

Counterfactuals for Clustering and Deep Clustering

Georgios Vardakas, Antonia Karra, Evaggelia Pitoura, Aristidis Likas Department of Computer Science and Engineering, University of Ioannina, Greece

CFE for Clustering Definition

Counterfactuals for Classification

- Given
 - a classification model
 - An example y (factual) assigned to a class
- Counterfactual example (CFE) z :
- > A close example to y but assigned to different class
- Feature differences between y and z, suggest the modifications that should made to y for its class assignment to change.

CFE for Clustering - General formulation

- > A general optimization problem formulation is presented assuming:
- > A probabilistic cluster model and cluster assignment rule
- > A preference function expressing proximity and feature constraints (actionability)
- A plausibility constraint based on cluster density

CFE for Clustering Solutions

- > Assuming:
 - The CFE lies on the **cluster boundary**
 - > proximity is expressed in terms squared **Euclidean distance**
- > Optimal CFE solutions can be easily computed
 - > Analytical (k-means model)
 - Solving a non-linear equation with **only one parameter** (Gaussian model)

CFE Examples

Gaussian Clusters

k-means

CFE solutions - Extensions

- Easily computed **optimal solutions** are also presented for:
 - Feature actionability (feature masking)
 - Increasing plausibility (moving away from the boundary towards the cluster center)
 - > Mahalanobis distance for proximity (generalization of Euclidean distance)
 - CFE for group of factuals

k-means CFE Examples – Immutable features

 x_2 immutable

CFE for Deep Clustering

- > An encoder neural network is used to map data instances to a latent space
- Clustering is performed in the latent space
- Cluster model is available in the latent space
- The factual is mapped to the latent space where the corresponding **latent-CFE** is computed
- A methodology to **project the latent-CFE back to the input space** is proposed to compute CFEs

CFE for Deep Clustering - Example

factual

CFE images of increasing plausibility

Summary

- The first approach for computing CFEs for clustering
- Fast and easy to compute optimal solutions (analytical or single parameter equations)
- > Actionability and plausibility are naturally enforced
- Deep clustering extensions have been devised
- > For more information:

https://www.cse.uoi.gr/~fxc

