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State-of-the-art on Counterfactual
Explanations

Machine Learning: Advancements and Model
Complexity

Over the past few decades machine learning (ML) methods have emerged as
a powerful techniques revolutionizing the way we analyze and interpret mas-
sive amounts of data. By facilitating the development of algorithms capable
of recognizing intricate patterns in complex datasets, ML allows us to extract
meaningful insights, make accurate predictions, and discover data patterns that
otherwise could remain hidden [T}, 2, [3, [4]. Recent ML problems are becoming
increasingly challenging and require more advance and complex models to solve
them [5]. Unfortunately, such ML models often sacrifice explainability due to
several reasons such as:

Model complexity: As ML models become more complex they incor-
porate numerous layers, parameters, and interactions. This complexity
increases their predictive power, but makes it difficult to understand how
they arrive at certain decisions.

Non-Linear Transformations: Complex models use non-linear trans-
formations, such as deep neural networks. These transformations allow
them to capture intricate patterns in the data. However, the trade-off is
that the interpretation of these non-linear functions becomes convoluted.

Feature Engineering: Complex models automatically learn features
from raw data, bypassing manual feature engineering. While this is bene-
ficial, it obscures the direct relationship between input features and model
predictions.

Black box nature: Some advanced models function as “black boxes”.
They make accurate predictions but lack transparency. Understanding the
inner workings of these models becomes elusive, hindering explainability.

Trade-offs: Model complexity often involves tradeoffs. While simpler
models (e.g., linear regression) are interpretable, they may sacrifice pre-
dictive performance. Complex models strike a balance, but at the expense
of interpretability.



2 Explainability in ML

2.1 The demand of explainable AI

It is evident that in several ML applications explainability in decision making is a
requirement. To establish that statement let’s consider the following scenario [0]:
Alice applies for a loan at a bank. A machine learning classifier is used and
the decision to analyzes Alice’s characteristics such as income, credit score,
education, and age. Despite her application, Alice is denied the loan, leaving
her with two key questions:

1. Why was the loan denied?
2. What steps can she take to secure approval in the future?

The first question could be answered with explanations such as “CreditScore is
too low” and is similar to most traditional explanations. The latter question
forms the basis of Counterfactual explanations: what (possibly small) changes
could be made to Alice’s feature vector in order to end up on the other side of
the classifier’s decision boundary?

2.2 Types of explainability methods

In general, explainability methods in ML can be categorized into three main
types. These are the self-explainable vs post-hoc explainable, global vs local
explanations, and model-dependent vs model-agnostic explanation methods.

Self-explanatory models are generally simple models, such as decision trees
and linear models, which by definition are inherently transparent. Let’s elab-
orate on Alice example, and suppose that the ML system responsible for the
loans relies on the following linear model f(x) = 0.7 x credit + 0.95 x salary +
0.1 x education + 0.2 x age. It is evident that this model heavily prioritizes
the features of credit score and the salary. On the other hand, post-hoc expla-
nations, are generally applicable to complex models after their training phase,
such as neural networks, due to their black-box nature.

Global explanations provide a general understanding of the behavior of the
model. Such methods are useful for identifying patterns or biases in the model.
In contrast, local explanations are responsible for explaining individual predic-
tions, providing a more precise insight into why a particular instance = received
a particular output g from the model fy (fgp(x) = 3). Prominent local explana-
tion techniques are Local Interpretable Model-agnostic Explanations (LIME) [7]
and SHapley Addictive exPlanations (SHAP) [§].

The final major distinction of explainability methods is that between model-
dependent and model-agnostic explanations. The former category, as their name
implies, are capable of explaining the output of a particular model or family of
models. Such methods utilize the internal properties and structure of the model
to provide insights into its decision-making process. Naturally, the explanations
provided by such methods tend to be more faithful and accurate. On the other



hand model-agnostic methods are not tied to any specific model and can be
universally applied.

3 Counterfactual Explanation: Definition and
Properties

3.1 Definition

Counterfactual explanations (CFEs) constitute a relatively new type of expla-
nation methods [6]. In general, CFEs are applied to complicated models that
are typically black-box in nature. Specifically, CFEs are categorized as post hoc
and local explanability methods, and were first introduced in 2017 in [9]. This
means that CFEs assume a trained model fy«(z) = y, where 6* are the trained
parameters, x is the input vector, and y is the model output to be applied. To
simplify the notation, we symbolize the trained model as f(x).

Before we dive into the mathematical formulation, let’s use Alice’s example
to better understand the CFE idea. Suppose there are two possible model
outcomes: y = ‘negative’, the applicant does not qualify for the loan,
and ¢y = ‘positive’, the applicant does qualify for the loan. Alice did not
get the loan she applied for, since f(x) = y, meaning that the input vector x
corresponding to Alice didn’t produce the desired output 3’. An explanation
for such a decision is needed to help Alice get the loan in the future: what
is the minimum required change that Alice should make (in terms of income,
education, etc.) in order to qualify for the loan.

More generally, this is the kind of explanation CFEs give to a model decision:
What is the minimum change that can be applied to x (producing x’) so that the
model output changes from f(x) =y to f(a') = y'? The definition of CFE is
the following:

Definition 1. Given a classifier f that outputs the decision y = f(x) for an
instance x, a counterfactual explanation consists of an instance x’ such that
the decision for f on x' is different from y, i.e., f(z') # y, and such that the
difference between x and x' is minimal [10)].

In term of mathematical formulation, this question naturally formulates an
optimization objective:

arg min d(z,z") (1)
st f@) =of @)

where d is a function that measures the distance between data points z, z’ € X,
and X is the input domain. Such an objective is not generally easy to opti-
mize due to the nonlinear nature of the constraints. However, using the penalty
approach, this objective function can be transformed into a differentiable un-
constrained optimization problem as follows [9]:

arg min max{\(f(') - y')? +d(z, )} 3)



3.2 CFEs desirable properties

Note that eq. [3] formulates the minimum requirements optimization problem
for a datapoint x’ to be wvalidly characterized as a CFE. At the same time,
it provides a solid foundation for further development. Of course, there are
other requirements, such as considering only mutable features, such as income,
and not immutable ones, such as race. Thus, the formulation can be further
generalized to take into account a set A of actionable features as follows:

arg min {max A(f(2') — y')? + d(z,2')} (4)

z'eA” A

Another requirement is that a CFE should modify the fewest possible features
most effectively. Thus the objective can be enriched with sparsity constraints
as follows:

arg min max{A(f(+') = y/)* + d(z,2) + g(a’ — 2)}, (5)

where ¢(-) can be for example the Ly or L; norma to enforce sparsity.

Another notable requirement is that the CFEs should result in a combination
of features that are realistic, in a sense that they are already observed in the
training data. For such a requirement, the CFEs should be computed to be
relatively close to the data manifold. In particular, an appropriate penalty loss
I(2'; X) can be introduced, which results in the next CFE formulation:

arg min max{A(f(«') =y + d(z,2') + g(a’ — ) + 13 X)) (6)

It should be noted that features in a dataset are rarely independent; thus,
altering one feature probably impacts others. Therefore, causality is another
property, which is associated with actionability and plausibility, as a counter-
factual generated through causation ensures these two properties of an action
by preserving the causal connection between elements.

Another desirable property is diversity. In this case, instead of a single CFE
for instance x, we wish to produce a set C' = {2, ..., z} } of counterfactuals. The
counterfactual explanation set C should be formed by diverse counterfactuals,
i.e., in addition to counterfactual z} € C being minimal and similar to z, their
difference should also be maximized. Diversity suggests different ways of chang-
ing the outcome class. We can encode diversity by forcing that the pairwise
distance between counterfactual explanations is greater than a given value [11].
Another approach for satisfying diversity, proposed in [12] is by building on de-
terminant point processes (DPP). Of course, there are additional requirements
that may be application or domain specific, see [6] for more details on this topic.

An additional categorization of CFE methods is endogenous vs exogenous
explorers [10]. Endogenous methods propose CFEs that exist in the dataset X,
thus such methods can guarantee plausibility. On the other hand, exogenous
methods generate (synthetic) CFEs that do not necessarily belong to the dataset
X. This sometimes may be be problematic because the suggested changes may
be difficult or even impossible to make. Referring back to the Alice’s example,



Table 1: Taxonomy of CFEs methods.

Name Model Strategy Data Type Code
WACH [9] Gradients Optimization Tabular v
NICE [14] Agnostic Instance Based Tabular v
CEM [15] Gradients Optimization v v
CEML [16] Agnostic Optimization v v
TREPAN [I7] Agnostic Decision Trees Tabular X
FACE [1§] Agnostic Instance Based v X
GRACON [19] Gradients Heuristic Search v X
MUCH [20] SVDD Sampling Tabular v
GRACE [21] Gradients Optimization Tabular v
GSG [22] Agnostic Heuristic Search v v
DICE [12] Gradients Optimization Tabular v
FT [23] Tree-base Ensembles Decision Trees Tabular v
FOCUS [24] Tree-base Ensembles Optimization Tabular v
CEGP [25] Agnostic Optimization v v
ARES [26] Agnostic Optimization Tabular X
DACE [27] Linear/Tree-base Ensembles  Optimization Tabular v
CEODT [2§] Tree Optimization v/ X
CEML [29] Agnostic Optimization Tabular v
CET [30] Agnostic Optimization Tabular v
FACTS [31] Agnostic Frequent Itemset Tabular v
GLOBE-CE [32] Agnostic Optimization Tabular v

it is impossible to for Alice to change her age or gender in order to get her loan
accepted [I3]. However, it should be noted that the majority of methods belong
to the exogenous category [10].

4 CFE Methods for Individual Instances

In this section, we present a variety of CFE methods that can generally be
classified as either model agnostic or model based. It should be noted that the
vast majority of methods focuses on the classification problem.

Table [I] presents a taxonomy of CFE methods. The Name column refers
to the name of the method. The Model column refers to the type of access
the method requires from the model to compute CFEs. The Strategy column
indicates the procedure in which the CFE is computed. The Data Type column
indicates the type of data to which the method can be applied.

4.1 Model Agnostic Methods

Model agnostic methods refer to CFE techniques that are generally applicable
to different algorithms and are not restricted to a specific model. This flexibility
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allows them to be used across different machine learning models, making them
highly versatile. As a result, these methods provide consistent and comparable
explanations regardless of the underlying model used in the analysis.

NICE. Nearest Instance Counterfactual Explanations (NICE) is a model ag-
nostic method that treats the model f(x) as a black-box [I4]. The NICE method
can only be applied to tabular data and can also handle categorical features.
First, it finds the nearest unlike neighbor 2" of datapoint x, where f(z"”) # f(x).
Note that by definition z” is itself a counterfactual. Additionally, the method
identifies the non-overlapping features of ’/ and x. This procedure identifies a
set of features that can be gradually changed to make x resemble the counter-
factual z”. If the change results in a positive reward, it is kept, otherwise it is
not. Finally, the examined feature is removed from the feature list.

FACE. It should be noted that the majority of methods proposed in the lit-
erature generate CFEs that are not necessarily representative of the underlying
data distribution. Thus the generated CFEs may even suggest unachievable
goals to the user. In [I8] the concept of the “feasible path” between the current
state x and the target state 2’ is introduced. Feasible and Actionable Coun-
terfactuals Explanations (FACE) is a method that computes actionable CFEs
through the discovery of feasible path.

A feasible path is modeled as the shortest path defined on a data density-
weighted matrix. FACE consists of three main options of computing the density
weights of the matrix as follows:

l‘7+$3

wij = fp(——)llzi =24l (KDE) (7)
- r k
wi; = f(m)\lxi —j|l, where 7= N (k-NN) (8)
~ 6d
Wij = f(f)”*xi —zj|l, when [lz; — ;]| <e (egraph) (9)
|lzi — 5]

In the formulas above, f(-) is a positive scalar function, ng4 is the volume of a
sphere of unit radius in R?. Of course, if the conditions are not satisfied, then
w;; = 0. After the matrix is computed, the shortest path algorithm (Dijkstra’s
algorithm) [33] is run over all candidate targets to find all data points that
satisfy the conditions.

TREPAN. Decision trees (DTs) [34, B3] are well known in ML for their
exceptional interpretability due to their internal transparency. DTs use axis
parallel hyperplanes as decision boundaries, while their inherent structure pro-
vides a transparent framework for understanding decisions. Thus, the idea of
using them for interpretability is actually an old one. TREPAN [I7] serves as



an introductory post-hoc explanation method that uses a DT to provide an ex-
planation for a complex classifier such as a neural network. The core idea of
TREPAN is to use the DT to approximate the inference of a (trained) complex
model in order to reveal its internal logic of decision making on a local or global
scale. In addition, the method uses the structure of the DT to enforce feature
constraints. It should be noted that TREPAN is not a proposed method for
computing CFEs, however with minimal adjustments it can provide CFEs as
noted in [I0]. It is important to note that decision trees have their own set of
limitations, including susceptibility to the curse of dimensionality and suitability
primarily for tabular datasets.

GSG. The Growing Spheres Generation (GSG) [22] is another model and
data agnostic method. Its strategy relies on a generative approach that grows a
sphere around the data point z to find the CFE z’. Specifically, GSG method
heuristically optimizes the following cost function:

2’ = argmin ||z — 2'[|2 +7||z — 2'||o (10)
st. flz') =y (11)
where || - ||o the lp norm defined as the number of non-zero elements and v a

hyperparameter weighting the two terms.

The heuristic optimization approach is designed in two steps, the generation
step and the feature selection step. The generation step constructs samples
uniformly at random in a sphere. If the generated samples do not contain CFEs,
the sphere grows. If the initial sphere contains CFEs, the sphere shrinks to find
the CFEs with the smallest distance. In the feature selection step, a different
heuristic strategy is followed to create sparse CFEs. Specifically, the method
ignores the small feature changes as the less locally relevant with respect to the
classifier decision boundary. Thus, the algorithm aims to adjust as many feature
exclusions as possible, as long as the predicted class of ' does not change.

4.2 Model-based Methods

Model-based methods are developed to explain the results of a particular model
or family of models. More specifically, model-based methods use the internal
properties and structure of the model to provide insight into its decision-making
process. Explanations derived from model-based techniques tend to be more
accurate and faithful because they exploit the internal workings of the model.

WACH. As discussed earlier, in [9] a well-defined formulation for CFE compu-
tation has been introduced. In particular, the optimization objective presented
in eq.[3| consists of two terms, A\(f(2') —')? and d(x,z"). Except for the typical
L2 norm, the first term aims to compute the CFE z’. By definition, 2’ should
belong to the category y’; thus the term A(f(z') — y)? formulates a natural
objective. At the same time, the second term d(z,z’) is targeted towards dis-
covering a counterfactual 2’ that is close to the datapoint x. The value A is a



regularization parameter responsible for balancing the the contribution of the
first term against the second term.

As noted in [9] the choice of the distance function d is a crucial characteristic
for the computation of the CFE. The paper suggests the use of L; norm, or Man-
hattan distance, weighted by the inverse Median Absolute Deviation (MAD).
The median absolute deviation for the feature k, over the set of datapoint X is
defined as:

MADk = medianjex(zjyk - medianlex(xl,k)). (12)

Finally, the proposed distance function d is formulated as:

|xz k —
=y 1
d(@i, MADk (13)
keF

Of course, the authors suggest that the distance function d should be refined
based on the application. Finally, the CFE can be computed by the optimization
of the objective function presented in Eq.

CEM. The Contrastive Explanation Method (CEM) requires access to the
gradients of the model f [15]. Therefore, the model must be differentiable.
The authors define the CFE as ' = x + §, where § is a perturbation applied
to x s.t. f(2') # f(z). In addition, the Pertinent Negative and Pertinent
Positive analyses are defined. The main goal of such a formulation is to generate
explanations that not only discover the minimum change required to be applied
to x, but also identify contrastive features that should be minimally absent for
x to maintain its current class. In particular, the methods aim to answer the
following question: “An input z is classified in class y because features f;, ..., fr
are present and because fy,,..., f, are absent”. The CEM is based on two
optimization objectives, whose minimization finds 67 and §"Y corresponding
to the positive and negative explanations, respectively. The CEM can be applied
to neural networks and to data from different domains (tabular, images, etc.).

GRACON. In [I9] the GRAdual CONstruction CFEs (GRACON) method
is proposed for deep neural networks without softmax activation. GRACON
models the CFE 2’ as follows:

={1—-M)oz+MoC (14)

where M = {0, 1}% is a binary mask, C is a composition matrix and o denotes the
element-wise multiplication. GRACON consists of two main steps, the masking
step and the composition step. The goal of the masking step is to select an
important feature to change the original decision from y to the target category
y'. Then the composition step optimizes C for the selected feature to improve
the output score of the target class.

Specifically, the masking step selects the most influential feature as follows:

" = max(|V fy (2)])i, (15)



where f,/ is the output of the model corresponding to class y'. After the mask-
ing step, the composition step optimizes the feature value to ensure that the
deep network assigns the perturbed data 2’ (eq. to class y'. The following
objective function is proposed for the specification of C:

K

N
3 (f,;<x’> 5 f,;my«))
=1

k=1

+ Az’ — 7] (16)

arg min
& c

where K is the number of classes, f; represents the logit score for a class k
and X; ,/ denotes the i, datapoint that is classified to class y’. The GRACON
method iterates between the masking step and the composition step and returns
the CFEs 2.

MUCH. In [20] the MUltiCounterfactual via Halton sampling (MUCH) method
is proposed for determining multiple counterfactual explanations based on Sup-
port Vector Data Description [36] in a mutli-class framework. The core idea of
MUCH is to utilize Halton sampling to generate multiple CFEs.

TGT. In [37] a new type of explanation called a Global Counterfactual Ex-
planation (GCE) is introduced along with an algorithm called Transitive Global
Translations (TGT) for computing GCEs. GCEs aim to identify the most im-
portant differences between groups of points in a low-dimensional representation
of data.

The authors assume r : R — R™ a differentiable function that maps the
points in the feature space to a lower-dimensional representation space. The
authors also assume two regions of interest in the feature space Xinitia1 and
Xtarget and also in the representation space Rinitial and Riarget. The goal of
GCE is to compute a transformation that takes the points in Xjuitia1 and maps
them to Ryarget using 7. Hence the goal is to find a transformation ¢ : R¢ — R
such that:

r(t(xz)) € R Vo e X

initial

(17)

where t(z) = x + ¢ is the explanation. In order to find d, the TGT algorithm
minimizes the following objective function:

target

1055(8) = ||1(T 4101 +0) — Trarges |12 + Alld]]1, (18)

initial

where z. .. . and T are mean values in feature space and representation
initial target

space, respectively.

GRACE. In [2I] a CFE method is proposed for explaining neural networks
that are trained on tabular datasets. Given the neural network model f(z),



GRACE solves the following optimization problem:
min dist(z', )

s.t. argmax(f(z)) # argmax(f(z"))
S| < K (19)
SUX', X7) <~ Vi,jeS
x’ € dom(X)

where S is the feature set of x that are perturbed to generate z’, K is the allowed
number of feature to change, SU(-) is Symmetrical Uncertainty function (a
normalized form of mutual information), -y is an upper bound (hyperparameter),
and dom is the set of actionable features. The GRACE algorithm first initializes
2’ = x. Then it ranks all features according to their predictive power with
respect to the prediction f(z), resulting in the ordered list ¢. This ordering
can be based on gradients with respect to the nearest contrasting class v. Then
it computes the new ordered list U* from U, by iteratively adding each feature
(from the most to least predictive) such that the SU value between any pair
of features in U* is within the upper bound v. Finally, GRACE generates the
CFE sample by perturbing 2’ towards the contrasting class (using the gradients)
until it changes category.

DICE. In [12] a framework is proposed for generating and evaluating a di-
verse set of actionable counterfactuals which should also satisfy two properties:
feasibility and diversity. Specifically, they extend the work of Wachter [9] and
construct a loss function with the following formulation:

k k

C(z) = arg min% ; yloss(f(c;), y)+/\1% ; dist(c;, x) —Aadpp_diversity(cy, . . ., cx)

(20)
where ¢; represents a CFE, k is the total number of CFEs to be generated, f(.)
denotes the ML model, yloss(.) is a metric that quantifies the error between
f(.)’s prediction for ¢; and the target outcome y, d represents the total number
of input features, x is the original instance, dpp-diversity(-) is the diversity met-
ric and A1 and A5 are hyperparameters that adjust the balance among the three
components of the loss function. The first part (yloss) pushes the counterfactual
c towards a different prediction than the original instance z, the second term
enforces the proximity property. i.e. CFE should be close to the original input
in order to be more useful to the user and the third term captures diversity
by building on determinantal point processes (DPP). The method handles cat-
egorical features by utilizing one-hot encoding and introduces a regularization
component with a substantial penalty for each categorical feature. In addition,
this work defines measures for validity, proximity and diversity which are used to
evaluate the set of CFEs generated from any method. Also, a secondary model
is used (1-NN classifier), using both the generated CFE set and the original
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input to assess the performance of CFEs. This evaluation involves examining
how accurately the secondary model can replicate the predictions of any new
input of the original machine learning model.

CEGP. Looveren et al [25] propose an approach for finding interpretable
counterfactual explanations of classifier predictions by using class prototypes.
Let ¢ be the original instance and z.y = z¢ 4 ¢ be the counterfactual instance.
CEGP considers the following objective function to be minimized with respect
to ¢:

L= C'Lpred +6~L1 +L2+LAE+Lproto (21)

where Lpreq encourages the predicted class ¢ of the perturbed instance x.f to
be different than the predicted class of the original instance xy and c is a scal-
ing parameter. The loss term (- L1 4+ Lo represents the distance between the
zo and the z.¢ and enforces the property of sparsity. CEGP includes the loss
term Lap to generate plausible counterfactual instances by using an autoen-
coder (AE) which is fit on the training data. CEGP also adopts the loss term
Lyroto based on prototypes in order to guide the perturbations § towards an
interpretable counterfactual z.;. For each class, CEGP, establishes a prototype
through the encoder part of the autoencoder. This prototype is defined as the
average encoding of the k nearest instances with the same class label in the
latent space. When given an input z, CEGP initially identifies the nearest pro-
totype in the latent space and efficiently solves the optimization problem. If the
training encoder does not exist, they build a k-d tree to represent each class in
order to find the nearest prototype. Another contribution of this paper is the
approach for handling categorical features, achieved by using pairwise distance
measures to create embeddings of categorical features within a numerical space.

CEML. In Artelt et al [29], it is explored how prototype-based models, like
Learning Vector Quantization (LVQ), can be used to compute counterfactual
explanations by exploiting its specific structure. Specifically, in order to com-
pute a counterfactual x’ of a given input x assigned to class y, they solve the
following optimization problem for each prototype p; of class 3’ # y and select
the counterfactual ' that minimizes a loss (distance) function 6(z’, x):

in 0(z 22
arg min §(z', ) (22)
st d(@',p;)+e<d@,p;) Vp;€PY) (23)

where p; is the i-th prototype, P(y’) denotes the set of all prototypes not labeled
as ¢’ and € > 0 is a small value preventing the counterfactual from lying exactly
on the decision boundary. Additionally, they demonstrate how to integrate plau-
sibility constraints into their framework to guarantee plausible counterfactual
explanations via an optimization problem structured as follows:

in 0(z, 24
arg min 0(a',2) (24)
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st. h(z')=y py)=>d (25)

where h is the prediction function of the LVQ model, p,(.) denotes a class
dependent density and § denotes a minimum density value for which they assume
a data point to be plausible. Also, they propose a counterfactual metric for
explaining the change of distance matrix based models when faced with new
data. Instead of altering a specific data point to achieve a desired prediction,
they propose making minimal adjustments to the distance matrix of the model
to obtain the desired prediction for the given data point. Let h : R — Y be
a prediction function that depends on a distance matrix Q € Si. They define
a counterfactual metric ' € Sf‘ﬁ as the solution to the following optimization
problem:

arg min 6(Q,Q) (26)
Vvest
st ho(z) =1y (27)

where (z,y’) constitutes (or a set of) labeled and currently misclassified sample
(samples), Si denotes the set of d x d symmetric positive semi-definite matrices
and 6(Y, Q) quantifies the difference between the counterfactual distance matrix
Q) and the original distance matrix Q. This objective defines the minimum
required change of a given classifier such that a new training sample, is classified
differently as compared to the current status. In addition, they investigate how
to solve efficiently this optimization problem for various types LVQ models, like
the generalized matrix learning vector quantization (GMLVQ) and the localized
generalized matrix learning vector quantization (LGMLVQ).

4.3 CFEs for Tree-based Models

Considerable research work has focused on the computation of CFEs for tree-
based classifiers (decision trees and random forests). Some of the proposed
methods are summarized below.

FT. Tolomei et al. [23] introduces a method based on actionable Feature
Tweaking (FT) aimed at determining which adjustable features of a given in-
stance x should be transformed in order to influence the prediction of a tree-
based ensemble. The FT method can only be applied on tabular data and it can
also handle both continuous and categorical features. F'T focus on f represented
as an ensemble of K tree-based classifiers, f = ¢(h1,...,h). Each hy : X =Y
is a base estimate, and ¢ is the function responsible for combining the outputs
of all the individual base classifiers into a single prediction. In any tree-based
ensemble classifier, each hy, is encoded by a decision tree T}, and the ensemble
is represented as a forest T = {T, ..., T }. FT tweaks the original input vector
x in order to turn the predicted output of the ensemble from negative (-1) to
positive (+1). FT skips the set of trees with positive output and focuses on
each tree T}, with negative output. It considers the set of all positive paths of
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each negative tree T,. Within each negative tree, the algorithm identifies paths
leading to positive outcomes. For each such path, it associates an instance from
the vector space that satisfies the boolean conditions along that path, reaching
a positive outcome. Among these instances it selects those having slightly ad-
justed feature values, allowing for slight changes within a specified tolerance of
at most e. For any small fixed € > 0, they build a feature vector 2’ (¢) as follows:

() = (28)

where 0; is the threshold on the i-th feature value. Nevertheless, it should be
taken into account that each such transformation may have an impact on other
trees of the forest. In other words, by changing = into another instance z’, it is
only guaranteed that the prediction of the base classifier T} is correctly fixed,
ie. from hg(z) = —1 to hx(z') = 1.

CEODT. In [28], the authors focus on counterfactual explanations using clas-
sification trees, both axis-aligned trained with CART and oblique trees trained
with the Tree Alternating Optimization (TAO) algorithm [38] 39]. Oblique
decision trees recursively divide the feature space by using splits based on lin-
ear combinations of features. In contrast to their univariate equivalents which
utilize only one feature for each split, oblique decision trees are frequently more
compact and accurate. Given an input instance z that has been classified by
the tree as belonging to class y (T'(z) = y), the original optimization problem
is to find the nearest instance z’ that is classified as another class y' # y (the
target class). Solving this problem involves minimizing the following objective
function subject to several constraints:

min E(z';z) s.t. T(z) =y, c(x) =0,d(z) >0 (29)
where E(z';x) is the cost of changing features of x, and c(x) and d(x) are
equality and inequality constraints in vector form. Although the tree function
T'(z) is non-convex and non-differentiable, the authors provide a strategy for
simplifying the original optimization problem. The main idea is decomposing
the problem into smaller sub-problems corresponding to individual leaves of a
tree, making the discovery of counterfactuals easier. Therefore, the focus shifts
to solving the optimization problem within a single leaf © € L that satisfies the
desired label condition y; = y. The objective is to minimize the function E(z'; x)
subject to the constraints specific to the region R; of leaf i. The optimization
problem over a single leaf ¢ € L is represented as follows:

. . /. . ; > _ >
min min E(z';2) s.t. hi(x) > 0,c(z) =0,d(z) >0 (30)

where h;(x) represents constraints specific to leaf ¢, c¢(x) represents equality
constraints, and d(x) represents inequality constraints.
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FOCUS. Flexible Optimizable Counterfactual Explanations (FOCUS) is a
model-specific method for tree-ensembles [24]. The FOCUS method can only
be applied on tabular data and it can handle both continuous and categorical
features. Building on Wachter et al [9], FOCUS faces the challenge of identifying
counterfactual explanations by suggesting integrating differentiable approxima-
tions of non-differentiable models into the gradient-based optimization frame-
work. More specifically, for acquiring the differentiable approximation f of f,
FOCUS constructs a probabilistic approximation of the original tree ensemble
f and replaces each split in each tree with a sigmoid function.

Robx. In Sanghamitra et al. [40], a method called RobX is presented for
generating counterfactuals for tree-based ensembles that are not only valid but
also robust. A new metric is proposed termed counterfactual stability to measure
how robust a counterfactual is going to be. Let M () : R — [0, 1] be the tree-
based ensemble model that takes an input vector and outputs the positive class
probability. Counterfactual stability of a counterfactual x’ is defined as follows:

2

1 1 1
Ry q2(a', M) = > M) - % P RCOE % > M)
" €N z"" €N,/ /€N,
(31)
where N, is a set of K points in R? drawn from the distribution A (2, 021,)
with I; being the identity matrix.

Given a data point z € X such as M(z) < 0.5, the goal is to find a valid
counterfactual 2’ with M (2") > 0.5 that belongs to the data manifold of x, but
is also robust. The first step of the method is to generate a counterfactual z’
for an instance x using any existing method for tree-based ensembles, such as
Feature Tweaking (FT) or FOCUS. The second step is to check if the generated
counterfactual satisfies the counterfactual stability test. The counterfactual sta-
bility test is satisfied when R ,2(a’, M) > 7 where 7 is a threshold. If the
test criterion is not met, the algorithm produces ¢ conservative counterfactuals,
which are the ¢ nearest neighbors of z’ in the dataset that pass the stability
test. Then, it iteratively approaches each of them until a stable counterfactual
is identified for all ¢ cases. At the end, it picks the stable counterfactual with
the lowest L, distance from z, for p=1or p =2.

DACE. The Distribution-Aware Counterfactual Explanation (DACE) method
[27] is based on mixed-integer linear optimization. The contribution of this ap-
proach is a new cost function that builds on Mahalanobis distance and on the
Local Outlier Factor (LOF) in order to enforce the plausibility of the generated
counterfactuals. For two vectors z, ' € R? and a positive semi-definite matrix
M € R4 Mahalanobis distance between = and ' is defined as

dar(,2'|M) ==\ /(&' — 2)TM (2! — ) (32)
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LOF is a outlier score that measures how unusual a given instance is by using
k-nearest neighbors (k-NN) computation. DACE focus on additive classifiers,
such as Linear models and Tree ensemble models and the aim is to find the
perturbation vector a that minimizes the cost Cpacg(z|a). Given a positive
semi definite matrix M, a set X of N instances, a positive integer k, and A > 0,
DACE defines the objective function Cpacp with respect to an input instance
x as:

Cpacelalz) = di(z,x +a|M) + X qp(z + a|X) (33)

where d3,(x,z + a) is the squared MD between the input instance x and its
modified instance x + a, qx(z + a|X) is the k-LOF of z 4+ a, and A > 0 is a
trade-off parameter between d3, and g. Moreover, DACE manages categorical
features using one-hot encoding and mitigates implausibility through the LOF
score.

5 CFE Methods for Groups of Instances

Except for computing CFEs given a specific instance, it may also be desirable
to compute CFEs given a set (group) of instances. These are called group
counterfactuals.

In [41] the most general problem is addressed of finding a group of coun-
terfactual explanations for a group of instances. The authors present several
mathematical optimization models to illustrate each potential allocation rule
between counterfactuals and instances. First, the authors define the single-
instance single-counterfactual case that has the following bi-objective optimiza-
tion formulation:

min (C(zo, ), —P(z)) (34)

where C(xg,x) is the cost to perturb z¢ to x and P(x) is the probability = of
being classified as positive that must be high.

Then they define the group counterfactual problem in which given a group
of instances xq¢’ they seek to find a group of R counterfactual instances x’ =
T1y.--y TR

mxin (C(xg,%),—P(x)), (35)

The third optimization problem is an alternative approach of Eq. [34 where they
add a hard constraint, i.e. the P must be above a threshold value v € [0, 1] and
has the following form:

m)in C(x0,x) (36)
st. P(x) > (37)

Furthermore, they outline the various components necessary to formulate math-
ematical optimization problems in counterfactual analysis. The first component
is the ambient space, which is the domain from which counterfactuals are drawn.
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Figure 1: Allocation rules between instances (squares) and their counterfactual
explanations (circles) in group counterfactual analysis.

They divide counterfactuals into endogenous and exogenous. Endogenous coun-
terfactuals have the advantage of being real and are retrieved by solving com-
binatorial problems, such as the p-median problem. In contrast, exogenous
counterfactuals, which is the most popular approach, are constructed by solving
continuous or mixed-integer optimization problems, such as the minimum-sum-
of-squared-distances problem. The second component is the allocation rules,
which dictates how counterfactual explanations are assigned to instances. The
allocation rules are defined as follows:

e One-for-one: Exactly one counterfactual for each instance.

e Many-for-one: Many counterfactuals for a exactly one instance. This
allocation rule provides some type of diversity.

e One-for-all: All the instances share the same counterfactual.

e One-for many: After partitioning the instances into subsets, one counter-
factual is computed for each subset.

Figure[l| graphically presents the above allocation rules. Next, they examine the
various constraints required for counterfactual explanations. These constraints
ensure the explanations are practical, plausible, and useful. The first major con-
straint is related to the interactions between instances and counterfactuals such
as restrictions on the number of changes in order to prevent unrealistic modifi-
cations, typically using a distance measure d(zg, z,) < 7. The second constraint
is to fulfill the closeness to historical data i.e., counterfactuals should remain
near historical data points or within the convex hull of the original dataset.
In addition, counterfactual explanations should presernve fixed features that
must remain unchanged One more constraint is the maintenance of statistical
distributions, ensuring diversity and similarity within clusters. Other essential
components needed to define the mathematical optimization problems include
the utilization of score-based classifiers and the manner in which the probabil-
ities of different counterfactuals to belong to the positive class are aggregated.
Another critical aspect is the cost criterion, which differs for endogenous and
exogenous counterfactuals. This criterion evaluates the difficulty of perturbing
instances to generate their counterfactuals. All optimization problems have been
solved using a general optimization package, namely the Gurobi optimization
solver.
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AReS. In Rawal et al [26], a model-agnostic method termed Actionable Re-
course Summaries (AReS) is proposed to generate global counterfactuals. These
explanations aim to offer an interpretable and accurate summary of recourses for
the entire population with special attention given to specific subgroups of inter-
est. For example, these subgroups can be characterized by features, such as race
or gender. The goal of this framework is to capture the differences in recourse
among various subgroups. AReS proposes a two-level recourse set, denoted as
R, which is a structured model organized hierarchically. It comprises several
recourse sets, each of which is enclosed within an outer if-then framework. The
outer if-then rules can be seen as descriptors for subgroups, representing various
subpopulations within the data. The inner if-then rules are recourses for the
corresponding subgroups. A two-level recourse set is a set of triples of following
form:

R= (Q1,(311’C/11)7 (Q17012’C/12)(QQ,62170'21) (38)

where g; corresponds to the subgroup descriptor and (c;, c;j) together repre-
sent the inner if-then recourse rules with c;; denoting the if-condition and c;;
denoting the recourse. A two-level recourse set offers recourse to an instance x
as follows: if 2 meets only one rule ¢ (i.e., x meets ¢; A ¢;), its recourse is c}.
If x doesn’t meet any rule in R, no recourse is provided. If x meets multiple
rules in R, the recourse is determined by the rule with the highest probability
of providing a correct recourse, computed directly from the data. In addition,
AReS quantifies key aspects of the explanations in order to construct correct
recourses and simultaneously provide recourses for many affected individuals,
while reducing costs and ensuring interpretability. These are formalized as fol-
lows:

e Recourse Correctness: the number of instances in X,g for which acting
upon the prescribed recourse by R does not lead to the desired prediction.
Xag is the set of affected individuals who received unfavorable outcomes.

e Recourse Coverage: measures how many individuals in X,g are provided
with recourses.

e Recourse Costs: Each of the M features is associated with a cost that
reflects the difficulty of changing its value, which means that some features
are more actionable than the others. Thus, this includes featurecost(R) =
Zi\il cost(c;) and featurechange(R) = Zfil magnitude(c;, ), accounting

for the difficulty and magnitude of changes in feature values.

e Interpretability Metrics: The size of R (the number of triples), the maxi-
mum number of predicates in conjunctions, and the number subgroups.

CET. Counterfactual Explanation Tree (CET) [30] is a framework which as-
signs actions (from a set of actions A) to multiple instances with a decision tree.
A CET must satisfy two requirements: transparency, i.e., providing a reason for
an assigned action in the form of a rule, and consistency, ensuring that these
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reasons do not conflict with each other. CET reduces a multi-class classification
problem to a binary classification between the target class and other classes.
Initially, CET models the problem of assigning an effective, single action a for
a set X of N instances where f(z) # 1 for any z € X in order to alter the
prediction result. However, because some of the instances in X are close to the
decision boundary while others are far away, this results in the required cost
to change the instances being high, and we do not achieve an effective action.
Therefore, the invalid score i(a | z) is introduced to evaluate the effectiveness
of an action with respect to an instance x. Then, CET finds an action a* € A
by solving the following optimization problem:

minimize,e4 g(a | X) = Z i(a | x) (39)
reX

CET aims to achieve interpretability of the entire procedure of action assignment
and to balance the trade-off between effectiveness and interpretability. Thus, for
a set of feasible actions A, a CET is a decision tree that assigns actions to input
instances. It uses a set of if-then-else rules structured as a binary tree. Each
instance x is assigned an action by following the tree’s branching rules from the
root to a leaf, determined by conditions on the features. The tree partitions the
input space into subspaces, each associated with a specific action and rule. This
structure ensures transparency and consistency in the action assignments. The
problem of learning a CET £ is defined as follows: Given a set X of IV instances
such that Vo € X, f(x) # +1, find an optimal CET A* such that:
o 1 .
minimizey, o(h | X) = N Z i(h(z) | z) + X - |L(h)]| (40)
reX

The first term in o(h | X) evaluates the average invalidity i(a | ) of the actions
a = h(x) assigned to x € X, considering a cost ¢(a | ) and the validity loss.
The second term |L(h)| represents the total number of leaves, i.e., actions, in
h. By adjusting the parameter A, we can balance the trade-off between the
effectiveness of the actions assigned by a CET h and the interpretability of h.
CET can be applied to any classifier f and cost function ¢ used in existing
methods.

GLOBE-CE. Global and Efficient Counterfactual Explanations (GLOBE-
CE) [32] is a flexible framework which provides global counterfactuals expla-
nations (GCEs) to a group of input instances, while facing reliability and scal-
ability issues on high dimensional datasets and in the presence of continuous
features. For reliability, GLOBE-CE generates GCEs that lead to accurate con-
clusions about the model’s behavior, ensuring maximum coverage and minimum
cost. GLOBE-CE measures efficiency based on the average CPU time required
to compute GCEs. For each input x belonging to a particular subgroup, a
translation § with a scalar k is applied so that z¢cr = = + k6 becomes a valid
counterfactual. For each x the method calculates the minimum value of k£ nec-
essary for recourse. GLOBE-CE first computes directions § and then through
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scaling it efficiently captures the variation within the set of local instances and
their proximity to the decision boundary. Therefore, the main contribution
of this work is the notion of scaling the magnitudes of translations. Given a
group of instances, the GLOBE-CE algorithm firs computes the set of GCE
directions 41, s, ..., 6. Next, each GCE 0; is scaled across a range of m scalars
ki,ko, ..., kn to provide the counterfactuals of the group. Also, an approach
is presented for handling the translation of the categorical data by expressing
them in the form of if/then rules.

6 Evaluating CFE Quality

Evaluating CFE quality is not a trivial task and usually involves user inspection.
A number of measures have been proposed for CFE quality assessment that are
presented below.

Validity. Validity assesses the ratio of generated counterfactuals that indeed
have the desired class label compared to the total count of generated counter-
factuals. Higher validity is desirable.

Instability. Measures how closely the counterfactuals (set C') obtained for a
given instance x align with those (set C') obtained for its nearest instance T
within the dataset X, where T receives the same black-box decision as x. The
underlying principle is that close instances z and T should yield comparable
explanations. The lower the better

1
inst(z,T) = T+ d, |CHC| Z Z d(z',z" (41)

z'€C el

Dissimilarity. It measures the proximity between instance z and its coun-
terfactuals (set C'). We measure it in two ways: disg;st, which calculates the
average distance between x and the counterfactuals using various distance func-
tions, and diScount, Which measures the average number of features that differ
between x and a counterfactual z’.

. 1
disgist = 19 Z d(z,z") (42)

z’'eC

diScount = Z Z 1(x) # ) (43)

xECz 1

where m is the number of features.
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Diversity. It applies in the case where multiple counterfactuals are generated.
Diversity is promoted by maximizing the distance between multiple counterfac-
tuals [12], incorporated either as an optimization objective term or as a strict
constraint [42] or by minimizing the mutual information among every pair of
altered features [21].

Running time. The execution time required to generate the explanation is
an important evaluation measure.

IM1 and IMZ2. For the evaluation of interpretability, the authors in [25]
propose two measures tailored to algorithmic methods that use autoencoders
(AE). Let z.y be the generated counterfactual, ¢ be the class of counterfactual
and to be the original class. AFE; is the autoencoder trained on the training
instances of the class i and AFE,y is the autoencoder trained on the training
instances of the class 5. The IM1 measures the ratio between the reconstruction
errors of z.f = xo + 0 using AE; and AE,, and has the following form:

2o + 6 — AE;(z0 + 0)|2
IM1(AE;, AEy, xcf) = "
( 0 Tef) [0 4+ — Ay (20 +0)[13 + € .

A smaller M1 value suggests that the counterfactual z.; can be more accu-
rately reconstructed by the autoencoder trained on the counterfactual class i
compared to the autoencoder trained on the original class ty,. This indicates
that z.r is positioned nearer to the data manifold of counterfactual class ¢ than
to, which is regarded as more interpretable.

IM?2 evaluates the resemblance between the reconstructed counterfactual
instances generated by AFE; and those produced by an autoencoder AFE trained
on all classes and is formulated as follows:

_ [AEi(z0 + 6) — AE(x0 +9)|13

IM2(AFE;, AE, z.f) = oo+ 01 £ (45)

A low value of IM2 means that the reconstructed instances of z.; are very
similar when using either AE; or AE.

7 Counterfactuals and Fairness

Counterfactual explanations can be used to assess fairness of decisions. In [31]
43], the concept of burden is introduced, a form of group fairness that is easier
to understand and explain than the typical group-fairness metrics. The burden
encapsulates the idea that the challenge for individuals or groups to achieve
recourses (i.e. to execute the necessary actions to alter their features for a
favorable outcome) should be comparable across sensitive groups. In other words
the burden for a group G is computed by averaging the distance between the
original input feature x; and the counterfactual feature x;" for all members of
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group G. This average distance indicates the level of changes required to assign
the group members to the desired class and has the following form:

Burden(G) = @ Zdzstance(xl, z}) (46)
i€eG

Recourses provide explainability and actionability to an affected individual. As-
sume a dataset D, a binary classifier h : X — {—1,1} and a set of possible
actions A which, when applied to an individual x, results in a counterfactual
' = a(xz). Assume also a predicate p which defines a subpopulation group
G, € D and distinguishes protected groups. The following recourse fairness

measures and constraints have been proposed:

e Effectiveness (eff): The proportion of individuals from G to achieve re-
course through a specific action a:

eff(a,G) = |G‘ {z € G|h(a(z)) = 1}|

o Aggregate Effectiveness (aeff): How recourse is achieved for the group
G through a set of possible actions A. There are two ways to measure.
The first way adopts the micro viewpoint, where individuals in a group
act independently, choosing the action that benefits them the most. The
micro-effectiveness of a set of actions A for group G is defined as the
proportion of individuals in G that can achieve recourse through some
action in A:

aeff, (A, G) = {z € G|3ac A, eff(a,x) =1} (47)

IG |
The second way adopts the macro viewpoint, the group is treated as a
single entity, with one action applied to all its members. Specifically, the
macro-effectiveness of a set of actions A for group G is defined as the
highest proportion of individuals in G who can achieve recourse through
the same action in A:

aeffM(A G) = maji( | |

e Equal Effectiveness constraint: The proportion of individuals in the pro-
tected GGy and in unprotected G group that can achieve recourse should
be the same:

Ltz e G| eff(a,2) = 1] (48)

aeff(A, Go) = aeff(4, Gy)

e Equal Choice for Recourse constraint: Both groups should have an equal
choice of ’sufficiently effective’ actions for achieving recourse. Sufficiently
effective actions are those that are effective for a proportion of the sub-
group members greater than ¢ (¢ € [0,1]):

[{a € Aleft(a, Go) > ¢} = [{a € Alef(a, G1) > ¢}|
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e Equal Effectiveness within Budget constraint: The proportion of individ-
uals that achieve recourse with a cost at most ¢ should be the same for
both groups:

ecd(c; A, Go) = ecd(c; A, G)

e Equal Cost of Effectiveness constraint: The minimum cost to achieve ag-
gregate effectiveness of ¢ € [0, 1] in both groups should be equal:

ecd™ ' (¢; A, Go) = ecd™ ' (¢; A, G)

e Fair Effectiveness-Cost Trade-off: Both groups should have the same effectiveness-
cost distribution, or, conversely, their aggregate effectiveness should be
equal for every cost budget c:

max |ecd(c; A, Gp) — ecd(c; A,G1)| =0

FACTS. In [31] an efficient, interpretable, model-agnostic framework is pre-
sented for examining subgroup fairness through recourses. More specifically, a
recourse cost function of an individual instance x is defined as the minimum cost
effective action a which, when applied to x provides a counterfactual instance
belonging to the desired output. They also examine how many individuals from
a group G achieve recourse through an action a, i.e, they compute the effective-
ness ef f(a, G). Given the subgroups of interest, several fairness measures based
on effectiveness are defined and computed as described previously. FACTS as-
sesses each of the aforementioned definitions across all subgroups, generating an
unfairness score for each definition and each subgroup. The outcome of FACTS
is a ranked list of the subgroup counterfactuals in decreasing order of their
unfairness score.

8 Summary

In this literature review, we emphasize the significance of explainable AI and
the challenges it faces as models grow increasingly powerful and complex. We
begin by briefly introducing prominent types of model explanations and then
we particularly focus on the counterfactual explanations (CFE) approach for
expalining classification decisions. Following an overview of CFEs and their
desirable properties, we provide a survey of the relevant literature highlighting
several proposed methods for computing CFEs. Our discussion includes both
model-agnostic and model-specific CFE approaches, as well as group CFE tech-
niques that compute counterfactuals for groups of instances. Finally, we present
evaluation metrics for CFEs and discuss how counterfactual explanations could
be used to assess the fairness of classification decisions.
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