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CFE for Clustering - General formulation

> A general optimization problem formulation is presented assuming: X, Immutable X, Immutable

» A probabilistic cluster model and cluster assignment rule

CFE for Deep Clustering

» A preference function expressing proximity and feature constraints (actionability)

> A plausibility constraint based on cluster density > An encoder neural network is used to map data instances to a latent space

» Clustering is performed in the latent space

CFE for Clustering Solutions

» Cluster model is available in the latent space

» Assuming:
» The factual is mapped to the latent space where the corresponding latent-CFE is
» The CFE lies on the cluster boundary computed
» proximity is expressed in terms squared Euclidean distance » A methodology to project the latent-CFE back to the input space is proposed to

compute CFEs

» Optimal CFE solutions can be easily computed

» Analytical (k-means model
Y ( ) CFE for Deep Clustering - Example

» Solving a non-linear equation with only one parameter (Gaussian model)
CFE Examples
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Summary

» Easily computed optimal solutions are also presented for:

» The first approach for computing CFEs for clustering

» Feature actionability (feature maskin
4 8) » Fast and easy to compute optimal solutions (analytical or single parameter equations)

» Increasing plausibility (moving away from the boundary towards the cluster

center) » Actionability and plausibility are naturally enforced

> Mahalanobis distance for proximity (generalization of Euclidean distance) » Deep clustering extensions have been devised

> CFE for group of factuals » For more information:

https://www.cse.uol.gr/~fxc
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