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Abstract. Silhouette coefficient is an established internal clustering
evaluation measure that produces a score per data point, assessing the
quality of its clustering assignment. To assess the quality of the cluster-
ing of the whole dataset, the scores of all the points in the dataset are
typically (micro) averaged into a single value. An alternative path, how-
ever, that is rarely employed, is to average first at the cluster level and
then (macro) average across clusters. As we illustrate in this work with
a synthetic example, the typical micro-averaging strategy is sensitive
to cluster imbalance while the overlooked macro-averaging strategy is
far more robust. By investigating macro-Silhouette further, we find that
uniform sub-sampling, the only available strategy in existing libraries,
harms the measure’s robustness against imbalance. We address this issue
by proposing a per-cluster sampling method. An empirical analysis on
eight real-world datasets in two clustering tasks reveals the disagreement
between the two coefficients for imbalanced datasets.
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1 Introduction

The silhouette coefficient [1] serves as a widely used measure for assessing the
quality of clustering assignments of individual data points. It produces scores
on a scale from —1 to 1 reflecting poor to excellent assignments, respectively.
In real world applications, where it is widely accepted [2—4], it is common prac-
tice to average these scores to derive a single (micro-averaged) value for the
entire dataset. This is the originally proposed aggregation strategy [1] and the
only implementation in the popular SCIKIT-LEARN machine learning library in
Python. An alternative aggregation strategy, however, is to average the Silhou-
ette scores per cluster and then (macro) average across clusters, but our explo-
ration of the related literature shows that this is a strategy that is rarely used
in published studies. This is an alarming finding, because micro-averaging, e.g.,
in a classification context, is known to be sensitive to class imbalance [5,6].
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In this work, we focus on the effect of micro-averaging to a very well known
internal cluster validity index, addressing the following research question RQ1:
Is micro-averaging, which is the typical strategy to aggregate Silhouette scores in
cluster analysis, sensitive to cluster imbalance? We answer this question using
synthetic data, showing that micro-averaging Silhouette can produce misleading
results for clustering solutions with imbalanced clusters. By contrast, we show
that macro-averaging, which is rarely used in literature, is considerably more
robust to this issue, because it assigns equal weight per cluster while disregarding
its size.

In cluster analysis, Silhouette scores are often subsampled before being aggre-
gated to yield a single score for a large dataset. This is a particularly useful
step for computationally expensive tasks, as for example when assessing clus-
tering solutions for a varying number of clusters to select the optimal [7]. By
evaluating existing libraries in Python and R, we observe that only uniform
sampling is implemented, which makes us focus on a second research question
RQ2: Is uniform sampling suitable when macro-averaging or is its robustness
against cluster-imbalance put at stake? The answer is the latter. Theoretically,
in an extremely imbalanced dataset, the smallest cluster could even disappear
when sub-sampling uniformly, which would exclude one (equal) factor from the
macro-average. We address this issue, by proposing a novel per-cluster sampling
strategy, which we show that it best suits macro-averaging of Silhouette scores.

Overall, the contributions of this work are:

— We compare two aggregation strategies that can be used to compute a Sil-
houette score for a dataset, showing that the typical micro-averaging strategy
is problematic for imbalanced datasets.

— We introduce a per-cluster sampling strategy, which should be the one used
along with macro-averaging.

— We quantify the sensitivity of micro-averaged Silhouette on imbalanced syn-
thetic data, and we analyse two real-world imbalanced datasets on which the
macro average should be preferred.

The remainder of this study comprises the related work (Sect. 2),
a description of the Silhouette Coefficient (Sect. 3) and the aggregat-
ing strategies (Sect. 4), followed by an investigation on synthetic data
(Sect. 5.1), an experimental study on real-word data (Sect. 5), and clos-
ing with remarks and future directions. Our code is publicly available in
https://github.com /ipavlopoulos/revisiting-silhouette-aggregation.

2 Related Work

The Typical Approach. The vast majority of published studies employ micro-
averaging to report the Silhouette Coeflicient. In [8-10], the authors focus on
the number of clusters estimation problem. In [11], they use the term Average
Silhouette Width to refer to the micro-averaged Silhouette score. The authors
of [12] explicitly report the implementation of SCIKIT-LEARN that employs the
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micro-averaging strategy. The authors of [13], proposed a clustering algorithm
that divides recursively the clustered dataset based on the maximization of the
silhouette index. Similarly with the rest studies, they used the micro-average
strategy, which they called as summation of silhouettes.

Ezceptions to the Rule. In [14], the author observes that SPSS and R employ
different implementations of the Silhouette score. They note that the latter is
using micro-averaging and is the correct out of the two. We observe, however,
that other libraries (packages) do not necessarily follow this paradigm. Cluster-
Crit,! for example, compute cluster mean silhouette scores that they average to
yield the final index, but this is in fact a macro-averaged score. Without any
study in published literature to assess the two strategies, we argue that this is
considerably problematic, because, as we show (Sect. 5), results reported with
the two strategies on the same data may not be comparable. Notably, we could
only detect just one study using (and explicitly stating) the macro-averaging
implementation [15].

Filling the Gap. Micro-averaging is the typical and widely-used approach when
aggregating Silhouette, with macro-averaging being considerably overlooked in
literature of cluster analysis. Absent in existing literature is also a compara-
tive study between the two aggregation strategies, a gap that is being bridged
for classification tasks [5,6]. Our study of existing macro-averaging implementa-
tions (ClusterCrit) reveals that only uniform sampling is employed, often used
for the application on large datasets. We observe, however, that uniform sam-
pling cancels the benefits of macro-averaging (i.e., in cluster-imbalanced spaces),
because the measure reduces effectively to micro-averaging. We address this gap
by proposing an alternative sampling approach, well-suited to macro-averaging.

3 The Silhouette Coefficient

Data clustering is one of the most fundamental unsupervised learning tasks
with numerous applications in computer science, among many other scientific
fields [16,17]. Although a strict definition of clustering may be difficult to estab-
lish, a more flexible interpretation can be stated as follows: Clustering is the
process of partitioning a set of data points into groups (clusters), such that points
of the same group share “common” characteristics while “differing” from points
of other groups. Data clustering can reveal the underlying data structure and
hidden patterns in the data. At the same time, it is a task that poses several
challenges due to the absence of labels [18], including the evaluation of clustering
solutions.

Assessing the quality of a clustering solution ideally requires human exper-
tise [19]. However, finding human evaluators could be hard, expensive and time-
consuming (or even impossible for very large datasets). An alternative app-
roach is to use clustering evaluation measures, which can be either external
(supervised) or internal (unsupervised) [20]. The former, as the name suggests,

! https://cran.r-project.org/web/packages/clusterCrit /vignettes /clusterCrit. pdf.
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use external information (e.g., classification labels) as the ground truth cluster
labels. Well known external evaluation measures are Normalised Mutual Infor-
mation (NMI) [21], Adjusted Mutual Information (AMI) [22], Adjusted Rand
Index (ARI) [23,24], etc. External information, however, is not typically avail-
able in real-world scenarios. In such cases we resort to internal evaluation mea-
sures, which are solely based on information intrinsic to the data. Although
other internal evaluation measures have been proposed [25,26], we focus on the
most commonly-employed, and successful one [27], which is the silhouette coef-
ficient [1].

Fig. 1. Illustration of the elements involved in the computation of the silhouette score
s(z;) for a given data point z; that belongs to cluster Cf.

The silhouette coefficient [1] is a measure to assess clustering quality, which
does not depend on external knowledge and that does not require ground truth
labels. A good clustering solution, according to this measure, assumes compact
and well-separated clusters. Formally, given a dataset X = {1, ...,xy} that is
partitioned by a clustering solution f : X — {C,...,Ck} into K clusters, the
silhouette coefficient for point x; € X is based on two values, the inner and
the outer cluster distance. The former, denoted as a(z;), is the average distance
between x; and all other points within the cluster C; that x; belongs to (i.e.,

fzi) = Cr): .
a(w;) = m Z d(zi,xj), (1)

z;€CT,i#]

where |C7| represents the cardinality of cluster C; and d(z;,z;) is the distance
between x; and z;. The a(z;) value quantifies how well the point x; fits within
its cluster. For example, in Fig. 1, a(x;) measures the average distance of x; to
the points in its cluster C7. A low value of a(z;) indicates that z; is close to the
other members of that cluster, suggesting that x; is probably grouped correctly.
Conversely, a higher value of a(z;) indicates that z; is not well-placed in that
cluster. In addition, the silhouette score requires the calculation of the minimum
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average outer-cluster distance b(z;) per point z;, defined as:

b(x; d(x;s,zj) 2
(@) = o) |CJ| ;J ! @)

A large b(z;) value indicates that x; significantly differs from the points of the
closest cluster. In Fig. 1, the closest cluster (which minimises b(z;)) is C;. Con-
sidering both a(x;) and b(z;), the silhouette score of z; is defined as:

b(z;) — a(z;)
max {a(z;), b(x;)}

It is evident that the silhouette score s(x;), defined in Eq.3 for a data point
x;, falls within the range —1 < s(x;) < 1. Values close to 1 indicate that point
xz; belongs to a compact, well-separated group. In contrast, values close to —1
suggest that another cluster assignment for that point would have been a better
option.

s(zs) = (3)

4 Methods

The Silhouette Coefficient provides a score that grades the cluster assignment
of a data point. To obtain a single score for all the points x € X, the typical
approach is micro-averaging (see Sect. 2) that averages all the individual scores.
The alternative macro-averaging approach averages first the scores per cluster,
and then (macro) average the latter.

4.1 Micro-averaged Silhouette: The Typical Index

Micro-averaging silhouette at the point level (sample mean) is defined as follows:

Smicro(X) = % Z S(xz) (4)

zr;€X

This is the originally proposed averaging strategy by the study that introduced
silhouette [1], the one adopted by SCIKIT-LEARN, and it is the typical approach
employed in literature [11]. However, we show in Sect. 5 that it is not effective
in the case of imbalanced clusters, which is very common in real-world datasets.

4.2 Macro-averaged Silhouette: The Overlooked Index

When clusters are perfectly balanced, the sample mean is a reasonable aggrega-
tion strategy. The assumption of perfectly balanced clusters, however, cannot be
guaranteed in the real world, where clusters are often imbalanced. In such cases,
and when small clusters also matter (e.g., diagnostic reports about rare medical
diseases), we argue that micro-averaging is not effective while macro-averaging
is robust. This issue is known in fields such as supervised learning [5], but it has
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not been studied yet for clustering. To compute the macro-Silhouette, a score
S, is computed for each cluster C; as follows:

So(Cy) = ﬁ S s(w). (5)

z;€C;

This score measures how compact and well separated a cluster is given a cluster-
ing solution. For K clusters in that solution, we end up with a set of K cluster
silhouette values {S¢,,...,Sc, }. The average of these K scores, defined as the
macro-averaged Silhouette, can be used to assess the dataset clustering and is
more formally defined as follows:

1 K
Smacro(X) = ? Z SC(Ci) (6)
k=1

We note that macro-averaging assumes equal weight between the clusters, but
other approaches also apply. The weighted average, for example, where weights
reflect the support (i.e., the number of points per cluster, normalised), is closer to
micro-averaging in nature. Furthermore, other statistics could be applied, such
as the max (or the min), capturing the most (least) compact and well (bad)
separated cluster.

4.3 Per-cluster Sampling: Efficient and Robust Macro-Silhouette

The computation of the silhouette coefficient for all the N points in a dataset
requires the computation of a pairwise distance matrix at the cost of O(N?)
operations. This is demanding in terms of computational and space complexity
and, hence, not scalable for large datasets [28]. The typical approach to tackle
this problem is to compute the silhouette score using a uniformly selected sub-
sample of the dataset.

In a cluster-imbalanced problem, the typical (uniform across data points)
sampling may favour the major cluster and may even disregard completely one of
the minor clusters. We argue that this practice contradicts the nature of macro-
averaging, which assumes that clusters are equally weighted when averaged. To
solve this problem, when macro-averaging is aimed, we propose that sampling
takes place per cluster, following the macro-averaging spirit.

More specific, we create a subsample of size L for computing the macro-
averaged silhouette score by uniformly selecting a subset of L/K points from
each cluster C;, where i = 1,..., K. In this way, we ensure that all the clusters
contribute a sufficient number of data points to the subsample, preserving the
robustness of macro-Silhouette.

5 Experiments

5.1 Analysis on Synthetic Data

We created a synthetic dataset consisting of four Gaussian clusters, each with
100 points and a variance of 0.1, shown on the left of Fig.2. The micro- and
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Initial Clusters Expanded Cluster with Additional Points
Micro Silhouette: 0.623 / Macro Silhouette: 0.623 Micro Silhouette: 0.879 / Macro Silhouette: 0.622

Cluster D: 100-points Cluster D: 100-points

Clustet-hnPha goints

Fig. 2. Synthetic dataset, shown on the left, with four equibalanced clusters. The same
space is shown on the right, but the relatively distant cluster B now comprises 5,000
points more, yielding a heavy cluster-imbalance. Silhouette is reported per dataset per
aggregation strategy. Micro-averaging increases unreasonably by a large margin.

macro-averaged Silhouette scores are both 0.623, a score that is far from perfect
due to the overlapping clusters C and D. The same space is shown on the right,
but the lower distant cluster B is now populated with 5,000 points more, resulting
in a heavy cluster imbalance. Specifically, the ratio of the smallest to the largest
cluster for this dataset is r = 0.02.

When moving from the (balanced) space on the left to the (imbalanced) space
on the right, micro changes considerably. That is because the points added to the
distant cluster B directly influence the point-level average value upwards (i.e.,
a relative increase of 41%). The overlap of the minor clusters C and D is less
important in this case, when compared to the well-separated major cluster B.
By contrast, macro-average remains robust to this change, because each cluster
is equally weighted in the average, disregarding their size. As is shown in Fig. 3,
the sensitivity of micro-averaging to imbalance becomes apparent early on and
it could continue increasing if we continued adding points.

Silhouette score per number of added points

080~ —*= Macro
—e— Micro

P e S
0.75 -

0.70 -

Silhouette Score

065-
[} 1000 2000 3000 2000 5000
# added points

Fig. 3. Silhouette score of the dataset of Fig.2, micro- and macro-averaged, for a
varying number of points added.

Per-cluster Sampling. Using the same dataset, we assess the robustness of the
proposed per-cluster sampling. This is clearly shown in Fig. 4, by comparing the
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typical uniform and the proposed per-cluster sampling of the macro-averaged
Silhouette score. The more the imbalance, as we move to the right of the
Figure, the more the fluctuations of the macro-averaged Silhouette score com-
puted on a uniform sample of 100 points. The per-cluster sampling, on the other
hand, remains robust. Similar fluctuations are observed on uniform sampling
and micro-averaging (in red).

Uniform/Per-cluster sampling on Macro/Micro-averaged Silhouette per number of points added
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Fig. 4. Macro-averaged Silhouette score, computed on uniform and per-cluster samples
of 100 points, as the size of cluster B of Fig. 2 increases. (Color figure online)

Major Overlapping Cluster. When adding points to a distant cluster, we observe
an increase of micro-averaged Silhouette as opposed to its macro-averaged coun-
terpart. The situation is different, however, when the cluster we add points to is
close to others. Figure 5 depicts this space, where we observe that micro-averaged
Silhouette drops in value in this case. Macro-Silhouette, on the other hand, again
remains robust. This is mainly because we add points that overlap with nearby
clusters, reducing the overall score instead of increasing it, as was the case when
we added points to a distant cluster (Fig. 3).

Initial Clusters Expanded Cluster with Additional Points
Micro Silhouette: 0.723 / Macro Silhouette: 0.723 Micro Silhouette: 0.631 / Macro Silhouette: 0.731

Cluster D: 100 points Cluster D: 100 points

Fig. 5. Synthetic dataset, equibalanced as in Fig. 2 on the left, but now cluster B (to
which we add 5,000 points on the right) is very close to clusters D and A.

Estimating k (the Silhouette Method). Silhouette has been suggested as an
alternative to the problematic “elbow” method when estimating the number of
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clusters [7]. That is, the quality of a clustering solution (e.g., the predictions of
KMeans) is evaluated for different numbers of clusters. The number that leads
to the highest Silhouette score is chosen as the optimal one. We applied this
method on a synthetic imbalanced dataset of four isotropic Gaussian blobs,?
three with 100 points and one with 2,300. By undersampling from the major
cluster, we also produce an equibalanced version of this space where clusters
comprised 100 points each. By applying KMeans, then, with £ ranging from 2
to 10, we measured the micro and macro averaged Silhouette per space per k,
using uniform (for micro) and per-cluster (for macro) sampling of 100 points.
As is shown in Fig. 6, macro-averaged Silhouette reaches a maximum (blue star)
on the ground truth number of clusters (red line) in the imbalanced dataset.
Micro-averaged Silhouette is maximised for a different number of clusters. In
the undersampled (balanced) version of this dataset, shown on the right, both
strategies reach their maximum on the ground truth number of clusters, i.e.,
four, where the red vertical line is. This result can be explained by the lack
of robustness of uniform-sampled micro-averaged Silhouette (see Fig.4), which
is deceiving when estimating the number of clusters. The robust per-cluster-
sampled macro-averaged Silhouette, on the other hand, is not affected.

Silhouette
Silhouette

5 5 0

&
k

(a) Imbalanced (b) Balanced

Fig. 6. Estimating the optimal number of clusters (shown with star) when using micro
(orange) and macro (blue) averaged Silhouette. We use both, an imbalanced dataset of
four isotropic Gaussians, and an undersampled (balanced) version of the same space.
A red vertical line shows the ground truth number of clusters. (Color figure online)

5.2 Application on Real-World Datasets

We employed eight real-world datasets [29] of various types (numeric, time-series,
images), sizes (from 150 to more than 500,000 items), dimensionality, and with
a varying cluster imbalance. To estimate the latter, we computed the ratio (r)
of the size of the smallest to the largest cluster. Table 1 displays these datasets,

2 https://scikit-learn.org/stable/modules /generated /sklearn.datasets.make _blobs.
html.
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sorted according to their imbalance, which ranged from high (r = 0.03) to low
(r = 1.00).
These eight datasets are summarised below:

— PENDIGITS comprises 10,992 pen-based handwritten digits (from 0 to 9). Each
data item is represented by a 16-dimensional vector containing pixel coordi-
nates. DIGITS also comprises (1,797) images of handwritten digits, but each
item is an image of 8 x 8 pixels, resulting in d = 64 features.

— COVER TYPE contains cartographic variables for predicting forest cover types.
The dataset includes 581,012 samples and 54 features, such as elevation,
aspect, slope, and soil type. The cover types are classified into seven cate-
gories and it is a highly imbalanced dataset (r = 0.03).

— GAS SENSOR consists of measurements from 16 chemical sensors exposed to
different gases over a period of several months. The dataset includes 13,910
samples and 128 features. It is used for studying the drift in sensor responses
over time and developing algorithms for sensor calibration.

— WINE contains the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis deter-
mined the quantities of 13 constituents found in each of the three types of
wines.

— IRIS comprises the lengths and widths of the sepals and petals of iris flowers.

— GLASS contains the chemical compositions of glass samples, which are classi-
fied into seven types of glass.

— TCGA is a collection of gene expression profiles obtained from RNA sequencing
of various cancer samples. It includes 801 data instances, clinical information,
normalised counts, gene annotations, and 6 cancer types’ pathways.

— MICE consists of the expression levels of 77 proteins/protein modifications
that produced detectable signals in the nuclear fraction of the cortex. It
includes 1,080 data points and 8 eight classes of mice based on the geno-
type, behaviour, and treatment characteristics.

Evaluation Metrics. We compute micro and macro Silhouette scores, as internal
validation measures. We also employ external validation measures that use the
ground truth labels to assess the clustering solution, presented for complete-
ness. The normalized mutual information (NMI) score measures the similarity
between two clusterings by normalizing the mutual information score [30]. A
higher score indicates a better match between the cluster labels and the ground
truth labels. The adjusted mutual information (AMI) adjusts MI for chance
groupings [30]. It measures the agreement between two clustering assignments
and is normalized against the entropy of the labels to yield a score between 0
and 1. The adjusted rand index (ARI) measures the similarity between two data
clusterings by adjusting Rand Index (RI) to account for the chance grouping
of elements [23]. The score ranges from —1 to 1, with higher values indicating
better performance.



364 J. Pavlopoulos et al.

Table 1. Real-world datasets of varying dimensionality (d), size (IN), number of clus-
ters (k), imbalance ratio of smallest to largest cluster (r). The average macro (MaS)
and micro (MaS) Silhouette score, sampled uniformly and per-cluster respectively, is
reported across three runs (st. error of mean), along with NMI, ARI, AMI. Sorted by
r.

Dataset Type N d kr [MaS MiS NMI ARIAMI
Iris Numeric 150 |4 |3 |1.00/0.46 £0.01/0.46 +0.01/0.66 |0.62|0.66
Digits Image 1797 64 110/0.95/0.11 £0.01/0.13 £0.01/0.69 |0.56/0.69

Pendigits Time-series|10992 |16 {10/0.92/0.24 £+ 0.01/0.23 +0.01|0.67 |0.53/0.67

Mice ProteinNumeric (1080 |77 8 0.70/0.13 £0.01/0.12 £0.01/0.26 0.14|0.25
Wine Numeric [178 |13 |3 |0.68/0.30 &+ 0.01]/0.29 +0.01|0.86 |0.88/0.86
Gas Sensor |Time-series 13910 |128/6 |0.55/0.22 +0.03/0.27 +0.01/0.19 |0.07/0.19
Glass Numeric (214 |9 |6 (0.12/0.204+0.01]0.31 +0.01/0.32 0.17/0.29
Covertype |Numeric (11039354 |7 |0.03/0.25 4 0.01/0.08 +0.01/0.13 |0.05|0.13

Ezxperimental Settings. Missing values in datasets were replaced with the mean
value of the respective feature.> We standardized all the features per dataset, by
removing the mean and scaling to unit variance,* to avoid numerical instabilities
in the computations [31]. We trained KMeans per dataset, using the ground truth
number of clusters and selecting initial cluster centroids with KMeans++.

Results with Fixed Ground Truth Number of Clusters. Table 1 presents
the evaluation results of KMeans across datasets, setting k to the ground truth
number of clusters of each dataset. The external validation scores (NMI, ARI,
AMI) are high for balanced datasets (r > 0.9), they drop in two out of three
mild-imbalanced ones (0.5 < r < 0.7), and they are overall low for both highly
imbalanced datasets. When computing Silhouette, we employ uniform (for micro)
and per-cluster (for macro) sampling of 100 points per dataset, repeating three
times and reporting the average and the standard error of the mean. We observe
that the two indices are very close to each other in the balanced and mild imbal-
anced zones, with any differences not exceeding the standard error of the mean.
By contrast, in the highly imbalanced zone, the two indices are far from each
other. The sensitivity of micro-averaging to cluster imbalance (Sect. 5.1) can
explain the observed difference between the two indices. When MiS is greater
(e.g., GLASS), a major distant cluster may be present while when MasS is greater
than MiS (e.g., COVER TYPE), a major cluster may be close to other ones.

3 https:/ /scikit-learn.org/stable/modules/generated /sklearn.impute.SimpleImputer.
html.

* https://scikit-learn.org/stable/modules/generated /sklearn.preprocessing.
StandardScaler.html.
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Results on k-Estimation. We experimented also with estimating k using
the Silhouette method. That is by applying clustering for various k values and
assessing the two Silhouette aggregation strategies regarding their ability to yield
a maximum score for the ground truth number of clusters. The ground truth
number of clusters is shown with & in Table 1 and depicted with a red vertical
line in Fig.7. In Fig.7, we see that micro and macro averaging yield the same
optimal k in five out of eight datasets, all balanced (IRIS, PENDIGITS) or mildly
imbalanced (MICE, WINE, GAS SENSOR). In the heavily imbalanced datasets of
GLASS and COVER TYPE, as expected, the optimal k differs. Overall, the macro-
average yields an optimal k that is the same as the ground truth £ in two datasets
(DI1GITS and WINE) while typical micro-averaging yields an optimal k that is the
same as the grand truth in one (WINE).

6 Discussion

Silhouette Aggregation and Dataset. As was shown in Sect. 5, the typical micro-
averaged Silhouette score is vulnerable to cluster imbalance while the rarely-used
macro-averaged Silhouette is far more robust. This means that when there is
indication of an imbalanced dataset, it is macro-averaged Silhouette that should
be trusted for evaluating clustering solutions. This is the case for the two most
imbalanced real-world datasets used in this work. GLASS achieves a lower macro-
average compared to micro, which could be explained by a major distant cluster,
as in Fig. 2. COVER TYPE, on the other hand, achieves a higher macro-average,
compared to micro, which fits the synthetic example of Fig. 5 with a major cluster
being nearby others.

Silhouette Aggregation Per Domain. The choice of the aggregation strategy
depends also on the application domain. In predictive maintenance, for example,
major faults are of much higher importance compared to rare events, because
an accurate estimation may allow better logistics and administration for the
company (e.g., early orders, select appropriate workstations, etc.). In this case,
micro-Silhouette should be the selected index, if clustering was applied. On
the other hand, biomedical clustering applications would likely select macro-
Silhouette, because rare medical conditions exist (e.g., adverse drug events, etc.)
and should not be considered of less importance to frequently occurring ones.

Appropriate Sampling. During our study of related work and existing imple-
mentations (Sect. 2), we observed that the only sampling strategy implemented
was uniform. This strategy, however, is not appropriate for the macro-averaged
Silhouette (Sect. 4.3). Therefore, we proposed a per-cluster sampling strategy,
which we showed that it is considerably more robust compared to standard uni-
form sampling. This contribution can be particularly important for big datasets,
because computing Silhouette is O(N?). As was shown in Fig. 4, per-cluster sam-
pling is robust to imbalance and yields approximately the same score even when
the subsampled space is 2% of the original (i.e., rightmost of Fig. 4).
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Fig. 7. Micro (blue) and macro (blue) Silhouette per dataset. Clustering produced with
KMeans for varying k to select the optimal number of clusters (shown with a star).
The ground truth number of clusters is shown with a vertical red line. (Color figure
online)



Revisiting Silhouette Aggregation 367

7 Conclusions

This study shows that, although heavily overlooked, macro-Silhouette is a seri-
ous option that should be considered in cluster analysis. By focusing on subsam-
pling, an important step for large datasets, we find that standard uniform sam-
pling is not appropriate for macro-Silhouette. Hence, we propose a novel robust
per-cluster sampling strategy that follows in nature the macro-Silhouette com-
putation. By employing eight real-world datasets of varying cluster-imbalance,
we undertake an analysis showing that the two indices disagree in imbalanced
datasets.
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