
DV-TSE: Difference Vector Based Test Set Embedding†

Maciej Bellos1,2, Xrysovalantis Kavousianos1,3, Dimitris Nikolos1,2 and Dimitri Kagaris4

1Dept. Of Computer Engineering & Informatics, University of Patras, 26500 Patras, Greece
2Computer Technology Institute, 3 Kolokotroni St., 26221 Patras, Greece

3Dept. Of Computer Science, University of Ioannina, 45110 Ioannina, Greece
4Dept. of Electrical & Computer Engineering, Southern Illinois University, Carbondale, IL 62901, USA

{bellos, kabousia}@ceid.upatras.gr, nikolosd@cti.gr, kagaris@engr.siu.edu

Abstract

In this paper we present a new test set embedding
method for test-per-clock BIST schemes. The method
works efficiently with fully specified as well as partially
specified test sets and requires a number of clock cycles
equal to the size of the test set. The resulting test pattern
generation mechanism (TPG) compares favourably in
terms of area implementation and test application time
to already known approaches.

1. Introduction

Built-In Self-Test (BIST) is an attractive approach of
testing large VLSI circuits, since it provides the ability
for a circuit to test itself reducing the need for complex
external testing equipment. A BIST scheme is comprised
from three basic blocks: the test pattern generator (TPG)
which generates the test patterns and applies them to the
circuit under test (CUT), the Test Response Compactor
which produces a signature after compacting the CUT’s
responses and the BIST controller responsible for
producing the control signals which will ensure the
correct cooperation of the other two blocks and the CUT.

Several BIST schemes have been proposed so far
which can be classified into several categories. Based on
the number of cycles required to apply a test pattern to
the CUT, BIST schemes can be classified as test-per-
clock and test-per-scan. In the test-per-clock scheme a
new test pattern is applied to the CUT at each clock
cycle, while in the test-per-scan scheme the scan path is
serially filled by the TPG. Based on the type of test
patterns they generate, BIST schemes can be classified
into three main categories: pseudorandom [1],
pseudoexhaustive [1] and deterministic. A type of
deterministic BIST is test set embedding. In this case the
structure of the circuit under test is unknown. This fact
makes the design of the TPG even more difficult.
However, test set embedding is very attractive for

 † This research was financially supported by the Public Benefit

Foundation “Alexander S. Onassis” via its scholarships programs, by
the Research Committee of Patras University, within the framework
of “K. Karatheodoris” scholarships program and by the State
Sdcholarship’s Foundation of Greece via its Post-doctoral research
scholarships program.

intellectual property cores where no information is given
about the internal structure of the cores.

The problem of the Test Set Embedding was studied
in [2-8]. In Table 1 we present the main features of each
method.
7DEOH �� 7HVW VHW HPEHGGLQJ PHWKRG IHDWXUHV�

Test sets targeting
all stuck-at faults

Method

Test sets
targeting hard
to detect faults Fully

specified
Partially
specified

Relation of test
 application time
w.r.t. test set size

ROM
based √ √ √ Equal

[2] √ √ Equal

[3] √ √ At least two
times more

[4] √ √ Equal

[5, 6] √ √ Very long test
application time

[7] √ √ √ Very long test
application time

[8] √ √ √ Equal

In this work we propose a new test set embedding
method suitable for test-per-clock BIST schemes, which
considers fully specified as well as partially specified
test sets and reproduces the given test set in as many
clock cycles as its size. The approach modifies
appropriately the original test set and then uses OR gates
to obtain the desired vectors. We will show that the
proposed method compares favourably with previous
approaches. The rest of the paper is organized as
follows. In Section 2 we present the main idea behind
the proposed method together with the required test set
modifications. Section 3 describes the test set generation
mechanism, which is based on the modified test set. In
Section 4 we present experimental results considering
two kinds of test sets that target all the faults of the
circuit under test. The first kind considers fully specified
test sets, while the second considers partially specified
test sets, i.e. test sets that contain undefined bits. Finally,
Section 5 concludes.

2. Test Set Modification

2.1. Basic Idea

Our method takes advantage of the fact that test
vectors tend to be correlated. Faults in the CUT that are

343

structurally related require similar input value
assignments in order to be activated and propagated to
the CUT’s outputs [9]. Therefore, many pairs of test
vectors in the test set will differ in a small number of bit
positions. Ordering the test vectors in the test set, such
that correlated test vectors follow each other, results in a
test matrix where neighbouring vectors differ in a small
number of bits.

In order to achieve the above we can use the notion
of the Hamming distance of two vectors, which is the
number of bit positions in which the two vectors differ.
Specifically we can order the test vectors in such a way
that the Hamming distances between successive vectors
are reduced. Let the precomputed test set be T={t1, t2, t3,
… , tn}. Having T as a basis we can derive the difference
matrix Tdiff, where each vector, except for the first, is the
bit-wise exclusive OR (XOR) of consecutive vector pairs
of T in the following manner: t1, t1 ⊕ t2, t2 ⊕ t3, … , tn-1 ⊕
tn. The number of ‘1’s in the difference matrix is
expected to be much smaller than that in the initial test
depending on the amount of correlation between the test
vectors. The difference matrix was at first used in [9] as
an intermediate matrix in a compressing technique
proposed for reducing the amount of test data stored on a
tester and transferred to the CUT during testing. In our
method the difference matrix is used as an intermediate
matrix serving a completely different purpose. Its task is
to reduce the hardware required for the implementation
of the test pattern generator.

Test data can be fully specified, that is, all the bits of
the test vectors have one of the two possible values (0 or
1), or can be partially specified, that is, they can contain
don’t care or undefined bits (x). The latter can be
assigned values as the test engineer deems appropriate.
The proposed method is applicable to both kinds of test
data. The original test set Torig undergoes a number of
preprocessing steps to create a modified version Tmod.
Tmod is then used to construct the pattern generation
mechanism.

2.2. Test set preprocessing steps

The modification of the given test, Torig, is carried out
through a number of preprocessing steps. Consider the
general case of a test set that contains undefined bits.
The existence of undefined bits provides flexibility in
value assignment so as to minimize the TPG hardware.
The goal of the preprocessing steps is to create columns
where one of the two binary values has much more
occurrences than the other. This test set will eventually
lead to a rather simple pattern generation mechanism.
The preprocessing steps are shown below:
Step 1. Determine if there are any possible constant

columns and remove them.
Step 2. Reorder the test vectors so as to reduce the sum

of Hamming distances among test pairs.
Step 3. Identify possible identical / complementary

columns and assign the proper values to the
undefined bits.

Step 4. If there are undefined bits left, assign the
undefined bits of each column to the value that

has the most occurrences in the column.
Step 5. Remove identical vectors. The result is the fully

specified test set Tfull.
Step 6. Create the test set that contains the difference

vectors, named Tdiff.
Step 7. Combine Tfull and Tdiff by choosing appropriate

columns from each test set so as to create Tmod.

2.3. Preprocessing step description

In this section we will provide a thorough
explanation of the above preprocessing steps.

Step 1 removes, if there are any, some of the
undefined bits of the Torig. The first case examined is the
existence of columns with ‘1’s and ‘X’s, or ‘0’s and X's.
Upon identification of such a column, the column is
labelled as constant and not considered in the creation of
Tmod since it can be easily generated. Obviously, test sets
that detect all the faults of the circuit do not contain such
columns.

The next step (Step 2) is to reorder the test vectors so
as to reduce the sum of Hamming distances of
consecutive test vector pairs. In this way, by considering
the difference vectors, we can eventually reduce the
numbers of ‘1’s in the resulting set. The reduction of the
sum of Hamming distances among test vector pairs is
equivalent to the Traveling Salesman Problem, which is
known to be NP-complete, so a heuristic is used. At first,
a weighted graph is constructed from the given test set.
In this graph each node represents a test vector and each
edge connecting two nodes represents the Hamming
distance of the corresponding test vector pair. When
undefined bits are present in any vector of the test pair,
the Hamming distance is calculated in a slightly different
way. The undefined bit is assumed to have the same
value as the corresponding bit of the other test vector and
thus the Hamming distance of the pair does not increase.

Having constructed the graph, the selection of a test
vector pair is based on a greedy approach, according to
which the test vector pair with the smallest Hamming
distance is chosen at each step. After each selection, the
undefined bits that may exist must be assigned to values
that will not contradict the Hamming distance value that
was used in the selection. Therefore, each time the
combination X, 1 (X, 0) appears in the corresponding bit
positions it is converted to 1, 1 (0, 0). Figure 1 shows the
effect of the above conversions on two vectors. With
these assignments in mind, the graph is updated with the
new values of the Hamming distances between the
remaining test vectors and then the pair with the smallest
Hamming distance is chosen again. The procedure goes
on until there are no nodes left in the graph.

� [� [� � � �

[� � � � � [�

� � � � � � � �

� � � � � � � �

�[� � �� ��

�[� � �� ��

)LJXUH �� 8QGHILQHG ELWV DVVLJQPHQWV�

Apart from the greedy approach other approaches
[10, 11] can be used as well. Both [10] and [11] examine
the case where the vectors can be inverted, which
provides more flexibility in achieving less transitions.

344

However, this would require additional logic that would
control the inversions of the vectors. In [10], a Double
Spanning tree, a Minimum Spanning tree Maximum
Matching and a greedy approach where implemented
and the experimental results showed that the latter was
the most efficient. In [11] a genetic algorithm was used
on partially specified test sets and was found to be more
efficient than the greedy approach.

Step 2 may not necessarily remove all the undefined
bits from the test vectors, so Step 3 is performed. If we
consider the test set column-wise, we can assign values
to the undefined bits so as to maximize the existence of
identical or complementary columns. If there are such
columns then the undefined bit in a position will obtain
the value of the corresponding position in the identical /
complementary column. This step can also be applied if
we partition the reordered test set in phases of equal
length, thus increasing the probability of finding
identical / complementary columns.

If after all the above steps there are still some
undefined bits in Step 4, we assign them in a manner that
will maximize or minimize the presence of one of the
two values (0 or 1). More specifically, if the number of
‘0’s (‘1’s) is larger than the number of ‘1’s (‘0’s) then
the remaining undefined bits are assigned the value 0 (1).
The idea behind this approach is to bias the number of
occurrences of one of the two values so as to achieve as
less transitions (1->0 or 0->1) as possible when the
difference vectors will be created. This also complies
with the fact that the undefined bits were considered to
have the same value when the reordering step was
applied.

Step 5 checks if the result of all of the assignments
has yielded some identical vectors. In this case those
vectors are removed because their generation serves no
purpose and will lead to higher area implementation.

It is obvious that when a fully specified test set is
provided we do not have to perform the steps that assign
values to undefined bits, that is, Steps 1 and 4. Step 5 is

also not performed since in a fully specified test set there
are no identical vectors. The only steps performed are
the reordering of the test vectors according to the
Hamming distances of the vector pairs and the
identification of the identical or complementary columns
with minor differences. One such difference is that once
the graph is constructed it will never be updated with
new values, since the Hamming distances do not change.

With the above preprocessing steps we have created
a fully specified version, Tfull, of the initial test set.
Based on this test set, Step 6 creates the difference test
vectors in Tdiff according to the following manner: v1, v1

⊕ v2, v2 ⊕ v3, … , vn-1 ⊕ vn, where vi belongs to Tfull.
The creation of Tmod, performed in Step 7, is

achieved by using Tfull and Tdiff. We examine both sets
column-wise. For each column we count the number of
‘0’s and ‘1’s and we assign a weight equal to the smaller
of the two values. This is done for both Tfull and the Tdiff.
We then choose the column from Tfull only if it has a
weight smaller than the weight of the corresponding
column from Tdiff plus a threshold, that is:

Wi, full < Wi, diff + Threshold, 0 ≤ i ≤ n
In the above n is the number of the primary inputs of the
circuit and Wi, full, Wi, diff are the weights of column i of
the fully specified and the difference test sets,
respectively. The threshold value takes into account how
the test set will be reproduced from the TPG mechanism
described in the next section and is estimated
experimentally.

3. Test Set Generation Mechanism

Having produced the modified test set Tmod we can
now construct the test pattern generation mechanism or
test pattern generator (TPG). The TPG uses the Tmod test
set, which contains columns either from the Tfull or the
Tdiff test sets, and reproduces the Tfull test set in as many
clock cycles as the number of its test vectors.

SKDVH

��!���!�

Q�ELW LQSXW UHJLVWHU

���

��!�

. . .

. . .

Q

. . .

6KLIW 5HJLVWHU

. . .
25 7UHHV

*URXS �

25 7UHHV

*URXS �

25 7UHHV

*URXS Q

.
. . .

P P P

P�!� P�!� P�!�
. . .

...

)LJXUH �� 3URSRVHG WHVW SDWWHUQ JHQHUDWLRQ PHFKDQLVP�

345

Figure 2 depicts the blocks the proposed TPG
consists of. There is a cyclic shift register that feeds n
groups of trees constructed from OR gates, which have
the task of producing the columns of the Tmod test set.
Each group of OR trees contains m OR trees, where m is
the number of phases the test set was split into. The
outputs of the OR trees of each group are driven to m->1
multiplexers, which have the task of selecting the proper
OR tree. The control signals of the multiplexers are
driven by a binary counter that counts up to m.
Obviously if there are no phases, the m->1 multiplexers
and the binary counter do not exist. Finally the outputs
of the multiplexers are driven to XOR gates, whose other
inputs are fed from the corresponding flip-flop of the
input register of the CUT. The number of the XOR gates
required is determined during the production of Tmod and
is equal to the number of columns taken from the Tdiff

test set.
Before we explain how the TPG produces the test

vectors, we will show how the OR trees are constructed.
The key to their construction is the initial value of the
cyclic shift register. In our case the register contains the
pattern 100…00 and at each clock cycle it shifts the ‘1’
to the right by one position. This ensures that at each
clock cycle there can be at most one ‘1’ in the inputs of
the OR tree. Consider as an example that we have to
produce the sequence (test matrix column) ‘10011’. In
order to do so, we must use a cyclic shift register with 5
flip-flops initialized to ‘10000’ (Figure 3). The OR tree
used will be driven by some of the 5 flip-flops, more
specifically from D0, D3 and D4. It is obvious that at
clock cycles 0, 3 and 4 the output of the OR tree will be
equal to ‘1’ while in the rest of the cycles the output is
‘0’ since all the its inputs are driven by ‘0’.

'
�

'
�

'
�

'
�

'
�

� � ���

�����

)LJXUH �� 25 WUHH FRQVWUXFWLRQ H[DPSOH�

From the example it is obvious that the construction
of the OR trees is straightforward and fast. Using the
columns of Tmod we construct the appropriate trees and

the m->1 multiplexers forward the correct tree output to
the XOR gates or the flip-flops of the input register.

Having explained how the OR trees are constructed,
we can now show how the TPG works. At first the flip-
flops, which during test mode will receive the value of
the XOR gates, are initialized to ‘0’, therefore not
altering the first value arriving to the XOR gates. As
mentioned earlier, the columns fed to the XOR gates are
the ones taken from Tdiff and their first bit is the
corresponding bit of the first vector of Tfull. At the same
time, the cyclic shift register and the binary counter are
initialized to 100…00 and 0…0, respectively. Then at
each clock cycle the counter increases by one, applying a
new test vector to the CUT. When the counter reaches
the value m it produces a clock signal for the cyclic shift
register, so as to feed the OR trees with new values.
When the ‘1’ in the shift register reaches the rightmost
position and the counter reaches value m, the process
terminates. The production of the vectors is done in an
interleaved manner identical to the one used in [12],
which reduces the transitions in the OR trees and
therefore the overall power consumption of the TPG.

4. Experimental Results and Comparisons

In the general case the core provider supplies the core
together with its test set. The test set can be fully
specified, i.e. compacted, or partially specified, that is it
contains undefined bits. For that reason fully specified as
well as partially specified test are used for comparing the
efficiency of the proposed method against the already
known methods. The test sets used in our experiments
concerned the ISCAS ’85 benchmark circuits.

Among the methods that have been proposed for test
set embedding [2-8], only the methods given in [2, 4, 8]
can be used for test sets targeting all the single stuck-at
faults of the circuit and ensure that a test set with
cardinality n is generated in k clock cycles, where k is
equal or close to n. The methods given in [5, 6] are based
on the manipulation of the large number of undefined
bits appearing in the test sets for the hard to detect faults
and usually lead to long test application times. They
cannot be used in the case of fully specified test sets that
target all the faults of the CUT. In the case of the
partially specified test sets the above methods lead to
very long test application times.

7DEOH �� $UHD LPSOHPHQWDWLRQ IRU IXOO\ VSHFLILHG WHVW VHWV�

Phase Shifters [8] LFSRom [4] Proposed Savings %

Circuit Inputs Vectors Phases Area Phases Area Phases Area
Proposed

vs. [8]
Proposed

vs. [4]

c432 36 48 2 381.8 2 342 2 329.6 13.67 3.63

c499 41 52 2 455 2 392.4 2 390.2 14.24 0.56

c880 60 49 2 573.2 1 463.4 1 458.2 20.06 1.12

c1355 41 85 4 685.6 3 596 3 578.8 15.58 2.89

c1908 33 111 4 708.8 3 621.2 3 571.6 19.36 7.98

c2670 233 100 4 3506.4 3 2647.6 3 2700.6 22.98 -2.00

c3540 50 143 8 1406.4 4 1085.2 4 1034.4 26.45 4.68

c5315 178 112 4 3284.4 3 2434.8 3 2462.4 25.03 -1.13

c6288 32 27 3 209.6 1 172.6 1 171.4 18.23 0.70

c7552 207 178 8 5670 4 4128.4 4 4170.8 26.44 -1.03

346

7DEOH �� $UHD LPSOHPHQWDWLRQ IRU SDUWLDOO\ VSHFLILHG WHVW VHWV�

Phase Shifters [8] Enhanced-LFSRom Proposed Savings %

Area

Circuit Vectors Phases Area Vectors Phases Random Bias Vectors Phases Area
Proposed

vs. [8]
Proposed vs.

Random
Proposed
vs. Bias

c432 95 4 418 95 3 546.4 284.2 79 3 278 33.49 49.12 2.18

c499 55 2 382.4 55 2 202.4 191 55 2 187.2 51.05 7.51 1.99

c880 62 2 632.4 62 2 603.8 498 59 2 474.2 25.02 21.46 4.78

c1355 137 4 1004.6 137 4 601.6 576 137 4 541.8 46.07 9.94 5.94

c1908 123 4 696 123 4 596 591.4 122 3 533.6 23.33 10.47 9.77

c2670 124 4 2639 124 3 3230.4 2022.2 124 3 2068.6 21.61 35.96 -2.29

c3540 157 8 1301.8 157 4 1184.6 1105.8 154 4 1004.2 22.86 15.23 9.19

c5315 120 4 3022.8 120 3 2546.8 2470 120 3 2501.8 17.24 1.77 -1.29

c6288 51 2 343 51 2 216.2 183.2 50 2 170.4 50.32 21.18 6.99

c7552 231 8 5592.6 231 4 5234 4313.8 230 4 3959.8 29.20 24.34 8.21

Also the test application time required by the method
of [7] is more than 1000 times larger than that required
by the ROM based test set embedding [8]. Therefore we
do not compare our method with the ones given in [5-7].
In [8] it has been shown that the phase shifter based
method is more efficient, with respect to the hardware
required for its implementation, than the ROM based test
set embedding as well as the method given in [2].
Therefore we will compare the proposed method against
the ones presented in [4] and [8]. The proposed method
uses the greedy heuristic so as to reorder the test vectors.
The use of the genetic algorithm of [11] would possibly
lead to slightly better experimental results.

We first determined the value of the threshold that is
used in the selection of the columns. After a number of
experiments, a value of 5 (bits) was adopted for the
threshold and is a little larger than a gate equivalent.
Then we determined the number of phases. In the phase
shifter based method [8], every column of a given test
matrix should be found as a subsequence of the m-
sequence of some LFSR of appropriate length and
characteristic polynomial. In order to be sure to find a
subsequence of length l we have to use a characteristic
polynomial of degree at least equal to l. The above
implies that the LFSR size must be greater than or equal

to 



=

3KDVHVRI&RXQW

\&DUGLQDOLW6HW7HVW
O , where  [denotes the

smallest integer greater than or equal to x. In the phase
shifter based method we cannot reduce the number of
phases because then the LFSR size increases and the
search time becomes unacceptably long. On the other
hand, in the proposed method, as well as the method
given in [4], the design time is negligible, thus we can
examine a number of choices for the phases the test set
can be split into in order to find the value leading to the
least hardware overhead. In Figure 4 we give the
hardware required for the implementation of the
proposed method with respect to the number of phases
used for circuits c499 and c1355. As we can see for each
circuit there is a number of phases giving the least
hardware overhead. In our experiments we have used the
number of phases that results in the least hardware
overhead.

$UHD YV 3KDVHV

���

���

���

���

���

���

���

���

���

� � � � 3KDVHV

$UHD

F���

F����

)LJXUH �� ,PSDFW RI WKH QXPEHU RI SKDVHV RQ

LPSOHPHQWDWLRQ DUHD�

The experimental results concerning fully specified
test sets are shown in Table 2. The fully specified test
sets are the same with the test sets used in [8]. We have
also used the same synthesis tools and the same
implementation library as in [8]. As it can be seen the
proposed method is significantly better than that of [8].
The difference becomes larger for longer test sets and
circuits with a lot of inputs. Furthermore it is better than
the method of [4] in all but 3 cases (c2670, c5315 and
c7552).

LFSRom was proposed only for fully specified test
sets. We have enhanced LFSRom so as it can be applied
to partially specified test sets. In the case of partially
specified test sets, we have to remove the undefined bits
from the test set. At first we identify the cases were there
could be identical / complementary columns and we
assign the proper values to the appropriate undefined
bits. The remaining bits are assigned using two different
policies. The first called “Random” assigns the
undefined bits randomly with probability 0.5 to one of
the two values. The second called “Bias” assigns the
undefined bits of each column with the value that would
minimize the occurrences of the ‘1’s (‘0’s) if their
population is smaller than the population of ‘0’s (‘1’s).
The “Bias” assignment policy is actually Step 4 of the
preprocessing steps of the proposed method (see Section
2.2.).

347

Table 3 contains the experimental results for the
phase shifter based [8], the two assignment policies for
the enhanced-LFSRom and the proposed method. For
each method we also provide the number of phases the
test set was split into. It is obvious that the proposed
method is far more superior than [8] and the enhanced-
LFSRom when the “Random” assignment policy is used.
The proposed method is still superior in all but two cases
(c2670 and c5315) when the “Bias” policy is used.

From Table 2 and Table 3, we can observe that in the
case of partially specified test vectors, the benefits of the
existence of undefined bits overcome the drawback of
the larger test vector population leading to less area
overhead in almost all cases, when the proposed method
is considered. In contrast, the other two methods had an
increase in area implementation in nearly half the cases.
More specifically in Table 4 we show the effect of the
partially specified test sets against the fully specified test
sets when the proposed method is considered.

7DEOH �� ,PSDFW RI SDUWLDOO\ VSHFLILHG YV� IXOO\

VSHFLILHG WHVW VHWV RQ WKH SURSRVHG PHWKRG�

Fully Specified
Test Sets

Partially
Specified Test

Sets

Partially Specified
vs. Fully Specified

Test Sets

Circuit Inputs Vectors Area Vectors Area Area Savings

c432 36 48 329,6 79 278 18,56%

c499 41 52 390,2 55 187,2 108,44%

c880 60 49 458,2 59 474,2 -3,37%

c1355 41 85 578,8 137 541,8 6,83%

c1908 33 111 571,6 122 533,6 7,12%

c2670 233 100 2700,6 124 2068,6 30,55%

c3540 50 143 1034,4 154 1004,2 3,01%

c5315 178 112 2462,4 120 2501,8 -1,57%

c6288 32 27 171,4 50 170,4 0,59%

c7552 207 178 4170,8 230 3959,8 5,33%

5. Conclusions

We have presented a new method, which provides a
solution for the problem of test set embedding. The
method is based on the notion of difference vectors and
it uses a cyclic shift register in combination with OR
networks and XOR gates. We perform a number of
preprocessing steps on the given test set and from the
resulting test data we construct the test pattern
generation mechanism. The resulting TPG is far superior
when compared with the phase shifter based approach

[8] and is better than the LFSRom approach of [4] for
fully specified test sets and the enhanced-LFSRom for
partially specified test sets.

6. References

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital
Systems Testing and Testable Design. New York:
Computer Science Press, 1990.

[2] L. F. C. Lew Yan Voon, C. Dufaza and C. Landrault,
“BIST Linear Generator Based on Complemented
Outputs”, Proc. IEEE VLSI Test Symposium, 1992, pp.
137-142.

[3] G. Edirisooriya and J. P. Robinson, “Design of Low Cost
ROM Based Test Generators”, Proceedings of VLSI Test
Symposium, 1992, pp. 61-66.

[4] C. Dufaza, C. Chevalier and L. F. C. Lew Yan Voon,
“LFSROM. A Hardware Test Pattern Generator for
Deterministic ISCAS85 Test Sets”, Proceedings of the 2nd

Asian Test Symposium (ATS’93), Beijing, China,
November 16-18, 1993, pp. 160-165.

[5] D. Kagaris, S. Tragoudas and A. Majumdar, “On the Use
of Counters for Reproducing Deterministic Test Sets”,
IEEE Trans. Comp., Vol 45, No. 12, Dec. 1996, pp. 1405-
1419.

[6] D. Kagaris and S. Tragoudas, “On the Design of Optimal
Counter-Based Schemes for Test Set Embedding”, IEEE
Trans. CAD, Vol. 18, No. 2, Feb. 1999, pp. 219-230.

[7] S. Swaminathan and K. Chakrabarty, “On Using Twisted-
Ring Counters for Test Set Embedding in BIST”, JETTA,
Vol.17, No. 6, Dec. 2001, pp. 529-542.

[8] M. Bellos, D. Kagaris and D. Nikolos, “Test Set
Embedding Based on Phase Shifters”, Lecture Notes in
Computer Science No. 2485, Edited by Andrea
Bondavalli and Pascale Thevenod-Fosse, (Proceedings of
4th European Dependable Computing Conference, EDCC-
4, Toulouse, France, October 2002), Springer – Verlag,
pp. 90-101.

[9] Jas and N. A. Touba, “Test vector decompression via
cyclical scan chains and its application to testing core-
based designs”, Proceedings of the 1998 International Test
Conference, October 18-23, 1998, pp. 458-464.

[10] R. Murgai, M. Fujita and A. Oliveira, “Using
Complementation and Resequencing to Minimize
Transitions”, Design Automation Conference, 1998, pp.
694-697.

[11] N. Drechsler and R. Drechsler, “Exploiting Don’t Cares
During Data Sequencing Using Genetic Algorithms”, ASP
Design Automation Conference, 1999, pp. 303-306.

[12] M. Bellos, D. Kagaris and D. Nikolos, “Low Power Test
Set Embedding Based On Phase Shifters”, Proceedings of
the 2003 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI 2003), Tampa, Florida, USA, February 20-
21, 2003, pp. 155-160.

348

