inversion operations of
cell i, with 1 <i<k.

Vector Counter

el

Inversion  (C,
Control
Module

Lsse
Blt Counter t

Figure 2. The proposed reseeding scheme

to Scan
chain

Linear Feedback Logic

We assume that the LFSR changes state at clock times
ty, by, ..., t,... The time interval 7, with 1., < T <, actually
represents the clock cycle j, where, between 7, and ¢, a
new state of the LFSR is generated. This new state is
stored in the LFSR flip-flops exactly at clock time #. For
C=0, no inversions occur and the LFSR changes state at
each clock time according to its feedback structure. If a
reseeding must take place at clock time #, some of the
control lines C; must be set to the logic value 1 in the time
interval between #.; and #. During this interval (i.e. clock
cycle ;) the states of the bit and the vector counter (bc;,
and vc;, respectively) are captured by the Inversion
Control Module and a proper subset S; of the lines C;, Cs,

., C, is activated, while the rest control lines are left to 0.
In that way, at clock time ¢, the flip-flops R;, R,, ... Ry
receive the new state which is inverted at the bit positions
that correspond to the lines of S; and, therefore, a new seed
is produced and stored in the LFSR register.

Note that, in some cases, m XORs (m < k) may be
sufficient for producing all the necessary seeds for fully
testing the CUT. However, since usually a small LFSR is
used to produce fairly longer test vectors, in most cases,
nearly all £ XORs must be used.

We observe that the proposed reseeding scheme is more
flexible compared to reseeding schemes that use a ROM.
This is due to its inherent property that the reseedings can
take place any time during the Test Pattern Generation,
even in the middle of the scan-in operation, by altering any
bit positions in the LFSR register. Furthermore, different
bit positions can be altered at each reseeding. This
flexibility gives the opportunity to the designer to fine-tune
the reseeding algorithm, so as to take advantage of any
particular testing characteristics of the circuit under test.

Let us now demonstrate the versatility of the proposed
scheme through a very simple example. Suppose that we
have to test a sequential circuit with a scan path of length
7. For controlling the loading of the test patterns in the

II'FI'

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



scan chain, we need a bit counter of length 3 that cycles
through its first seven states (0 to 6). Consider also that we
use as TPG the 4-bit LFSR of Figure 3, which implements
the characteristic polynomial x* + x + 1 and that the
required vector counter is of length 4. Now assume that
after the application of 8 test vectors to the CUT the LFSR
contains the state 0101, the vector counter the state 1000
(8) and a hard-to-detect fault needs test cube 1x10xx1 in
order to be tested (x denotes a don't care value). In order to
produce one of the test vectors represented by test cube
1x10xx1, we can choose among many alternatives.

to Scan
chain

Figure 3. External-XOR LFSR (char. polynomial: x* +x + 1)

A first alternative is to invert some of the bits of state
0101, before it is stored in the register cells, so that the
LFSR, starting from that new state (new seed), to generate
one of the required test vectors. To calculate this seed we
solve a system of linear equations based on the feedback
structure of the LFSR [6]. By solving the corresponding
system of equations, we conclude that the seed that will
produce such a vector is of the form 0YY1 (Y is a binary
variable), which means that it is either 0001 or 0111,
Indeed, using as seed the state 0001, the LFSR generates
vector 1110001, while using as seed the state 0111, the
LFSR generates vector 1010111 (the rightmost bit is
produced first by the LFSR). If for example we choose to
load the seed 0111 in place of state 0101, we should invert
the third bit of the LFSR, before it is stored to cell R;.
Therefore, we place a XOR gate between flip-flops R, and
R; and we activate control line C; when states 6 and 7 of
the bit and vector counter respectively are captured, as
shown in Figure 4. At the next clock time (bit counter = 0,
vector counter = 8) state 0111 instead of 0101 is stored in
the LFSR register.

vector counter

to Scan
chain

i
Inversion |

Control |

Module |}

HIESA
bit counter

Figure 4. Example TPG (first alternative)

Another alternative is to let the LFSR evolve from state
0101 and invert some bits when necessary, in order to
finally generate one of the desired test vectors. There are
more than one ways to implement the TPG if we choose
this alternative. One of them is the following: the test
vector generated by the LFSR when it starts from state
0101 is 0110101. It differs from test cube 1x10xx1 only in
the leftmost bit (the last bit produced by the LFSR). So, an
easy way to produce one of the required test vectors is to
invert the leftmost bit of 0110101, that is the bit that would

be stored in cell R, at the clock time when the bit counter
changes state from 5 to 6 (the vector counter contains state
8). To do this we activate control line C, in the clock cycle
when the vector and the bit counter contain states 8 and 5
respectively, as shown in Figure 5:

vector counter

|
Inversion ! . i D E to Scan
Control ! ic, ! 2 2 ’ chain

Module |

bit counter

Figure 5. Example TPG (second alternative)

In both the above cases, instead of having to store a full
4-bit seed, we invert just one bit of an LFSR state to
produce one of the required test vectors. Although, except
for the additional XOR gate, some extra control logic is
needed, we expect that some parts of this control logic
would be shared among different reseedings and thus a
synthesis tool would be able to reduce this control logic
significantly. In any case, however, the proposed
architecture leaves the scan chain of the CUT untouched.

We presented the proposed architecture using LFSRs
with their feedback logic implemented with external XOR
gates. It is obvious that the same architecture can also be
used when the XOR gates of the feedback logic are located
between the cells of the LFSR.

3. The reseeding algorithm

In this section we present a time-to-market efficient
algorithm for selecting the seeds and the exact times for
performing the reseedings. The efficiency of this algorithm
is due to its simple, straightforward and easy
implementation along with its short running time. The
main goals are complete fault coverage, low hardware
overhead and short test sequence length.

The algorithm implements the first of the reseeding
alternatives presented in Section 2, that is to calculate for
each test cube one seed, starting from which, the LFSR
generates an appropriate test vector without any other
reseeding operation. This way, taking advantage of the fact
that the Inversion Control Module performs inversions
only at clock cycles that correspond to a single state of the
bit counter (specifically state # -1), we reduce the required
control logic.

In the beginning, the initial state of the LFSR is set to a
random value and 10,000 random patterns are applied to
the CUT for testing the easy-to-detect faults. This pseudo-
random part of the test sequence detects the vast majority
of the faults of the CUT and the remaining faults are
considered as hard-to-detect. We have to note that all these
pseudo-random patterns are usually not necessary, since
many of the random-pattern-testable faults are also
detected by the patterns generated between successive
reseedings of the LFSR. We will explain later how we can
throw out these useless random patterns.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



For the remaining hard-to-detect faults we extract test
cubes using a home made, deterministic ATPG tool. For
each one of the resulting test cubes ¢;, we solve a system of
linear equations created according to the feedback structure
of the LFSR, so as to determine a seed starting from which,
the LFSR will generate a test vector represented by c;.
Since these systems contain equations consisting of binary
variables and constants that are related together with the
modulo-2 (XOR) operation only, solving such a system is
much faster than solving a conventional system of linear
equations [16]. Moreover, taking into account that we
solve such a system only once for each of the extracted test
cubes, it is obvious that very short running time is required
for calculating the seeds.

Next we select the exact times that the calculated seeds
will be loaded in the LFSR. A new reseeding is performed
every n cycles, that is when the previous test vector has
been completely loaded in the scan chain (x is the scan
chain length). In other words, after the i-th seed has been
loaded, the LFSR is let produce the corresponding test
vector in n clock cycles and, during the n-th clock cycle,
some new inversions are stimulated by the Inversion
Control Module and seed 7 + 1 is loaded. The benefit from
this choice is that the test sequence is shortened, since the
useless vectors between successive reseedings are
eliminated. We must note that since we do not attempt to
encode more than one test cubes in a single seed, letting
the LFSR produce more than one test vectors after each
reseeding is, in most cases, useless.

For the selection of the less hardware intensive seed to
be loaded in the LFSR at a reseeding time ¢, we have
adopted a simple greedy approach. We compare all the
available seeds that we have calculated, with the LFSR
state that would have occurred in clock time ¢ if no
reseeding had taken place and we select the seed that
differs in the fewer bits from that state. This way the
smallest possible number of bit inversions is required in
cycle i in order for a seed to be loaded in the LFSR. If two
or more seeds require the same minimum number of bit
inversions, we choose the one that inserts the fewer
additional XORs in the LFSR structure.

After having decided about the new reseeding operation
we run fault simulation for the produced test vector. More
than one faults are often detected by applying this test
vector to the CUT. The seeds that correspond to test cubes
of these faults are thrown out from the set of the available
seeds for reseeding.

When all the faults are detected, we perform reverse
simulation [17]. As we mentioned above, some of the
10,000 pseudo-random patterns that were initially applied
to the CUT may be redundant. In order to minimize the
cardinality of the test set, we fault simulate all the test
vectors in reverse order until we reach 100% fault
coverage. Then we set the last reverse simulated vector as
the initial one (and its corresponding state as the initial

state of the LFSR), and we exclude the rest test vectors
from the test sequence.

Before proceeding to the experimental results let us note
the following: in the reseeding algorithm we just presented
we did not attempt to apply any compression technique to
the extracted seeds since our purpose was to provide a very
time-to-market efficient reseeding method. This method, as
we will see in Section 4, exhibits major advantages in
terms of the resulting test sequence lengths and hardware
overhead. However any other, more sophisticated
reseeding algorithm featuring seed compression can be
used for reducing the hardware overhead, at the expense of
extra computational time. Such algorithms have been
reported in the open literature [8, 16].

4. Experimental results

To evaluate the effectiveness of the proposed BIST
scheme, we implemented the algorithm described in
Section 3 in C programming language and we performed a
series of experiments using the ISCAS '85 and the ISCAS
'89 benchmark circuits. Only circuits with undetected
faults after the application of 10,000 random patterns have
been considered. Before applying the algorithm of Section
3, for each one of these circuits we tried to spot an LFSR
with an appropriate feedback polynomial. Such a
polynomial allows the above mentioned systems of linear
equations to be solved for at least one test cube for each
fault. Several primitive, feedback polynomials were
examined. These polynomials were generated with the
tools that can be found in [18]. The degrees of the
examined polynomials were varied from s,,,, - 2 t0 ;0 + 5
[15], where s, is the maximum number of defined bits
that a test cube, detecting a hard-to-detect fault, contained.
After having determined a suitable primitive polynomial,
we performed 20 experiments for each benchmark circuit,
starting from a different random initial seed each time. The
running time of such an experiment varied from few
seconds for the smaller circuits, to one hour for the larger,
excluding ATPG. The larger portion of this time (over
95%) was expended to fault simulation (initial and
reverse). The best results are shown in Table 1.

The names of the benchmark circuits as well as the
length of the corresponding scan paths are given in the first
two columns of Table 1. The subsequent columns present
the length of the LFSR used as TPG, the number of the
required XORs for performing the inversions, the number
of the seeds used, the total number of vectors for achieving
100% fault coverage and the hardware overhead in gate
equivalents. For the calculation of the hardware overhead
of the proposed scheme, we have used a commercial
synthesis tool for synthesizing the Inversion Control
Module and, to the synthesis results, we have added the
hardware overhead of the additional XOR gates. The bit as
well as the vector counter have not been taken into account
in the derivation of the hardware overhead results, since
such counters are needed nearly by any mixed-mode, scan-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



based BIST scheme. We note that 1 gate equivalent
corresponds to a 2-input NAND gate.

Table 1. Experimental results

Hardware
Circuit Scan | LFSR|# Invert. # Seeds [# Vectors| overhead
Elements [length| XORs .
(gate equiv.)

c2670 233 65 65 55 2514 462
c7552 207 154 153 99 9292 902
5420 34 27 24 21 7266 119
5641 54 22 21 8 2220 60
s713 54 22 22 7 2600 62
5838 66 52 52 116 6815 652
s953 45 15 11 3 8426 18
s1196 32 17 14 7 8992 46
51238 32 17 14 7 9726 45
s5378 214 24 24 22 9104 116
$9234 247 46 46 217 9787 955
513207 700 50 49 160 10084 456
515850 611 47 47 233 9658 955

As we can see from Table 1, in many cases the number
of inverting XORs is equal to the length of the LFSR, as
we had expected. Even if fewer additional XORs are
required, their number is very close to the LFSR length.

We compare the proposed reseeding scheme with the 2-
D Compression approach of [15], which is the most recent
scan-based reseeding technique in the open literature, it
features a relatively small control module and requires less
storage than any other scan-based reseeding technique.
Also, it does not require any rearrangements of the scan
chain of the CUT.

Table 2. Test vector comparisons

- Proposed | 2-D Compression | Reduction
Circuit

scheme [15] percentage
c2670 2514 16552 84.81 %
c7552 9292 17488 46.87 %
5420 7266 10350 29.80 %
5641 2220 10220 78.28 %
s713 2600 10220 74.56 %
s838 6815 11742 41.96 %
5953 8426 10092 16.51 %
51196 8992 10099 10.96 %
51238 9726 10099 3.69 %
s5378 9104 13010 30.02 %
s9234 9787 33560 70.84 %
513207 10084 50658 80.09 %
515850 9658 78544 87.70 %

As we can see from Table 2, the combination of the
proposed scheme with the algorithm described in Section
3, leads to significantly better results in terms of the
number of test vectors needed for fully testing the CUT.
This is due to two reasons. The first one is that we avoid,
with the consecutive reseedings, the existence of dummy
patterns in the part of the test sequence that tests the hard-
to-detect faults. We must note that, by using the proposed
TPG scheme, it is possible to perform consecutive
reseedings without any significant increase in the hardware
overhead, even if the number of required seeds is
increased. The reason for this is that we don't need to store

a whole new seed as in the case of ROM-based reseeding
schemes, but we just have to perform a few inversions in
order to load it in the LFSR register. The second reason
that explains the short test sequences of the proposed
approach is the reverse simulation process we perform at
the end of each experiment. As we can see, in all cases
except for one (s13207), we need less than 10,000 patterns
for testing the CUT. This means that the initial sequence of
10,000 vectors has been reduced by the reverse simulation.
In Table 3 we present the hardware overhead
comparisons between the proposed scheme and the
approach of [15]. We have described the control modules
of the 2-D Compression approach in Verilog HDL
(excluding the same counters as for the proposed method)
and we have synthesized them using the same tool as for
the synthesis of the Inversion Control Modules of the
proposed scheme. For translating the ROM bits to gate
equivalents, we have taken into account the assumption
made in [19] that, on average, 0.25 gates are required for
each memory cell of a ROM. To the hardware overhead of
the proposed scheme, we have added the extra gates
required for implementing the bigger LFSRs it uses.

Table 3. Hardware overhead comparisons

LFSR length # Seeds Hardware Overhead
- Proposed 15
Circuit | Proposed [15] Proposed [15] schpeme (Ega t]e Reduct.
scheme scheme . .
(gate equiv.) | equiv.)
€2670 65 37 55 28 493 393 [-20.28 %
c7552 154 133 99 36 943 1451 |35.01 %
5420 27 16 21 10 138 132 | -435%
5641 22 16 8 4 70 100 ]30.00 %
s713 22 16 7 4 72 100 ] 28.00 %
s838 52 33 116 26 687 338 [-50.80 %
5953 15 10 3 2 18 79 17722%
51196 17 10 7 3 46 85 145.88%
51238 17 14 7 3 50 92 145.65%
s5378 24 14 22 14 133 151 |11.92%
59234 46 40 217 95 964 1097 |12.12%
513207 50 18 160 58 508 393 [-22.64 %
515850 47 30 233 112 987 989 | 0.20%

From Table 3, we can infer the following: firstly, the
lengths of the LFSRs used in this paper are quite larger
than those of [15]. Since in both cases their choice has
been made according to the value s,,,, we conclude that
the test vectors produced by our home made ATPG tool
are poor compared to the test vectors used in [15] because
they have more defined bits. Additionally, the number of
seeds required by our algorithm is much larger than the
number of seeds in [15]. This is due to the fact that our
algorithm does not attempt to compress the seeds in any
way. However, we observe that the proposed scheme
requires less hardware in most cases, even if it needs
significantly more reseedings. This is not true only for the
small circuits, but for the larger ones as well, like ¢7552,
$5378, s9234 and s15850. The 2-D Compression technique
is better than the proposed one in 4 out of 13 circuits
(c2670, s420, s838 and s13207). These results can be

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



explained by observing Figure 6. For each circuit we have
calculated the required ROM bits for storing the seeds of
[15], Ry.p, as well as for the proposed method, Riousess,
assuming that a ROM had been used. Both R, and Rymess
depend on the LFSR length (quality of test vectors) and the
number of seeds (quality of seed compression technique).
The ratio Ryogess / Rz is an indication of the difference in
the quality of these two parameters between the two
methods. We observe that, according to the above ratio,
our method is significantly worse than that of [15]
(Rromiess' Ro-p > 2 for all circuits). However, only when this
ratio is too high (3.45 for c2670, 3.54 for s420, 7.03 for
s838 and 7.66 for s13207), the proposed scheme requires
more hardware overhead than the technique of [15]. In
these cases the advantage of performing the reseedings
with inversions instead of using a ROM, cannot balance
the increase in the LFSR length and in the number of the
seeds.

9
8

[=]

g 7 A
a 6

£ 5

3 4

33’*‘\*//’\

3 g \‘/ R G S—
& 2

1

0
S & O D D P & SN
FEFELEEEL TS

Circuit
Figure 6. Graphical representation of the Rrorsess /Ro-p tatio

The LFSR length as well as the number of the required
seeds can be reduced if a commercial ATPG tool and a
more sophisticated compression algorithm are employed
respectively. This way, the above ratio is expected to
decrease and as a result the hardware overhead of the
proposed method will improve significantly. We are
currently working towards both these directions.

5. Conclusions

In this paper a new LFSR reseeding scheme for scan-
based BIST is proposed. The proposed scheme does not
use a ROM, but performs the reseedings dynamically by
inverting some selected bits of the LFSR register. Thus, it
avoids reseeding all the LFSR cells, which is inevitable
when the seeds are stored in a ROM, gaining this way in
hardware overhead. The proposed scheme is very flexible
and can be used for implementing the reseedings in many
different ways. Experimental results on ISCAS '85 and
ISCAS '89 benchmark circuits show its potential, although
it is combined with a simple ATPG tool and a non-
sophisticated, but very fast reseeding algorithm. We expect
that the experimental results will improve even more when
a sophisticated algorithm along with a more effective
ATPG tool will be adopted.

Acknowledgements
The authors would like to thank Professor P. Girard for
providing the motivation for this work.

References

[1] P. H. Bardell, W. H. McAnney & I. Savir, Built-In Test for
VLSI: Pseudo-Random Techniques, John Wiley & Sons, New
York, NY, 1987.

[2] M. Abramovici, M. A. Breuer & A. D. Friedman, Digital
Systems Testing and Testable Design, Computer Science Press,
New York, NY, 1990.

[3] H.-J. Wunderlich, “BIST for Systems-on-a-chip”, Integration,
the VLSI Journal, vol. 26, no. 1-2, December 1998, pp. 55-78.

[4] G. Kiefer & H.-J. Wunderlich, “Using BIST Control for
Pattern Generation”, Proc. of ITC, Nov. 1997, pp. 347-355.

[5] N. A. Touba & E. J. McCluskey, “Bit-Fixing in
Pseudorandom Sequences for Scan BIST”, IEEE Trans. on CAD
of Int. Circuits & Systems, vol. 20, no. 4, April 2001, pp. 545-555.
[6] B. Koenemann, “LFSR-Coded Test Patterns for Scan
Design”, Proc. of ETC, April 1991, pp. 237-242.

[7]1 S. Hellebrand, S. Tarnick, B. Courtois & J. Rajski,
“Generation of Vector Patterns through Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers”, Proc. of ITC, Sept.
1992, pp. 120-129.

[8] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman & B.
Courtois, “Built-In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers”, IEEE Trans. on Computers, vol. 44, no. 2, Feb. 1995,
pp. 223-233.

[9] N. Zacharia, J. Rajski & J. Tyszer, “Decompression of Test
Data Using Variable-Length Seed LFSRs”, Proc. of 13th VTS,
April-May 1995, pp. 426-433.

[10] N. Zacharia, J. Rajski, J. Tyszer & J. Waicukauski, “Two
Dimensional Test Data Decompressor for Multiple Scan
Designs”, Proc. of ITC, Oct. 1996, pp. 186-194.

[11] J. Rajski, J. Tyszer & N. Zacharia, “Test Data Decompres-
sion for Multiple Scan Designs with Boundary Scan”, [EEE
Trans. on Computers, vol. 47, no. 11, Nov. 1998, pp. 1188-1200.
[12] K. Chakrabarty, B. T. Murray & V. lyengar, “Built-in Test
Pattern Generation for High Performance Circuits Using Twisted-
Ring Counters”, Proc. of 17th VTS, April 1999, pp. 22-27.

[13] K. Chakrabarty & S. Swaminathan, “Built-in Testing of
High-Performance Circuits Using Twisted-Ring Counters”, Proc.
of ISCAS, May 2000, pp. 72-75.

[14] S. Hellebrand, H.-G. Liang & H.-J. Wunderlich, “A Mixed
Mode BIST Scheme Based on Reseeding of Folding Counters”,
Journal of Electronic Testing: Theory and Applications, vol. 17,
no. 3-4, June-August 2001, pp. 341-349.

[15] H.-G. Liang, S. Hellebrand & H.-J. Wunderlich, “Two-
Dimensional Test Data Compression for Scan-Based
Deterministic BIST”, Journal of Electronic Testing: Theory and
Applications, vol. 18, no. 2, March 2002, pp. 159-170.

[16] C. V. Krishna, A. Jas & N. A. Touba, “Test Vector Encoding
Using Partial LFSR Reseeding”, Proc. of ITC, October-
November 2001, pp. 885-893.

[17] A. P. Stroele & F. Mayer, “Methods to Reduce Test
Application Time for Accumulator-based Self-Test”, Proc. of
15th VTS, April-May 1997, pp. 48-53.

[18] “A Primitive Polynomial Search Program”, available from
http://users2.ev1.net/~sduplichan/primitivepolynomials/
primitivepolynomials.htm.

[19] L. R. Huang, J. Y. Jou & S. Y. Kuo, “Gauss-Elimination-
Based Generation of Multiple Seed-Polynomial Pairs for LFSR”,
1EEE Transactions on CAD of Integrated Circuits and Systems,
vol. 16, no. 9, September 1997, pp. 1015-1024.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


